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Introduction
Annotations of MapMan functional categories play a pivotal role in helping researchers 
identify candidate genes [1]. However, these functional categories are based on BLAST 
sequence similarity and protein domains from InterPro [2] and the Conserved Domain 
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involved in photosynthesis is important for the study of photosynthesis. MapMan Mer-
cator 4 is a powerful annotation tool for assigning genes into proper functional catego-
ries; however, in maize, the functions of approximately 22.15% (9520) of genes remain 
unclear and are labeled “not assigned”, which may include photosynthesis-related 
genes that have not yet been identified. The fast-increasing usage of the machine 
learning approach in solving biological problems provides us with a new chance to 
identify novel photosynthetic genes from functional “not assigned” genes in maize.

Results:  In this study, we proved the ensemble learning model using a voting elimi-
nates the preferences of single machine learning models. Based on this evaluation, we 
implemented an ensemble based ML(Machine Learning) methods using a majority 
voting scheme and observed that including RNA-seq data from multiple photosyn-
thetic mutants rather than only a single mutant could increase prediction accuracy. 
And we call this approach “A Machine Learning-based Photosynthetic-related Gene 
Detection approach (PGD)”. Finally, we predicted 716 photosynthesis-related genes 
from the “not assigned” category of maize MapMan annotation. The protein localiza-
tion prediction (TargetP) and expression trends of these genes from maize leaf sections 
indicated that the prediction was reliable and robust. And we put this approach online 
base on google colab.

Conclusions:  This study reveals a new approach for mining novel genes related to a 
specific functional category and provides candidate genes for researchers to experi-
mentally define their biological functions.
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Database (CDD) [3], which assign genes that do not show high sequence similarity to 
Arabidopsis or contain no typical protein domains to the category of “not assigned”. In 
maize, approximately 9520 genes were sorted to the category of “not assigned” in the last 
version of MapMan Mercator 4, and we were curious whether there are other ways to 
help predict the potential functions of these genes.

Supervised machine learning approaches have recently been rapidly developed in the 
field of biological applications; e.g., AlphaFold, a novel machine learning approach, can 
predict protein structures with high accuracy [4]. This approach was recently success-
fully tested in maize to predict the functional annotations of non-homology-based genes 
[5]. Therefore, we believe it is worth testing the performance of a supervised machine 
learning approach in predicting the putative biological functions of these “not assigned” 
genes.

Photosynthesis plays a vital role in living organisms on our planet, powering our eco-
system by providing carbohydrates and oxygen [6]. The discovery of more photosynthe-
sis-related genes could help broaden our knowledge of photosynthesis and further help 
to improve photosynthetic efficiency in plants, especially in crops. In recent decades, the 
discovery of photosynthesis-related genes in maize has mainly been based on sequence 
similarity with well-studied photosynthesis-related genes in Arabidopsis or rice [7], and 
the Photosynthetic Mutant Library (http://​pml.​uoreg​on.​edu/​pml_​table.​php), which uses 
forward genetics with Mu transposons, generated ~ 2100 mutants, corresponding to 
95 identified genes involved in photosynthesis. All these studies greatly improved our 
understanding of photosynthesis; however, due to the complexity of photosynthesis, 
more new genes related to this important process need to be identified.

In this study, we implemented an ensemble based ML methods using a majority vot-
ing scheme, a supervised machine learning approach that integrates expression data and 
differential contrasts from six photosynthetic mutants to mine novel photosynthesis-
related genes from the “not assigned” category of MapMan Mercator 4 in maize. The 
PGD approach generated a machine learning model with a high AUC-ROC (0.9649) and 
predicted 716 potential photosynthesis-related genes, which were preliminarily vali-
dated by protein localization and gene expression results. Finally, we construct an online 
machine learning approach for people more convenient to use.

Materials and methods
RNA‑Seq expression data processing

We process RNA-Seq data from samples from two different groups of six maize pho-
tosynthetic mutants (hcf136, pyg56, pet2, atp4, bsd2, cps2) under two treatments. Each 
mutant was treated with high light and low light, and their second leaves were collected 
and sequenced, total 95 samples. The original sequencing data were aligned to the maize 
(Zea mays) B73v4 using TopHat2. Then we use Cufflinks to quantify the raw read count 
in each gene. And we took DESeq2 [8] to analyze the different information between 
the wild-type sample and the corresponding mutant sample. Get the different informa-
tion include the average of the normalized counts for all samples(baseMean), log base 
twofold changes for the condition tested (Log2FoldChange), Log2FoldChange Standard 
Error (lfcSE), Wald statistic (stat), Wald test P value for the Log2FoldChange estimate (P 
value) and FDR adjusted P value.

http://pml.uoregon.edu/pml_table.php
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Dataset construction

We took MapMan Mercator4 [5] to annotate maize genes. The Mercator 4 program is 
based on BLAST sequence similarity and protein domains from InterPro and the Con-
served Domain Database, which assign genes that do not show high sequence similarity 
to Arabidopsis or contain no typical protein domains to the category of “not assigned”. 
This part of genes in maize is our unannotated genes. This program assigns genes to 
photosystem I, photosystem II, photorespiration and the Calvin cycle are directly related 
to photosynthesis [6], is our positive label samples. And this program assigns genes to 
chromatin organization and cytoskeleton organization that were not directly related to 
photosynthesis, is our negative label samples.

The expression data and different information were connected according to gene id. 
Then, we built a dataset from these preliminary datasets. This dataset has 333 features. 
The statistical results of these three datasets are shown in Table 1. In particular, the not 
assigned parts were used to predict novel genes related to photosynthesis.

Machine learning architecture

In machine learning applications, each algorithm has different performances on dif-
ferent datasets. Therefore, we used two machine learning methods commonly used in 
Kaggle (the world’s largest data science community) as submodels’ methods, including 
random forests and gradient boosting machines (Catboost, Gradient Boosting Decision 
Tree and XGBoost). These four submodels are the first layer of our machine learning 
architecture. The second layer of our machine learning architecture is the voting mecha-
nism [9, 10, 11, 12].

Voting mechanism

The voting mechanism can obtain the results of each submodel from the first layer and 
then make judgments and correct the incorrect prediction of a single model to improve 
the accuracy of the prediction based on the submodel. For example, if three votes think 
that a gene is photosynthetic related and two votes think that the gene is not photosyn-
thetic related, the voting mechanism will think that the gene is photosynthetic related.

Cross‑validation

We took a five-fold cross-validation strategy to train our models (Fig.  2a). Next, we 
trained the four submodels on the training set. Finally, the performance of the four 

Table 1  Overview of dataset

Category Gene number Example gene

Photosynthesis related genes 220 PEPC(Zm00001d046170),
Psb29(Zm00001d021763) …

Not related to photosynthesis genes 405 IDP2451(Zm00001d053643),
Chr111(Zm00001d016861) …

Unannotated genes 9520 Zm00001d002341,
Zm00001d012088…
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submodels was estimated using the test set by the indicator Area  Under  the  Curve 
(AUC-ROC) and Recall.

Results
Overview of the framework

We implemented an efficient framework from processing raw RNA-Seq data to obtain 
the final list of potential photosynthesis-related genes (Fig. 1). To begin this process, 
we first performed RNA-Seqs on maize leaf two from wild-type (WT) and six photo-
synthetic mutants (hcf136, pyg56, pet2, atp4, bsd2, cps2) under two treatments (high 
light and low light), and the raw reads from a total of 72 libraries were processed 
using Cufflinks and DESeq2 [8] to obtain the Fragments Per Kilobase of exon model 
per Million mapped fragments (FPKM) expression values and differential contrasts. 

Experiment 
Treatment 1 … differential 

contrasts … Annotation

gene 1 FPKM (1,1) … data (1,n) … Annotation (1)

… … … … … …

gene n FPKM (n,1) … data (n,n) … Annotation (n)

vote

Maize leaf

RNA-Seq raw data

Gene expression (FPKM) calculation and functional 
annotation assignment based on MAPMAN  Mercator4 

GBDTRF

XGBCAT

Voting machines

Candidate genes

Fig. 1  Overview of the PGD framework
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Then, the expression values and differential contrasts from the different samples were 
integrated into one file based on gene identification (ID). After that, MapMan Merca-
tor 4 was used to assign genes into different functional categories. Later, we chose 220 
genes in the category of photosynthesis as positive training sets, 405 genes that were 
not assigned to photosynthesis (assigned to chromatin organization and cytoskele-
ton organization) as negative training sets, and 9520 functional “not assigned genes” 
as an exploration set to mine putative novel photosynthesis-related genes (Table  1, 
Additional files 2–4: Tables 1–3). The training set was input into four different super-
vised machine learning submodels, and the primary results were output. Finally, the 
primary results from four different submodels were further input into the voting 
mechanism, and these genes with potential functions related to photosynthesis were 
selected.

Performance of the four submodels

We observed that a single submodel performed differently in different durations of 
fold, and the AUC-ROC (Fig. 2b) and Recall (Fig. 2c) was different in four submod-
els using the same training set. For example, we noticed the highest AUC-ROC score 
of 0.953 in the fourth fold in Catboost and in the third fold of Gradient Boosting 

a
Dataset

Fold 5Fold 1 Fold 2 Fold 3 Fold 4

Fold 5Fold 1 Fold 2 Fold 3 Fold 4

Fold 5Fold 1 Fold 2 Fold 3 Fold 4

Fold 5Fold 1 Fold 2 Fold 3 Fold 4

Fold 5Fold 1 Fold 2 Fold 3 Fold 4

b

c

Fig. 2  The performance of four sub-models. a fivefold cross validation. b AUC of sub-models using fivefold 
cross validation strategy. c Recall of sub-models using fivefold cross validation strategy
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Decision Tree (GBDT). As shown in Fig. 2b, c, single model reported preferences in 
specific data sets. The model Random Forest had the highest AUC-ROC in the first 
and fourth folds, while the lowest appears in the fifth fold. The model Catboost had 
the highest AUC-ROC in the fourth fold, while the lowest appeared in the second 
fold. The model XGBoost (XGB) and GBDT had the highest AUC-ROC in the second 
fold and the lowest in the fifth fold. All these results indicated that single model had 
preferences in specific dataset.

Construction and performance of the PGD

Because single model has unstable performance in specific dataset, we applied a vot-
ing mechanism approach to eliminates the preferences of single machine learning 
model. Therefore, we constructed an ensemble ML model using a voting scheme. In this 
scheme, we first trained the four submodels and then voted the results from these four 
models. We gave three votes to GBDT, the model with the best performance in the pre-
vious single submodel test, one vote to Catboost, two votes to XGB and Random Forest. 
Introducing the voting mechanism of PGD greatly eliminates the preferences of single 
machine learning model. As shown in Tables 2 and 3, the voting mechanism showed the 
highest performance in the second, fourth and fifth folds. Even in the second and first 
fold, the performance of the voting mechanism is less than 0.1 AUC-ROC away from 
the highest. In general, the mean AUC-ROC and Recall from the voting mechanism was 
much better than others. Overall, these results indicate that the voting mechanism per-
formance better than a single machine learning model.

Table 2  Performance comparison of different methods by AUC-ROC

Bold font indicates the highest value in the Fold

Fold1 Fold2 Fold3 Fold4 Fold5

RF 0.948 0.941 0.924 0.948 0.896

CAT​ 0.931 0.862 0.906 0.953 0.924
XGB 0.936 0.948 0.940 0.942 0.918

GBDT 0.942 0.959 0.953 0.931 0.924
VOTE 0.942 0.964 0.940 0.965 0.924

Table 3  Performance comparison of different methods by Recall

Bold font indicates the highest value in the Fold

Fold1 Fold2 Fold3 Fold4 Fold5

RF 0.960 0.944 0.928 0.960 0.912

CAT​ 0.944 0.888 0.912 0.960 0.928
XGB 0.944 0.960 0.936 0.952 0.928
GBDT 0.952 0.960 0.952 0.944 0.928
VOTE 0.952 0.960 0.936 0.968 0.928
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Increasing PGD model performance by using RNA‑Seq data from multiple photosynthetic 

mutants

Previous studies have shown that adding related features to data can significantly 
improve classification performance [13]. Therefore, we tested the performance of the 
PGD model constructed with RNA-seq from a single photosynthetic mutant and six 
different types of photosynthetic mutants, including hcf136, pyg56, pet2, atp4, bsd2 
and cps2 (Fig. 3). The results indicated that in predicting the target genes, the training 
effect of the dataset constructed from the six photosynthetic mutants was significantly 
higher than that of the dataset constructed by a single photosynthetic mutant (Fig. 3). 
Therefore, a large amount of relevant data related to specific research can significantly 
improve the performance of the model when predicting the target genes.

Predicting photosynthesis‑related genes from function “not assigned” genes using 

the PGD model

After the series of tests mentioned above, we retrained the PGD model using the 
RNA-seq dataset constructed from all six maize photosynthetic mutants to mine 
the photosynthesis-related genes from the 9520 genes labeled “not assigned” in 
MapMan Mercator 4. In total, the model predicted 716 genes with a high possi-
bility of participating in the process of photosynthesis in maize (Additional file  3: 
Table 2). To evaluate whether these 716 predicted genes truly have potential func-
tions in photosynthesis, we checked their expression levels in 15 maize leaf sec-
tions along the developmental gradient [14], which also represented a gradient from 
no photosynthesis (sink, sections 1–3) to chloroplast biosynthesis (source-sink 
transition zones, sections 4–6) and from low to high photosynthesis, with a slight 
drop in the leaf tips (source, sections 7–15) of maize leaves. As shown in Fig.  4a, 
a clear expression trend with four clusters appeared. The genes (15.08%) in Clus-
ter one, e.g., Zm00001d011467 and Zm00001d034338, showed low expression from 
sections 1–4 (Fig.  4b), and their expression peaked from sections 5–9 and gradu-
ally decreased from sections 9–15 (Fig.  4c), similar to the expression profiles of 
photosystem II subunit29 (psb29) and phosphoenolpyruvate carboxylase(PEPC) 
(Fig. 4d), the key genes that participate in photosystem II [15–17], indicating poten-
tial functions of these genes related to the chloroplast and photosynthesis func-
tions. Cluster two, with 58.10% of the predicted genes, e.g., Zm00001d012088 and 

Fig. 3  Performance comparison of PGD model using single and multiple photosynthetic mutants
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Zm00001d002341, showed low to high expression levels along the leaf gradient, and 
expression dramatically increased after section  7, similar to the classical maize C4 
genes of PPDK and PPCK, indicating a close link of their functions related to pho-
tosynthesis. The expression of the 93 genes in Cluster four (e.g., Zm00001d000399 
and Zm00001d002500) increased beginning in Section three, peaked in sections 
5–6, and then ceased immediately after section 7, which is highly consistent with the 
features of genes involved in chloroplast biosynthesis and assembly, such as Tic40 
(translocon Tic40) and crp1 (chloroplast RNA processing 1) (Fig. 4c) [18]. Although 
33 genes (4.6%) appeared to be highly expressed in the sink tissue (sections 1–3), the 
majority (89.25%) of our predicted genes showed clear expression trends similar to 
those of genes directly related to the PS (Fig. 4b), indicating a high accuracy of our 
model in predicting putative photosynthesis-related genes from the “not assigned” 
category.

We further checked the possible localization of these 716 predicted genes using 
Target-P v2.0 [19]. Interestingly, 235 of them, which accounted for 32.82% of the 

Fig. 4  Expression changes of predicted photosynthetic related genes along maize leaf gradient. a Hierarchy 
clustering showing the expression changes of 716 genes along maize leaf sections from base to tip. b 
The expression similarity comparison among predicted genes in cluster 1 and classical photosynthetic 
related genes. c The expression similarity comparison among predicted genes in cluster 2 and classical 
photosynthetic related genes. d The expression similarity comparison among predicted genes in cluster 4 
and classical photosynthetic related genes
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total genes, were located in the chloroplast, as predicted by Target-P v2.0, further 
indicating their potential functions in photosynthesis. Finally, we listed a set of 
genes whose expression levels increased from the base to tip and were localized in 
the chloroplast (e.g., Zm00001d002341) (Fig.  4d, Additional file  4: Table  3), which 
we believe are worthy of further research to discover their true biological functions.

Construct an online machine learning approach

In order to let more people use this approach, we construct an online approach based on 
google colab. Just upload the form as required (Additional file 1), click on the required 
steps, and then you can get the gene you are interested in. For example, if you want 
to find more genes related to sugar synthesis in tomato, you only need to find multi-
ple sugar-related genes in the literature, and then find several genes that are not related 
to sugar-based on biological knowledge. Through the expression amount generated by 
RNA-Seq or input the data table you think is important, upload it to the colab according 
to the attached operation, and then you can find the genes related to sugar synthesis in 
the gene list of unknown function.

Discussion
Machine learning methods have been widely used in biology, especially for predicting 
three-dimensional protein structures [4] and automatically quantifying the phenotypes 
of crops (e.g., wheat ears) [20]. They have also been used to predict condition-specific 
regulatory genes in plants [13]. There are 39,498 genes in the maize v41 genome, but 
according to the most recent MapMan annotation file in Mercator 4, 9520 genes still 
cannot be assigned to a proper functional category and are labeled “not assigned”, which 
account for approximately 24.1% of the total genes in maize. Therefore, it is necessary to 
use a machine learning approach to predict the functions of these genes.

Plant photosynthesis provides both carbohydrates and oxygen to living organisms on 
our planet. Therefore, it is essential to explore the genes that control photosynthesis. 
In our study, we implemented an ensemble based ML methods using a majority vot-
ing scheme referred to as PGD to predict novel photosynthesis-related genes in maize 
using RNA-seq expression data from different types of photosynthetic mutants (Fig. 1). 
In PGD, the genes belonging to the functional category of “photosynthesis” in MapMan 
Mercator 4 that directly participate in photosynthesis were chosen as the positive train-
ing set, and genes included in the functional categories of chromatin organization and 
cytoskeletal organization that showed no relationship with photosynthesis were chosen 
as the negative training set and were supplied to the ensemble machine learning models 
(Fig. 2). The PGD model could select potential photosynthetic genes from 9520 genes 
that were labeled “not assigned”. We performed cross-validation for PGD, and the evalu-
ation results showed that the features of the integrated output can predict photosyn-
thetic genes accurately (AUC-ROC = 0. 9649). Our results highlighted several important 
discoveries that could provide new insights into candidate gene mining in plants. First, 
the voting mechanism performs more stably than the single submodels of Catboost, 
GBDT, XGB and Random Forest (Fig. 3). Second, datasets that were constructed from 
all six photosynthetic mutants significantly increased model performance relative to 
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datasets based on single mutants (Fig.  4). Third, our PGD model predicted 716 novel 
photosynthesis-related genes from 9520 “not assigned” genes (Fig. 4, Additional files 3, 
4: Tables 2, 3). This prediction is highly reliable since most of the predicted genes showed 
similar expression patterns to photosynthetic genes and genes involved in chloroplast 
biosynthesis, and 235 of them were directly localized in the chloroplast, as predicted by 
the TargetP program.

Our PGD approach predicted photosynthesis-related genes with high accuracy based 
on gene expression levels. With the rapid improvement of second-generation sequenc-
ing, increasing amounts of RNA-Seq data from wild-type and mutant plants under vari-
ous treatment conditions have been generated. Our PGD approach could be expanded 
to any species to help identify novel genes related to a specific functional category, and 
further biological experiments performed on these candidate genes could help research-
ers gain more knowledge in their field of interest.

Conclusions
In summary, our PGD approach integrates four powerful machine learning models, 
which can stably maintain the detection performance. We predicted 716 photosynthe-
sis-related genes from the “not assigned” category of maize MapMan annotation. The 
protein localization prediction (TargetP) and expression trends of these genes from 
maize leaf sections indicated that the prediction was reliable and robust. Our research 
provides a new approach for studying the functional categories of genes.
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