
An optimal variant to gene distance window 
derived from an empirical definition of cis 
and trans protein QTLs
Eric B. Fauman1* and Craig Hyde2 

Background
Genome-wide association studies (GWAS) have been highly successful at identifying 
reproducible and robust genetic associations for a wide variety of human phenotypes. 
However, because GWAS identify loci and not genes, the identity of the gene mediating 
the impact on the phenotype is not always clear.

When the phenotype being considered is the abundance of a particular protein a natu-
ral hypothesis is that the gene encoding the protein (the cognate gene) is the causal gene, 
that is DNA variants that correlate with interindividual differences in protein abundance 
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are somehow influencing the gene encoding the protein resulting in differences in levels 
of the protein. Such a DNA variant is termed a protein quantitative trait locus, or pQTL.

Many GWAS of protein abundance have now been conducted generating tens of thou-
sands of published pQTLs. The genomic position of a pQTL for a specific protein is 
often located near the cognate gene. As a practical matter, a pQTL near a cognate gene 
is called a “cis-pQTL” with the assumption that that pQTL is acting through the cognate 
gene. When a pQTL is located far from the cognate gene (or on a different chromosome), 
this is called a “trans-pQTL” with the assumption that that pQTL is acting through an 
intermediate gene, for example a transcription factor near the trans-pQTL which then 
drives expression of the cognate gene. Although the mechanisms driving “cis-pQTLs” 
and “trans-pQTLs” are completely different, there is nothing in the statistical associa-
tions themselves that can easily distinguish these. Consequently different studies have 
applied different distance cutoffs to segregate cis-pQTLs and intrachromomsomal trans-
pQTLs, with typical distances being 500,000 bp or 1,000,000 bp (e.g., [1–4]).

In order to arrive at an empirical definition of cis- and (intrachromosomal) trans-
pQTLs we took a closer look at the distribution of variants to cognate gene from a recent 
large scale pQTL study [4]. We start with the simple assumption that for cis-pQTLs 
there should be some (non-random) distance dependence between the variant and the 
transcription start site (TSS) of the cognate gene, while for trans-pQTLs, there should 
be a random distribution of distances. From these assumptions, we build a simple model 
that fits the distribution of intrachromosomal variant-TSS distances across the full range 
of observed distances.

Results
Pietzner et  al. identified 2,051 intrachromosomal pQTLs [4]. The variant-TSS dis-
tances for these pQTLs fall into 33 log-based distance bins (width = 100.25). The histo-
gram of these log-transformed distances shows two distinct peaks, the first with 251 
pQTLs in the bin at log10(distance) = 4, and the second with 84 pQTLs in the bin at 
log10(distance) = 7.5 (Fig. 1).

The second peak (longer distances) follows the expected distribution for two points 
selected at random from the human genome within the same chromosome, which is to 
say there is no explicit distance dependence on the variant-TSS distances aside from the 
physical requirement that the two positions occur on the same chromosome. This dis-
tance-independent distribution requires no free parameters (see Methods).

Although the first peak superficially resembles a Gaussian or normal distribution, 
we found empirically that we could obtain a better fit with fewer parameters using the 
Weibull distribution (see Methods). The Weibull distribution thus provides a specific 
model for the distance dependence on the distribution of variant-TSS distances.

The full model requires a third parameter which is the proportion of the observations 
falling in to the first peak or the second peak. It should be noted that when plotted using 
the untransformed variant-TSS distance the distribution resembles a rapidly decreasing 
exponential decay, with a maximum density close to 0 (Fig. 2).

The full distribution is well fit by our combined model. The three parameters (and 
the standard errors) for the full model are κ (Weibull shape parameter) = 6.78 (0.211), 
λ (Weibull scale parameter) = 4.48 (0.024), and Weibull fraction = 0.799 (Table  1). The 
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Fig. 1  Histogram of log base 10 of the distance from lead SNP for GWAS of protein abundance to the 
transcription start site (TSS) of the cognate gene for that protein, for 2051 unique proteins from the study of 
Pietzner, et al. Four bins are used for each log unit. Solid red line represents the best fit Weibull distribution 
curve fit to all data points below 105.75. Solid blue line represents best fit random distribution curve fit to all 
pQTLs with a distance beyond above 106 base pairs. Dashed purple line represents best combined model 
starting from the parameters estimated for the initial Weibull curve and adding a Weibull fraction parameter 
to add the Weibull curve and the trans model curve

Fig. 2  Histogram of distance from lead SNP for GWAS of protein abundance to the transcription start site 
(TSS) of the cognate gene for that protein, for 1604 unique proteins where the distance is less than 500 kb 
(bin size = 10 kb), with the curve fit to our global model which includes a Weibull curve and our trans model. 
The Weibull model dominates a t distances less than 1,000,000 base pairs
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one-sample Kolmogorov–Smirnov test for this fit yields a p-value of p = 0.36, consistent 
with this simple model being a reasonable explanation for the observed distribution. By 
contrast, using instead a two parameter (mean and sd) Gaussian to fit the left-most peak in 
a similar three parameter model yielded an analogous Kolmogorov–Smirnov test p-value of 
p = 0.005, indicating a significantly poorer fit.

Using these parameters from the best-fit Weibull-based model, we calculated where the 
regimes cross-over, that is, the distance at which the Weibull and the random model are 
equally likely. For this data set, with ~ 80% Weibull fraction, that cross-over occurs at a dis-
tance of 944 kilobasepairs (kbp) with a 95% confidence interval of [767–1,161] kbp. If we 
assume a model where the two regimes are a priori equally likely, that cross over would 
occur at 653 kbp, with a 95% confidence interval of [556–767] kbp.

A separate large-scale pQTL study using the same platform but applied to a different 
population was recently published [3]. Ferkingstad et  al. identified 18,084 associations 
across 4,907 Somascan aptamers in their study of 36,000 Icelandic subjects. Filtering to the 
strongest intrachromosomal pQTL per aptamer we derived 2,315 variant-gene distances 
ranging from 1 bp to 224,221,289 bp. For this data set, the full combined model yielded val-
ues of κ = 6.19 (0.315), λ = 4.47 (0.043), and Weibull fraction = 0.665. The one-sample Kol-
mogorov–Smirnov test for this fit yielded a p-value of p = 0.022, consistent with this simple 
model being a reasonable explanation for the observed distribution. Again, the analogous 
fit using a Gaussian instead of a Weibull for the left-hand peak yielded a poorer fit, with 
p = 0.004 for the Kolmogorov Smirnov test. For this data set, the regime cross-over point 
occurs at 966 kbp, with a 95% confidence interval of [700–1,303] kbp.

Another genetic trait where the cognate gene is a reasonable hypothesis for the causal 
gene is mRNA abundance, in which case the genetic variant represents an expression quan-
titative trait locus (eQTL). The eqtlgen [5] study represents a very large, well powered eQTL 
GWAS. To reduce the computation involved this study only calculated association statistics 
for variants within 1 Mb of the midpoint of the cognate gene, limiting our ability to use 
this study to analyze long-range intrachromosomal eQTLs. Despite this truncation, the dis-
tances under 1 Mb have a reasonable fit to the Weibull distribution, with shape and scale 
parameters similar to those observed in the two pQTL studies (κ = 6.19 (0.315), λ = 4.47 
(0.043)).

When the genetic trait is metabolite abundance (metabolite quantitative trait locus, or 
metabolite QTL) the known biochemistry can point to a likely causal gene [6]. Using all 
available metabolite QTLs in the GWAS catalog paired with a large set of curated metabo-
lite interacting proteins [7] we identified 250 intrachromosomal variant-gene pairs, of which 
53 have a variant-TSS distance of less than 1 Mb. These variant-TSS distance can also be fit 
with our combined model, with Weibull shape and scale parameters of κ = 4.262(1.881) and 
λ = 5.544 (0.708), respectively. For this analysis the Weibull fraction is only 35%, probably 
indicating that the limited number of curated metabolite interacting proteins is missing 
many of the true causal genes.

Discussion
The GWAS catalog now contains over 300,000 genetic associations, but for the major-
ity of these the underlying causal gene, the gene mediating the phenotypic impact of 
the genetic variation, is unknown [8]. While the genes close to the genetic variation 
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often represent plausible candidate genes, a precise definition of “close” has been dif-
ficult to define.

Traditionally, genetic variants influencing abundance of proteins or transcripts have 
been described as “cis-acting” or “trans-acting” with the understanding that “cis-act-
ing” variants exert their influence directly on the cognate gene while “trans-acting” 
variants influence some other gene which then as a downstream consequence influ-
ences the transcript or protein being measured. In the absence of a simple method of 
determining the exact mechanism of any particular variant, researchers have typically 
relied on distance cutoffs to separate cis and trans variants, with the distance rang-
ing from 250,000  bp [9] up to 1  million bps [10]. One prior attempt to empirically 
define the divide between cis and trans effects found that the percent of cis-eQTLs 
that could be supported by allele-specific expression fell with increasing variant-TSS 
distance and could not be distinguished from that expected by error at a distance 
of between 0.85 and 1.3 million base pairs [11].

In this work we relied on a very well powered pQTL study which allowed us to iden-
tify two populations of variant-gene distances; one population where the distribution 
of distances is a function of the distance of the gene from the variant, and a second 
population where the distances are dictated by the mathematics of picking two points 
at random. The first population follows a Weibull distribution and is substantially 
contained within the interval from 0 to 1  Mb. For the second distribution, because 
most chromosomes are over 100 Mb long, two randomly selected intrachromosomal 
points are almost always (99%) more than 1  Mb apart. Thus, these two populations 
are well-separated and can be interpreted as the mathematical representations of the 
biological processes of cis- and transQTLs.

Previous analyses of molecular QTLs have similarly noted a rapid drop-off of 
observed associations with increasing variant-TSS distance. For example, Roby Joe-
hanes et  al. used a multi-exponential decay with a median variant-TSS distance of 
27 kb to model a large set of eQTLs measured in whole blood samples from over 5000 
participants in the Framingham Heart Study [12]. There is however no theoretical 
model to rationalize an exponential decay for this distribution.

As noted by Lieberman-Aiden et  al. [13], the distribution of promoter-enhancer 
Hi-C distances can be modeled using a power-law with an exponent of approxi-
mately -1 [14, 15]. Plotted against variant-TSS distance, a power-law with p(distance) 
proportional to 1/distance looks similar to an exponential decay, with p(distance) 
proportional to e−distance. However, a simple 1/distance power-law distance depend-
ence would not generate the curve obtained in Fig. 1, since a power-law would place 
an equal number of observations in each bin, since the bins increase in width with 
increasing distance at the same rate that p(distance) is decreasing.

The Weibull distribution used here was first described as a family of curves [16] 
which has found applicability to describe the distribution of particle sizes following 
fragmentation or fractionation [17]. Brown and Wohletz provide a mechanistic deri-
vation for the Weibull distribution which follows from repeated fragmentation of a 
larger structure, with each step resulting in a fractal fragmentation pattern (thus fol-
lowing a power law). Smaller fragments escape further fragmentation, resulting in a 
rapid drop-off of larger particle sizes.
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An entirely hypothetical conjecture would be that the pattern we observe in these 
data results from a similar superposition of multiple processes. The Activity-by-Con-
tact model of enhancer-promoter regulation suggests that the activity of a particu-
lar enhancer-promoter pair is increased by the strength (activity) of the enhancer and 
decreased by the distance between the enhancer and promoter [18, 19]. Since any given 
promoter can be influenced by multiple enhancers, the strongest genetic associations 
are more likely to come from closer enhancers. The dense packing of the chromosome 
provides the equivalent of the single fractionation event, imposing a fractal distance 
geometry on the genome. The fact that there are far more enhancers than promoters in 
the genome provides the equivalent of multiple fractionation events, potentially explain-
ing the fit to the Weibull distribution for molecular QTLs in the range of 0 to 1 million 
base pairs (Fig. 3).

Trans-eQTLs and trans-pQTLs are generally understood to be acting on a gene proxi-
mal to the variant which then influences the molecular trait of interest. The cis fraction 
in our combined model is then likely to reflect the extent to which we have correctly 
selected the set of true causal genes for a given study. Further, the model suggests that 
in general about 99.9% of GWAS variants should be explainable through a gene with a 
TSS within 1 megabase of the lead variant. Thus, if a large fraction of the variant-TSS 
distances fall into the long-range, distance-independent regime our model suggests it is 
worth taking another look at the set of proposed or potential causal genes.

Assuming that most GWAS variants are likely impacting biology through their influ-
ence on molecular traits such as transcript, protein or metabolite abundance we expect 
that the cis- and trans- models and distributions observed here will apply to other, more 
complex or polygenic traits. It should be noted however that the exact mechanism link-
ing the GWAS variant to the causal gene is not addressed in this model. It has been 
observed that a large fraction of pQTLs and metabolite QTLs are linked to missense 
variants, and that may skew the exact distributions somewhat when looking at other 
phenotypes or disease traits.

An important consideration in the dissection of individual loci is the observation that 
paralogous genes often exist near one another [20], meaning many genes with similar 
functions may exist in cis to the lead SNP. We avoided this scenario in this analysis by, 
for example, only including metabolite QTLs for which HMDB listed a single biochem-
ically-related gene on the entire chromosome (see Methods). In practice, researchers 

Fig. 3  A post-hoc rationale for the Weibull distribution. According to the ABC model [18] of gene activation 
and models of chromatin compaction [14, 15], the chance that a particular enhancer (E1-E4) is in contact 
with the promoter of a particular gene (“Gene”) is proportional to distance−γ (that is, distance to the power 
-γ, where γ has a value of about 1) from the enhancer to the promoter. In a scenario where all enhancers are 
equally active, a particular gene will be most strongly influenced by the closest enhancer (E2 in this figure). 
A Weibull model, as observed empirically in this analysis, can result from such a “superposition” of power-law 
distributions [17]
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should look carefully at whether there are multiple plausible causal genes, such as from 
paralogs, which exist within the 944 kb distance cutoff recommended here.

An additional caveat is that this study focused on only the single strongest association 
per molecular trait (per chromosome) and this will tend to bias the set of variants as 
well. This simplification was applied here because while it is straight-forward to define 
the primary signal per locus there are still multiple approaches to defining secondary or 
independent signals. As molecular QTL studies continue to grow in size and power, it 
will be important to revisit this analysis with respect to secondary signals.

Conclusion
By leveraging recent large-scale molecular QTL genetic studies we demonstrate that var-
iant-TSS distances fall into one of two regimes, a short-range, distance-dependent one, 
or a long-range, distance-independent one. These correspond to the biological notions 
of cis and trans genetic effects. By providing mathematical models for these two regions 
we demonstrate a clear separation occurring at about 944 kbp in the situation where 80% 
of observations are well explained by cis effects, or 650 kbp when cis and trans effects 
are equally likely.

Methods
Pietzner et al. reported 10,674 unique pQTLs across 3,892 distinct proteins [4]. For this 
analysis we only used the primary association reported for each locus. Further we elimi-
nated all SNP-protein pairs where the SNP and the cognate gene occur on the different 
chromosome in the latest build (Ensembl release 104). Variants were converted from the 
GRCh37 coordinates provided in the original data table by reference to an rsid if pro-
vided and current, or via the NCBI Genome remapping service. Proteins were mapped 
to HGNC gene symbols using the Ensembl gene IDs if provided and current. Other-
wise HGNC gene symbols were assigned manually from the provided protein names. 
As some proteins actually map to multiple genes (either due to complexes or ambiguity), 
SNP-protein pairs were retained if exactly one of the cognate genes was present on the 
same chromosome as the SNP. This resulted in a total of 2,051 intrachromosomal SNP-
gene pairs, where the distance from the SNP to the TSS of the gene was between 3 and 
206,513,449 base pairs (Additional file 1).

Given the eight orders of magnitude range for variant-TSS distances we log-trans-
formed the distances (specifically using 10 as the base and binning at 0.25 log10 units to 
generate 4 bins per order of magnitude). For visualization and curve-fitting, we used the 
number of intra-chromosomal pQTLs falling in each bin based on this log-transformed 
distance.

Our trans model is a mathematical model of the distribution of two random posi-
tions in the genome that happen to fall on the same chromosome. To generate this trans 
model, we represented all pairs of two randomly selected positions within a single chro-
mosome as an NxN matrix, where N is the length of the chromosome, and rows and 
columns representing the 1st and 2nd position, respectively. With the exception of a dis-
continuity at distance = 0 (also not handled by log-transformation, but highly unlikely 
and not present in our data), the number of random pairs at a distance d > 0 bp is given 
by the two diagonal segments shifted ‘d’ units from the central diagonal, and so totals 
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2*(N-d) out of N2 elements (where d < N). The probability of distance ‘d’ within the 
chromosome is then prob = 2*(N-d)/ N2 if d < N, otherwise prob = 0. For any one chro-
mosome then this probability is linear with respect to distance, with a maximum at a dis-
tance of 1 and a minimum at a distance corresponding to the length of the chromosome.

Restricting to random pairs on the same chromosome, the relative likelihood of a pair 
being in any chromosome ‘i’ is given by its relative number of elements to that of all 
intra-chromosomal pairs on the genome, so that prob(Chr i) = Ni

2/ΣNi
2, where Ni is the 

length of chromosome ‘i’. The final probability of a random intrachromosomal pair hav-
ing distance d > 0 bp is then given by the weighted sum of the probability at each chro-
mosome, with weights given by the relative likelihood of each chromosome. Hence:

where each sum is over 23 chromosomes, Ni being the length of each chromosome. 
Applied to the observed pQTL data our trans model is only a reasonable fit in the range 
from 1 to 230 megabase pairs (Fig. 4).

We found empirically that the remaining (shorter) distances could be fit with the two 
parameter Weibull distribution. The Weibull distance distribution can be represented as:

lx is the log of distance from the pQTL to the TSS of the cognate gene, κ is the shape 
function and λ is the scale parameter.

(1)P(d > 0) =

∑

{

2 ∗ (Ni − d) if d < Ni, 0 otherwise
}

/
∑

N
2
i

(2)P(lx) = (κ/�) ∗ (lx/�)(κ−1)
∗ e

−(lx/�)κ

Fig. 4  Histogram of distance from lead SNP for GWAS of protein abundance to the transcription start site 
(TSS) of the cognate gene for that protein, for 349 unique proteins where the distance is greater than 10 
megabases (bin size = 10 megabases), with the curve fit to our global model which includes a Weibull curve 
and our trans model. The trans model dominates at distances past 1 megabase
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Combining the Weibull and the random distance models requires one additional 
parameter defining the relative proportion of pQTLs in a study which fall under into the 
two regimes.

After establishing that this combined model is a good fit for the Pieztner et  al. 
pQTL study we applied the same model to second pQTL study, a large eQTL study 
and a metabolite QTL study.

For a pQTL study by Ferkingstad et  al. [3] we used the variant-TSS distance 
reported in that study’s Supplementary Table  2, column W (distTSS) filtered to the 
primary hit per chromosome, column AD (Rank) and filtered to the strongest intra-
chromosomal pQTL per protein, column AC (unadjusted -log10(P), where the TSS is 
for the cognate gene (Additional file 2).

For the eQTL study reported by Vosa et al. [5] we used the eQTL with the largest 
absolute value Zscore (column labeled “Zscore”) for each gene and calculated the var-
iant-TSS distance as the absolute value of the difference between the reported vari-
ant position (“SNPPos”) to the TSS associated with the Ensembl gene ID in GRCh37 
according to Ensembl for variants within 1  Mb of the TSS of the cognate gene. We 
only retained associations where the absolute value of the Zscore was at least 5.4485, 
corresponding to a p-value of less than 5 × 10–8 (Additional file 3).

To apply the method to metabolite QTLs we first assigned an HMDB identifier [7] 
to all relevant endpoints reported in the GWAS catalog [8]. We then extracted all 
“interacting genes” defined for each metabolite as reported in the HMDB. For any 
metabolite with a single interacting gene on a particular chromosome we identified 
the strongest reported association for that metabolite on that chromosome. If the 
reported p-value was less than 5 × 10–8 we calculated the distance from that strongest 
metabolite QTL to the unique interacting gene (Additional file 4).
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