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Background
The rapid advances in genome-scale sequencing have dispensed a comprehensive list 
of genes for different organisms. These data gives us a broad scope to comprehend the 
developmental and functional processes of these organisms. Since the advent of DNA 
microarray, it is now possible to measure the expression levels of large number of genes 

Abstract 

Background:  Interpretation of high-throughput gene expression data continues 
to require mathematical tools in data analysis that recognizes the shape of the data 
in high dimensions. Topological data analysis (TDA) has recently been successful 
in extracting robust features in several applications dealing with high dimensional 
constructs. In this work, we utilize some recent developments in TDA to curate gene 
expression data. Our work differs from the predecessors in two aspects: (1) Traditional 
TDA pipelines use topological signatures called barcodes to enhance feature vectors 
which are used for classification. In contrast, this work involves curating relevant fea-
tures to obtain somewhat better representatives with the help of TDA. This representa-
tives of the entire data facilitates better comprehension of the phenotype labels. (2) 
Most of the earlier works employ barcodes obtained using topological summaries as 
fingerprints for the data. Even though they are stable signatures, there exists no direct 
mapping between the data and said barcodes.

Results:  The topology relevant curated data that we obtain provides an improvement 
in shallow learning as well as deep learning based supervised classifications. We further 
show that the representative cycles we compute have an unsupervised inclination 
towards phenotype labels. This work thus shows that topological signatures are able to 
comprehend gene expression levels and classify cohorts accordingly.

Conclusions:  In this work, we engender representative persistent cycles to discern the 
gene expression data. These cycles allow us to directly procure genes entailed in similar 
processes.
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simultaneously. This has made a holistic analysis possible for gene data using their 
expression levels. The stochastic nature of biological processes and associated noise 
acquired during the mining process pose a fundamental challenge in modelling a math-
ematical structure explaining these high dimensional data. We look into two problems in 
data analysis involving gene expressions that are of current research interest.

A genome-wide association study (GWAS) is a method to link a subset of genes to a 
particular disease or physical phenomenon in an organism. It has been especially impor-
tant to identify specific gene subsets not only from a clinical perspective but also from 
a data science perspective as well. The assimilation of these subsets enable better phe-
notype identification and improve prediction of cohort status using machine learning 
based approach. Our definition of cohort follows its common usage in biology where a 
cohort is a group of animals of the same species, identified by a common characteristic, 
which are studied over a period of time as part of a scientific or medical investigation. In 
our case all cohorts for each experiment belong to the same taxa.For small or medium 
sized data sets, since the number of gene expression in a cohort profile is far greater than 
the number of sample cohorts, disease prediction using neural networks is challenging 
as these architectures largely succeed when the number of samples is much larger. It 
becomes important for these cases to identify a subset of genes whose expression levels 
reflect the phenotype of the cohorts.

In addition, it is often the case that some cohort have incorrect or uncorrelated data 
due to instrumental or manual error. Hence, their gene expressions may not reflect their 
phenotype class. We find in practice that the elimination of such instances leads to bet-
ter prediction scores and performance. In this work, we use topological data analysis 
to investigate both of these issues. We identify cohorts which are topologically relevant 
(Section Topo-Curated Cohort). We show that the use of these cohorts to determine 
phenotypes instead of the entire set improves classification. Next, in Topo-Relevant 
Gene Expression section, we look into the classic GWAS problem mentioned above to 
identify a small subset of genes by using topological data analysis. We compare classifi-
cation results obtained by using this reduced gene subsets against the one obtained by 
using full gene pool. The results for the receded gene profile yields better prediction rate.

Topological data analysis (TDA), loosely speaking, explains the shape of a data 
using topological structures. Topological properties can be thought to remain invar-
iant under continuous deformation. For instance, given a donut made of clay, topo-
logically its shape remains the same if we stretch, twist, or bend it but changes if 
we cut or glue it. The theory of Algebraic Topology lays the mathematical founda-
tion formalising this idea. Persistent Homology is a method to derive topological 
structures from a given data. Topological signatures, particularly based on Persistent 
Homology, enjoy some nice theoretical properties including robustness and scale 
invariance. These features are global and more resilient to local perturbations. This 
has made TDA an exciting area in data analysis with encouraging results in medical 
imaging [1, 2], protein analysis [3, 4], and molecular architecture [5, 6] among oth-
ers. In previous works it has been shown that genes sharing similar attributes tend 
to cluster in high dimensions [7, 8]. This is because protein encoding genes that are 
part of the same biological pathway or have similar functionality are corregulated. 
This ultimately leads such gene clusters to have similar expression profiles. The 
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property of clustering is essentially captured by the zeroth order homology class in 
Persistent Homology (see next section). Motivated by these works, we are interested 
in finding if there exist relationships among similar genes in the higher order homol-
ogy classes as well.

Traditional TDA pipelines use Persistent Homology to compute a set of intervals 
called barcodes which are used as topological feature in subsequent processing such 
as learning [3, 9–11]. While such barcodes provide robust topological signatures for 
the persistent features in data (such as tunnels, voids, loops, cycles etc.), their asso-
ciation to data is not immediately clear thus missing some crucial information. In 
effect, since these intervals represent homology classes, they contain the set of all 
loops around a topological hole. Thus using barcodes, it is hard to localize a fea-
ture, e.g., the shortest cycles or holes in a Persistent Homology class. This, in turn, 
hinders getting any direct mapping between the topological signatures and input 
cohorts or genes. So far there had been few studies addressing the problem of local-
izing persistent features and it has been shown that finding shortest cycles in given 
Persistent Homology classes is an NP-hard problem [12, 13]. However, taking advan-
tage of the recent results in [12, 13], we are able to to compute good representative 
cycles for our application. These cycles capture definitive geometric features and 
provide a mapping between two domains of gene expression and topology.

In this paper we conduct two main experiments using the representative cycles: 
one to extract topologically relevant genes and the other to curate relevant cohorts. 
For these studies, some organisms were control units while others were either 
infected and/or injected with some antigen. The input consists of a matrix K which 
has n rows signifying the cohorts and their corresponding gene expressions in m col-
umns. For obtaining and classifying topologically relevant (topo-relevant) genes, our 
experiment follow the pipeline in Fig. 1a whereas for determining curated cohorts, 
it follows the pipeline in Fig.  1b. For a large data set, we can trim out both insig-
nificant cohorts and genes starting from the ‘Training data Kn,m ’. This can be done 
following the pipeline in Fig.  2. We train our neural network architecture on the 
final curated dataset and thereby test against any unknown cohort. For our experi-
ments, we work on gene expressions extracted from different organisms including 
Drosophila, Mus muculus, and Homo sapiens. We convert these data into a binary or 
multi-classification problem based on their phenotype and feed it into the pipeline. 
Our methodology and results have been listed in Computing Topological Signature 
of Gene-Expression Data section (Fig. 3).

Fig. 1  a Flowchart for topo-relevant gene expression extraction. Refer to Section Topo-Relevant Gene 
Expression for details. b Flowchart for topo-curated cohort extraction. Refer to Section Topo-Curated Cohort 
for details. In both, bold lines show the path to take for training or testing large data. Dotted lines used in 
Fig. 2
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Related works

In [14], gene expressions from peripheral blood data was used to build a model based 
on TDA network model and discrete Morse theory to look into routes of disease pro-
gression. These results on viruses suggest that Persistent Homology can be also used 
to study different forms of reticulate evolution. Topological structures have been used 
to analyse viruses by Emmet et al. [15]. They worked on influenza to show a bimodal-
ity of distribution of intervals in the persistent diagram. This bimodality indicates two 
scales of topological structure, corresponding to intra-subtype (involving one HA sub-
type) and inter-subtype (involving multiple HA subtypes) viral reassortments. Per-
sistent Homology has also been used to identify DNA copy number aberrations [16]. 
Their experiments found a new amplification in 11q at the location of the progesterone 
receptor in the Luminal A subtype. Seemann et  al. [17] used Persistent Homology to 

Fig. 2  Flowchart of proposed pipeline. For units Topo-relevant gene pipeline and Topo-curated cohort pipeline 
we follow the dotted lines in Fig. 1a and b respectively

Fig. 3  Illustration of persistent homology. Here e represents the barcodes (in fig e Y-axis is No. of cycles and 
X-axis is radius r) associated with increasing radius from a to d. [Taken from [10] with authors’ permission.]
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identify correlated patient samples in gene expression profiles. Their work focuses on 
the H0 homology class which is used to partition the point cloud. The paper by Nicolau 
et al. [18] identified a subgroup of breast cancers using topological data analysis in gene 
expressions.

Several works [19, 20] on use of machine learning techniques on gene expression pro-
file have shown promising results. Kong et al. [21] used random forests to extract fea-
tures for their Neural Network architecture. They investigate a problem similar to our 
‘Topo-relevant gene’ and the results show significant improvement. [22] analyzes gene 
expression data to classify cancer types. Different techniques of supervised learning are 
used to understand genes and classify cancer. The authors of [23] use machine learning 
to identify novel diagnostic and prognostic markers and therapeutic targets for soft tis-
sue sarcomas. Their work shows overlap of three groups of tumors in their molecular 
profile.

Our contribution

We provide a technique based on persistent cycles (introduced in [12, 13]) to curate 
cohort data (datapoints) and gene expressions (features) (See Topo-Curated Cohort 
and Topo-Relevant Gene Expression sections). Through the experiments we show that 
these geometric structures, i.e. cycles, encode important information about the cohorts 
as choosing these topo-curated cohorts improve a classifier’s accuracy. In a separate 
experiment, we demonstrate that choosing these topo-curated gene expressions provide 
a better classification. In a way, we provide empirical evidence that there is a one-to-one 
correspondence between topological features and important gene functionality.

Results
We now discuss the two ways to reduce the input Kn,m into Kn′m′ where n′ ≤ n and 
m′ ≤ m . The first section deals with finding pertinent cohorts, and the next with find-
ing pertinent genes. In each subsection we describe the relevant procedure followed by 
results.

Topo‑curated cohort

For our first proof of concept, we find a subset of cohorts who provide topologically rel-
evant information for classification. The aim is to remove cohorts having either incor-
rect or uncorrelated data due to instrumental or manual error. Specifically, given Kn,m , 
we would like to find K′

n′,m ⊆ Kn,m for n ≤ n′ which improves classification odds for the 
cohorts. This subset of n′ cohorts should therefore be topologically more relevant. We 
start by converting the matrix Kn,m into a point cloud. This point cloud has n points 
each of dimension m. Hence each cohort in the matrix is converted to an m-dimen-
sional point where each dimension represents the expression level for each gene. We use 
Sparse Rips on the resulting point cloud to obtain a simplicial complex K and its filtra-
tion ( F  ) and apply the theory of Persistent Homology to obtain the set of finite intervals.

We consider the dataset D0 having three phenotypes. We generate the longest 100 H2 
cycles based on their interval length ( δ − β ). For each cycle, we consider the constituent 
vertices and their corresponding phenotype labels ( X  ). We plot the count of X  values 
in individual H2-cycles in Fig. 11a with the X, Y and Z axis representing X ∈ 0, 1, and 2 
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respectively. The black points indicate cycles where all vertices belong to a single pheno-
type. The red, green, and blue points indicate cycles having labels (0, 1), (0, 2) and (1, 2) 
respectively. The yellow points correspond to cycles having all three labels 0, 1,  and 2. 
The takeaway from this plot is that, since most points are skewed towards some particu-
lar axis, most H2-cycles have constituent vertices who belong predominantly to some 
particular label in X  . Thus topological cycles in general are inclined towards some X  
labels without any supervision as they were not fed with the phenotype labels. Note that 
we added a small random noise to each point coordinate to illustrate multiplicity. Fig-
ure 11b plots similar values for the top 200 H2 cycles for dataset D1 . Since this dataset 
has two phenotypes, we get a 2d plot. The red labels denote cycles which have an equal 
constituent phenotypes, whereas blue and cyan represent skew, with blacks represent-
ing single labeled cycles as before. As is evident, most cycles exhibit a predominance in 
either X ∈ 0 or 1 . Based on the intuition of this plot, we define a cycle Z as a Dominant 
Cycle if, there exists a vertex set U ⊆ Vert(Z)1 so that every vertex in U has the same 
label and |U | ≥ |Vert(Z)/2|2.

To illustrate the frequency of dominating cycles versus non-dominating ones, we plot 
the geodesic centers of the H2 cycles for D0 by projecting them down to 2d using T-sNE 
(Fig.  4). Red vertices indicate non dominating cycles while each of the graded green 
points indicate the dominating ones. Clearly, most of the topology cycles are dominat-
ing and indicate a vote towards some phenotype class. The alpha values (denoted by the 
green bar at the right) indicates the ratio of the dominating phenotype in each cycle ver-
sus the other labels ( X  ). Hence, intuitively, more opaque a given point is, more is it dom-
inated by a single class phenotype. Finally, we plot some of the individual dominating H2 
cycles along with their phenotype labels in Fig. 5. Note that these points are part of the 
original D0 cohort point cloud and they were projected down to 3D using PCA.

Classification using machine learning

We work on several gene expression data extracted from different organisms. On each of 
these, we create a classification problem as described in the data section. For each dataset, 
we use the entire cohort list (irrespective of their phenotype) as an (n×m) dimensional 
point cloud. We generate the top 100 H1 and H2 cycles and select the dominant cycles. 
Next we select the vertices contained in these dominant cycles which form our new set of 
n′(≤ n)-cohorts. Taking gene expression for these n′-cohorts lets us form our new smaller 
matrix K′

n′,m . Thereafter, we train supervised classification models once using Kn,m and 
then again using K′

n′,m and compare results for each. We use 10-fold cross validation by 
splitting the data randomly into 80−20% in each fold. For our classification models, we 
use two probability based classification models: Decision Tree and Naive Bayes.Note 
that we are interested in finding out whether the TDA pipeline can curate and retain the 
faithful representation of data. As a result we are comparing the performance of Deci-
sion Tree and Naive Bayes classifier on Topo-curated data. We do not report Support 
Vector Machine (SVM) result as its accuracy is too low to report. In general, probabil-
ity based classification fared better than kernal based (SVM) techniques, hence we have 

1 
Vert(Z) denotes the constituent vertices on the cycle Z.

2  The modulo operator implies size of a set.
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Fig. 4  Plot of geodesic centers for dominating cycles using t-SNE. Red vert: non dominating cycles. Graded 
green points: dominating cycles. Alpha values indicate ratio of dominating phenotype in each cycle versus 
the other labels.Range of perplexity values in the t-SNE plot indicate the uniformity of topological cycles

Fig. 5  Three figures plotting individual dominating cycles for gene dataset D0 . These cycles actually reside in 
m-dimensions and are projected down to 3D using Principal component analysis. The colors indicate cohort 
phenotype labels X ∈ 0, 1, 2 . a Cycle 1 spanned by 15 vertices with 3 vertices having label 0, 7 vertices 
having label 1 and 5 with label 2. b Cycle 2 spanned by 10 vertices with 5 vertices having label 0, 3 vertices 
having label 1 and 2 with label 2. c Cycle 3 spanned by 12 vertices with 9 vertices having label 0, 3 vertices 
having label 1
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reported our results on the same. The average value of accuracy, precision, and recall for 
the 10-fold cross validation is reported in Table 4. The column ‘FULL’ represents training 
on Kn,m while H1 +H2 represent the union of n′ topo-relevant cohorts obtained from the 
dominant cycles in either H1 or H2 . We also get good classification statistics for the ver-
tices in dominant cycles picked up only by H2 cycles only as reported in the same table. 
As is evident from the results, reduction in the number of cohorts leads to an increase 
in classification measures. Thus TDA is able to pick up cohorts who carry more decisive 
gene expression levels for their individual phenotype classes.

Topo‑relevant gene expression

Our next problem is to reduce the matrix Kn×m to K′ of dimension (n×m′) where 
m′ ≪ m . We use the persistent cycle descriptors H1 and H2 introduced in the previous 
section to extract |m′| meaningful genes ( G′ ) such that G′ ⊂ G . To this effect, we use the 
annotation of the gene set G based on their functional classification obtained from the 
‘Panther Classification System by Geneontology’ [24] and the ‘NCBI Gene Data set’ [25]. 
Thus for each g ∈ G , ∃f : g → R , where R is a vector of functional attributes obtained 
from [24].

Once we obtain the representative cycles, we find the maximal cover of each cycle 
defined as follows:

Maximal cover of representative cycle (κ) For each gene expression g ∈ Vert(Z) repre-
sented as vertices in a single representative cycle, we have a set of annotations f(g). We select 
the minimum set consisting of at least one annotation for each g ∈ Vert(Z) . Let S be any 
set of annotations which contains at least one annotation for each g ∈ Vert(Z) . Thus,

The idea behind using κ is to get a sense of the functionality of the gene. A gene may be 
responsible for multiple processes described in the Panther and NCBI database. If κ is 
low or unity for a certain Z , it probably indicates that the gene expressions involved in Z 
reflect the functionality captured by κ . This is illustrated in Fig. 6 where we plot some of 
the H2 cycles generated on K′ with color annotated by their functionality. We use PCA 
as before to project the points down to 3-dimensions. The three figures illustrate three 
instances of different κ-values. Consider the example in Fig. 6a for getting the intuition 
behind κ . The six vertices representing genes in the H2 cycles have function annotations: 
{1: Localization, 2: Not annotated, 3: Metabolic process, Cellular process, 4: Metabolic 
process, Cellular process, Biological regulation, 5: Metabolic process, Cellular process, 
Localization, 6: Not Annotated}. Out of this the set: {Localization, Not annotated, and 
Metabolic process} covers all the vertices and hence κ is 3.

We choose C with low κ values and select their component genes as part of G′ . We can 
control the size of G′ based on the value of κ.

For all our experiments, we run each architecture and obtain performance measures 
on K which contains the exhaustive set of m-genes. We re-run these experiments on our 
trimmed set K′ containing m′(≪ m) topologically significant genes. Note that we may 
use the topo-relevant cohort extraction to additionally reduce K′

n′×m into K′′
n′×m′ . But 

since the public datasets we work on as our proof of concept have much less number of 

κ = inf {|S| | ∀g ∈ Vert(Z),S ∩ f (g) �= ∅}
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data to work with a Neural Net architecture, we do not trim the dataset. The results are 
in Table 1.

Neural network architecture

We use one dimensional convolutional neural network to perform experiments on 
gene-expression data. Our architecture is inspired by [21] who have managed to detect 
‘relevant’ features of gene-expression data. The authors use a series of dense networks 
connected by activation functions. Since we provide some functional relevance among 
the genes, we sort them by their functionality and feed them to an additional convo-
lutional layer on top of the model (Fig. 7). We start with this 1D-Convolutional Neural 

Fig. 6  Three 2-cycles for gene dataset D6 with colors indicating gene function labels. Total number of colors 
indicate the κ value of the cycle. Note that a gene can be responsible for several functionalities. The legend 
in this plot takes into account only a single functionality which contributes towards the maximal cover of the 
representative cycle. a Low κ :3 b High κ:6

Table 1  Neural network result

The column TP(Z) indicates the results on reduced gene set using topology. Full indicates results on the full gene set. 
Tr-Loss, Tr-Acc, Tr-F1, Tr-Prec,Tr-Rec is loss, accuracy, F1-score, precision, and recall on the training data. Whereas the prefix 
Ts- indicate the same on the test set

Data Name Human dengue (#:4415 ) Human bone marrow (#: 469) Human bowel 
disease (#: 1745)

Method TP(Z) Full TP(Z) Full TP(Z) Full

# genes 1937 60619 5464 17258 1801 54715

Tr-Loss(e−2) 5.95 10.06 05.16 05.70 13.11 9.58

Tr-Acc 97.84 96.64 99.72 99.15 96.63 97.56

Tr-F1 97.86 96.48 99.72 99.15 96.60 97.55

Tr-Prec 97.86 96.48 99.72 99.15 96.60 97.55

Tr-Rec 97.86 96.48 99.72 99.15 96.60 97.55

Ts-Loss (e−2) 21.99 14.55 06.34 51.30 84.29 83.73

Ts-Acc 93.21 91.65 97.46 95.76 90.10 89.62

Ts-F1 92.26 90.67 96.95 95.74 90.34 89.66

Ts-Prec 93.48 90.67 96.95 95.74 90.34 89.66

Ts-Rec 93.48 90.67 96.95 95.74 90.34 89.66
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Network (CNN) layer activated by the sigmoid function. Sigmoid is a traditional acti-
vation function which provides a smooth non linearity in the network and since the 
architecture is not too deep, we do not need to worry about its shortcomings like the 
vanishing gradient. This is followed by a max pooling of size 2 and subsequently a drop-
out layer. This layer is connected to two densely connected layers with decreasing sizes. 
These layers have ReLU (Rectified Linear Unit) as their activation function as used in the 
paper by [21]. In the end, we add a softmax activation layer to determine the final label 
of the data. The hyper-parameters of the network can be tuned using advanced hyper-
parameter optimization algorithm such as Bayesian Optimization. However, since this 
study is a proof of concept, and its purpose is to show the effectiveness of our feature 
selection, we fine tune them using manual observation.

Since the number of samples is still less for CNN, overfitting is an issue. Notice that, 
for this precise reason, we do not curate this data using the pipeline in Topo-Curated 
Cohort section. Dropout layers are added after each layer to further prevent overfitting 
and reduce high variance. We, however, do not initiate early stopping as those pipe-
lines are not amenable to orthogonalization. Finally, the model is optimised using Adam 
(Adaptive Moment Optimizer) [26]. The dataset is split evenly into 80-20 and cross vali-
dated for 50 epochs. The neural network has been implemented in Python using Ten-
sorflow and Keras. The results for our experiment on datasets D5,D6 and D7 is shown 
in Table  1. The row # genes show that our architecture using vertices selected from 
topological cycles are less than 30% the size of the original gene pool. The results have, 
however, improved in all the cases. For experiments with Neural networks we follow the 
trend of the loss, accuracy and F1 score by plotting their value after every epoch in our 
algorithm. Figure 8 shows this result on dataset D7 . We see that the loss function on test 
data has been slightly higher but smoother than the full dataset. Despite this, using TDA 
the accuracy and F1 score has consistently performed better in every iteration for both 
the training and test data.

Fig. 7  Neural network architecture. Number of filters, filter size, dropout probability, number of units in dense 
layers are hyperparameters and are tuned for different datasets
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Discussions
Comparison with baseline

We compare our Topo curated cohort with the following standard outlier detection, 
unsupervised clustering methods.

•	 Local Outlier Factor
•	 Density-based spatial clustering of applications with noise [27] (DBSCAN)

It is noteworthy for the Droso breeding dataset DBSCAN fails to cluster and reports 
all the cohorts as outliers (Table 2). With DBSCAN as outlier detector and Decision 
Tree as a classifier, classifier’s accuracy reaches upto 100% which is probably due to 
imbalance in the dataset and overfitting. In Table  2 we report the maximum accu-
racy obtained by our method, i.e. max(AccH1,AccH1+H2,AccH2) from Table 4. We then 
compare our Topo-relevant gene expression method with the following feature selec-
tion methods (See Table 3).

•	 Variance thresholding: Removes the low variance features that provide little infor-
mation for modelling. [28–30].

Fig. 8  Comparison of a Accuracy, b F1-score, c Loss function for 50 epochs. For the TDA curated data, red 
and yellow lines represent train and test scores respectively. For the full data, they are represented by the 
green and blue lines

Table 2  Comparison with standard outlier detection and unsupervised clustering methods

Bold values indicate the highest accuracy obtained for different classifiers and datasets under consideration

Dataset Decision tree Naive Bayes

Local 
outlier 
factor

DBSCAN Topo-
curated 
cohort

Local 
outlier 
factor

DBSCAN Topo-
curated 
cohort

Droso breeding 32.14 – 79.34 57.14 – 42.24

Droso parasitod 36.84 100 83.50 47.36 66.67 –

Mouse E Coli 30.91 21.05 89.29 40.00 21.05 59.21
Mouse prion 35.89 39.53 61.62 39.74 39.53 57.84
Mouse liver cancer 46.67 56.21 72.95 60.00 56.52 72.32
Human bowel disease 17.74 19.41 51.09 48.39 53.40 –
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•	 Select K-best features: Selects k-features according to the highest scores. The scor-
ing function used is F-value from analysis of variance (ANOVA). [29, 30]

•	 Principal Component Analysis (PCA): Although this is a dimensionality reduction 
technique and not a feature selection method we incorporate it because PCA is used 
widely while analyzing high-dimensional data such as gene expression [31].

•	 Uniform Manifold Approximation and Projection for Dimension Reduction 
(UMAP): UMAP is a manifold learning learning and TDA based dimensionality 
reduction technique. UMAP assumes the data to be uniformly distributed on a Rie-
mannian manifold and finds a low dimensional embedding by building a ‘fuzzy topo-
logical’ structure on it [32].

We use the same neural net architecture described in Neural Network Architecture sec-
tion and report the test-set accuracy after selecting the features with the aforementioned 
feature selection methods and compare with our Topo-Relevant Gene Expression pro-
cedure. We report the test-accuracy only because we have observed during the training 
that the datasets are prone to overfitting (Table 4).

Conclusions
We investigated into a topological technique to extract relevant cohorts and gene 
expressions so as to improve feature selections. Both our test cases show that the data 
follow topological alignment due to which the representative cycles covers the subset 
of vertices that are able to faithfully represent the data. As a result we are able to fit our 
training models better and reduce variance thereby getting better accuracy and f1-score. 
In future work, we will try to further tune our models so as to correlate the selected fea-
tures with their functionality. For instance, there are cycles with low κ values that have 
unannotated genes as its constituent vertices. It would be interesting to study function-
alities of such specific genes with the other genes in a cycle.

Methods
In this section we briefly describe the idea of Persistent Homology and their representa-
tive cycles. Since the idea is involved, the readers are directed to [33, 34] for more details 
on Persistent Homology. The representative cycles have been described in [12, 13]. Notice 
that, for curating cohorts, we convert the input n×m cohort-gene matrix to a point cloud 
of n points in m dimensions by treating each cohort as a point. Similarly, for curating gene 
expression we convert the transposed matrix to a point cloud of m points in n dimension 

Table 3  Comparison with standard feature selection methods

The bold values indicate highest accuracy obtained for the feature selection methods

Dataset Variance 
threshold

Select K-best PCA UMAP Topo-
relevant 
gene

Human dengue 92.26 93.41 74.21 85.39 97.84
Human bone marrow 95.37 92.25 76.50 100.00 99.72

Human bowel disease 61.62 61.69 61.62 61.63 96.63
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with each gene as a single point. Our goal is to compute ‘good’ representative cycles in the 
Persistent Homology classes defined on a scaffold called ‘filtration’ built on top of these 
point clouds. Using these representative cycles, we identify the cohorts that are predomi-
nately present in a cycle and eliminate those which are not dominant in any of these cycles. 
Similar curation is done for gene expressions using the point cloud representing them.

Persistence signature of point cloud data

We start with a point cloud data in any n-dimensional Euclidean space. These will essen-
tially be n-dimensional points describing individual gene expressions (or cohorts). To 
illustrate the theory of Persistent Homology, we consider a toy example of taking a set of 
points in two dimensions sampled uniformly from a two-hole structure (Fig. 3). We start 
growing n-balls around each point, increasing their radius r continually and tracking the 
behavior of the union of these growing balls. Starting from r=0 (Fig. 3a), we notice that 
at some r = r1 (Fig. 3b) both holes are prominent in the union of ball structure. Increas-
ing r further (Fig. 3d), we fill the smaller hole followed by the larger ones. During the 
change in the structure of the union of balls due to increase in radius, the larger of the 
two holes ‘persists’ for a larger range of r compared to the smaller one. Hence features 
that are more prominent are expected to persist for longer periods of increasing r. This 
exemplifies the basic intuition for topological persistence.

The persistence of holes are captured by a set of birth-death pairs (intervals) of homol-
ogy classes that indicate at which value of r the class is born and where it dies. Each of 
these pairs is visualized using horizontal line segment known as a bar which together 
form the barcode [35] (Fig.  3e). The rank of a Persistent Homology group called the 
persistent Betti number captures the number of persistent features. This means, for the 
zeroth homology group H0 consisting of zeroth homology classes, betti0 counts the num-
ber of connected components that arise in the filtration. For H1 , betti1 counts the num-
ber of circular holes (loops) being born as we proceed through the filtration. Similarly 
for H2 , betti2 gives a count of the number of surfaces enclosing three dimensional voids 
in the data. Thus, the short blue line segments of betti0 in (Fig. 3e) correspond to the 
separate components that are joined to form one big connected component correspond-
ing to the red line. The two long blue line segments of betti1 correspond to the two holes 
in the structure, the largest representing the bigger hole.

For computational purposes, the growing sequence of the union of balls is converted to 
a growing sequence of triangulations, simplicial complexes in general, called a filtration 
(Fig. 9). The topological signatures are born when a series of say, edges (1-simplices), are 
connected to form a cycle and die when they are filled in with triangles (2-simplices). If 
we take the example in Fig. 9a, the theory of Persistent Homology suggests that in the fil-
tration F = K0 → K1 → . . . → Kn = K  , the edges inserted in K4 , K5 and K6 (1-simplex 
denoted σ 1

4 , σ 1
5 and σ 1

6 respectively)are the creators as introduction of which create class of 
homology cycles. We can think the creators as the representative of the cycles. By conven-
tion when a triangle appears in the filtration it kills the youngest homology class and is 
denoted by pairing with creators. In K7 the triangle kills the cycle created by the edge that 
came in K6 . So, it pairs with σ 1

6 . In K8 the triangle pairs with σ 1
7 and the big hole (created 

by σ 1
4 and is the youngest creator unpaired) is filled up and destroyed by the last triangle 

(2-simplex denoted σ 2
9  ) inserted in K9 . Thus σ 1

4 is paired with σ 2
9  for interval [4, 9). The 
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problem with relying only on the barcodes is that they tell us when the classes are born or 
die given a filtration. But for each homology class, there can be several cycles in the same 
class (Fig. 9b). Ideally, we would like the tightest cycle (blue one) in the class to be a rep-
resentative cycle for a given bar. However, it is shown in [12] that computing such cycles 
even for H1 is an NP-Hard problem. A follow up paper [13] shows that for dimensions ≥ 1 , 
the problem remains NP-Hard. We therefore, use alternate polynomial time algorithms 
to build good representative H1 and H2 cycles given any barcode interval [β , δ) . The first 
algorithm [12] computes a good but not necessarily the tightest representative cycles. The 
second algorithm [13] computes the tightest representative cycles but for a specific class of 
domains called pseudo-manifolds. We briefly describe these two algorithms. 

Algo. 1 generates H1 cycles. The idea is briefly as follows: we know that at the birth 
time β of a 1-cycle (found by the persistence algorithm), an edge σ 1

β is inserted in F  to 
form a cycle in Kβ . We hence check for the shortest path between the vertices of σ 1

β in 
Ki−1 before σ 1

β is inserted. Since we know that at least one cycle containing σ 1
β is formed 

at Kβ , adding σ 1
β to this path gives us the shortest cycle at Kβ . At δ , we need to know 

Fig. 9  a Filtration F = K0, .., K9 explaining persistence pairing. The edge inserted in K4 dies when the green 
triangle in K9 appears. b Different H1 cycles for same homology class
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which cycle belonging to the homology class has died. This can be a linear combination 
of any cycles still alive including the cycle found at Kβ . This is found using a strategy of 
annotations [4]. In fact, it is shown in the paper that the shortest cycle found at Kβ is 
exactly the shortest cycle for the interval in most practical cases.

Algo. 2 is used to compute H2 cycles for an interval [β , δ) and can be extended to any 
Hn . We first construct an undirected dual graph G for K where vertices of G are dual to 
2-simplices of K and edges of G are dual to 1-simplices of K . One dummy vertex termed as 
infinite vertex which does not correspond to any 2-simplices is added to G for graph edges 
dual to the boundary 1-simplices. We then build an undirected flow network on top of G 
where the source is the vertex dual to the death of an interval and the sink is the infinite 
vertex along with the set of vertices dual to those 2-simplices which are added to F  after δ . 
If a 1-simplex is σ 1

β or added to F  before σ 1
β , we let the capacity of its dual graph edge be its 

weight; otherwise, we let the capacity of its dual graph edge be +∞ . Finally, we compute a 
minimal cut of this flow network and return the 2-chain dual to the edges across the mini-
mal cut as a minimal persistent cycle for the interval. The readers may consult the respec-
tive papers for H1-cycles [12] and H2-cycles [13] computations for more details.

Since computation of Hn-cycles is computationally expensive, especially in higher 
dimensions, we restrict ourselves with the computation of upto H2-cycles for our experi-
ments. Most previous works on TDA had mainly included H1 intervals, with applica-
tions in gene expression being restricted to H0 , so we hope to shed some new light into 
the problem even with this restricted setup. 
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Computing topological signature of gene‑expression data

We work under the hypothesis that topological data analysis extracts relevant infor-
mation sufficient for cohort classification. We note that topological feature extraction 
methods used in earlier works may not work in this setting. Traditionally, for many appli-
cations in bio science (say protein classification) and engineering, we find corresponding 
topological signatures using Persistent Homology for each sample (in this case cohorts 
or genes). These signatures are appended to the feature vectors. However, in this case, 
since each cohort is represented by a single 1D vector of gene expression levels, we are 
not able to find suitable signatures to append. This is why the algorithms we described 
in the previous section comes handy, as we will see in this section. We use our tools in 
two separate set of experiments. For algorithms 1 and  2, we need a simplicial complex 
K , a filtration F  , and finite intervals. For all the studies in the paper, we use Sparse Rips 
[36] to obtain the simplicial complex K and its filtration ( F  ). We can apply the theory 
of Persistent Homology to obtain the set of all finite intervals. In addition, algorithm 2 
requires a pseudo-manifold ( ̃K  ) instead of a regular simplicial complex K . For our case, 
this means that all triangles ( d = 2-simplices) has at most two tetrahedrons ( d + 1 = 3

-simplices) attached to it. We convert K into K̃  by allowing at most two cofaces (tetrahe-
dra) per triangle which appear first in the filtration:

•	 Add all σ 0...d to K̃ :
•	 ∀σ d ∈ K :

•	 Sort: its co-faces T = σ d+1 by F(σ d+1)

•	 If: |T | ≥ 2 , insert into K̃  , the first two σ d+1 in T ,
•	 Else: insert T  in K̃

Dataset

We have a set of n cohorts ( C ) each represented by the gene expression profile of m genes 
( G ). Thus our input is a matrix K of dimension (n×m) where each Ki,j represents the jth 
gene of the ith cohort. In addition, we have X : C → I , where I is the phenotype for the 
cohort. For instance, X (c) = 0 may imply that c is healthy or control, whereas X (c) = 1 
may imply they are infected or treated with an antigen depending on the experiment. 
Throughout our experiments we will work on several datasets containing gene expres-
sion profile of different organisms [37]. We provide a brief description of these data 
(Table 5). 

(D0):	� Droso Breeding In this data set, the Drosophila melanogaster larvae is bred on a 
Aspergillus nidulans infested breeding substrate. The phenotypes differ on the 
different breeding condition for the Drosophilas. We assign label 0 to control, 
label 1 to the Drosophilas bred on Aspergillus nidulans mutant laeA, and label 
2 to both the Drosophilas bred on wild Aspergillus nidulans and sterigmatocys-
tin. Note that in this experiment, mutating laeA from wild Aspergillus nidulans 
removes sterigmatocystin production. Hence, both the wild Aspergillus and the 
class with external sterigmatocystin should have similar gene expression profile. 



Page 17 of 21Dey et al. BMC Bioinformatics          (2021) 22:627 	

The experiments in the dataset website confirms this fact, as there is no change 
in any gene expression profile between these two classes. The number of cohorts 
in the database is 131. Link: https://​www.​ebi.​ac.​uk/​gxa/​exper​iments/​E-​MTAB-​
5344/​Resul​ts.

(D1):	� Droso Parasitod The data contains the profile of Drosophila larvae after a para-
sitod attack. There are two labels on the phenotype, one for the control and the 
other for the cohorts under parasitod attack. Thus, we have a binary classifica-
tion problem in this case. Total cohorts count is 89. Link to this dataset: https://​
www.​ebi.​ac.​uk/​gxa/​exper​iments/​E-​MAXD-6/​Resul​ts.

(D2):	� Mouse Prion This data has Mus musculus as the cohort. The experiment investi-
gates into the effects of two different strains of the prion disease. The phenotypes 
are ‘RML infected’, ‘301V infected’, and the healthy control which are assigned 
labels 0−2 respectively. Total cohort count is 321. Link:https://​www.​ebi.​ac.​uk/​
gxa/​exper​iments/​E-​MTAB-​76/​Resul​ts

(D3):	� Mouse Liver Cancer This is again a binary classification problem of the Mus 
muculus. The two phenotypes are control type and liver cancer cohorts. We take 
healthy control as 0 and mice treated with carcenogenic compunds as 1. Total 
cohort count is 242. Link: https://​www.​ebi.​ac.​uk/​array​expre​ss/​exper​iments/​
E-​GEOD-​18858/.

Fig. 10  t-SNE on entire cohort point cloud ( D0 ). Red vertices indicate cohorts included in top 100 H2 cycles 
whereas blue indicate otherwise. Note that different perplexity values for t-SNE indicate that the topological 
cycles are indeed uniform and not specific to a particular hyperparameter (perplexity) value

https://www.ebi.ac.uk/gxa/experiments/E-MTAB-5344/Results
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-5344/Results
https://www.ebi.ac.uk/gxa/experiments/E-MAXD-6/Results
https://www.ebi.ac.uk/gxa/experiments/E-MAXD-6/Results
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-76/Results
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-76/Results
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-18858/
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-18858/
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(D4):	� Mouse EColi. The three phenotypes in this dataset are the Eschreichia coli, Staph-
ylococcus, and control. The total number of cohorts across all three phenotypes 
in 226. Link: https://​www.​ebi.​ac.​uk/​gxa/​exper​iments/​E-​ENAD-​29/​Resul​ts.

(D5):	� Human Bowel Disease A binary classification problem where the phenotype are 
from cohorts suffering Crohns Disease and placebo cases. This is a big dataset 
having gene expressions of 1745 human. Link: https://​www.​ebi.​ac.​uk/​gxa/​exper​
iments/​E-​GEOD-​100833/​Resul​ts

(D6):	� Human Bone Marrow This data set contains gene expressions of patients having 
bone marrow failure and cytogeneic abnormalities along with healthy cohorts 
who serve as control. This dataset has 469 cohorts. Link: https://​www.​ebi.​ac.​uk/​
array​expre​ss/​exper​iments/​E-​GEOD-​32719/.

(D7):	� Human Dengue This is yet another big dataset having two types of pheno-
types where we have gene expression of Dengue patients versus cohort control. 
Cohort count for this dataset is 4415. Link: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
downl​oad/?​acc=​GSE11​6672.

 

Table 4  Classification using topo-relevant cohort

Each of the data are explained in Dataset section. The # symbol indicates the size of each dataset. ‘–’ in the table means the 
stats were too low: the relevant classifier was unable to classify the given data. The column ‘FULL’ represents training on the 
full dataset while H1 + H2 represent the union of n′ topo-relevant cohorts obtained from the dominant cycles in either H1 or 
H2 whereas H2 represents cohorts obtained from the dominant cycles in H2

EXPR Decision tree Naive Bayes classifier

FULL H1+H2 H2 FULL H1+H2 H2

Droso breeding # 131 116 101 131 116 101

Accuracy 0.714125 0.751768 0.793434 0.398146 0.412121 0.422444

Precision 0.745417 0.815000 0.835000 0.389111 0.431756 0.451673

Recall 0.712500 0.754167 0.795833 0.400000 0.416667 0.434478

Droso parasitod # 89 85 51

Accuracy 0.792778 0.796667 0.811667 – – –

Precision 0.817381 0.823571 0.859167 – – –

Recall 0.792500 0.797500 0.825000 – – –

Mouse prion # 321 292 168 321 292 146

Accuracy 0.562310 0.616240 0.586843 0.555112 0.578489 0.576131

Precision 0.562716 0.591471 0.543743 0.383462 0.378556 0.384572

Recall 0.539712 0.564394 0.558267 0.415855 0.422354 0.423651

Mouse liver cancer # 242 229 190 242 229 190

Accuracy 0.682761 0.698934 0.729545 0.723232 0.723232 0.721404

Precision 0.590716 0.579833 0.656051 0.444761 0.444761 0.412018

Recall 0.573319 0.602582 0.641168 0.499837 0.499837 .506429

Mouse E.Coli # 226 206 166 226 206 166

Accuracy 0.880731 0.851794 0.892900 0.592770 0.592105 0.592105

Precision 0.880541 0.853406 0.901481 0.604010 0.651101 0.652203

Recall 0.868052 0.842963 0.891786 0.509841 0.511111 0.511111

Human bowel disease # 1745 101 101

Accuracy 0.499698 0.510987 0.510987 – – –

Precision 0.493808 0.509147 0.509147 – – –

Recall 0.491258 0.501173 0.501173 – – –

https://www.ebi.ac.uk/gxa/experiments/E-ENAD-29/Results
https://www.ebi.ac.uk/gxa/experiments/E-GEOD-100833/Results
https://www.ebi.ac.uk/gxa/experiments/E-GEOD-100833/Results
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-32719/
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-32719/
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE116672
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE116672
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Since each data point reside in dimension > 3 we apply t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) on D0 Drosophila dataset to obtain a 2D projection for visuali-
zation in Fig. 10. To get a sense of the distribution of topological cycles, we calculate the 
top 100 representative H2 cycles based on their interval length ( δ − β ). In Fig.  10, we 

Table 5  Cohort count in each phenotype. Details of the label assignment for each dataset can be 
found in its description

Dataset Phenotype Samples per class Total Samples

Droso breeding Control 32 131

Aspergillus 34

Aspergillus + Sterigmatosystin 65

Droso parasitod Control 45 89

Under parasitod attack 44

Mouse Prion RML infected 154 321

301V infected 122

Control 45

Mouse liver cancer Control 63 242

With liver cancer 179

Mouse E.Coli With E.Coli 64 226

With staphylococcus 102

Control 60

Human Bowel Disease Crohn’s disease 101 1745

Placebo 1113

Control 531

Human bone marrow Bone marrow failure 391 469

Control 78

Human dengue Dengue fever 3311 4415

Contrrol 1104

Fig. 11  a Count of vertex labels in individual H2-cycles for D0 . The red points indicate cycles having 
phenotype labels 0 and 1, blue indicates cycles with labels 1 and 2 whereas green (very few in the top 500 
H2 cycles) indicates labels 0 and 2. b Count of vertex labels in individual H2-cycles for D1 . Red indicate cycles 
having equal phenotype labelled vertices. Blue and cyan indicate prevalence of label 0 and 1 respectively. In 
both the diagrams, black points indicate cycles having a single phenotype label
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color a cohort vertex red if it is contained in any of the top 100 H2 cycles. The cohorts 
not included are painted blue. This figure shows the uniform distribution of the topo-
logical cycles w.r.t the entire dataset (Fig. 11).
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