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Background
De novo genome assembly asks to reconstruct the genomic sequence of a new previ-
ously unsequenced organism given a set of sequencing reads. The advances in long read 
sequencing technologies have allowed for complete or near complete assemblies of bac-
terial and small genomes [1–3] but assembling larger genomes such as vertebrates and 
plants typically yields a set of contigs instead of the complete genome of the organism. 
Thus resolving the large scale structure of these genomes requires additional long range 
data such as genetic linkage maps, optical maps, or Hi-C data [4].

Typically additional long range data is used to order the contigs into scaffolds. A 
genetic linkage map consists of a set of markers such as single nucleotide variations 
(SNVs). The markers are divided into chromosomes and their partial order within a 
chromosome is known. Chromonomer [5] uses a genetic linkage map to scaffold contigs 
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and it also detects misassemblies and can correct these based on a genetic linkage map. 
Similarly, Lep-Anchor [6] can detect and correct chimeric contigs based on a genetic 
linkage map and it can anchor contigs into chromosomes using a genetic linkage map 
and additional information such as contig-contig and read alignments.

Optical maps are another type of physical maps that can be used to scaffold contigs. 
Optical maps are produced by elongating DNA molecules on a plate, applying a restric-
tion enzyme that cuts or nicks the DNA molecules at specific restriction sites, and then 
imaging the cut or nicked molecules. SewingMachine [7] uses a single optical map to 
scaffold contigs, whereas OMGS [8] can simultaneously use several optical maps pro-
duced with different enzymes.

Some methods integrate the long range data directly into contig assembly. AGORA 
[9] uses optical maps to guide the contig building from a de Bruijn graph. KOOTA [10] 
maps reads to an optical map and uses the mapping positions to produce a positional 
de Bruijn graph which is less tangled than a regular de Bruijn graph. Kermit [11] maps 
reads to a genetic linkage map and then uses this information to remove edges that con-
flict with a genetic linkage map from the assembly graph of miniasm [1]. OpticalKermit 
[12] is a modification of Kermit to use optical maps instead of genetic linkage maps.

All previous methods that integrate the long range data directly to contig assembly 
build the assembly graph for the whole set of reads and use the long range data to dis-
entangle the graph. Here we propose a different approach. We first map the individual 
reads to the long range data and then cluster the reads based on these mappings. Each 
cluster is then assembled independently and finally we join the clusters in a hierarchical 
manner to produce a complete assembly. We implement our approach for genetic link-
age maps in a tool called HGGA (Hierarchical Guided Genome Assembler) and show 
that on real and simulated Pacific Biosciences reads and genetic linkage maps, HGGA 
produces a more contiguous assembly with less contigs and from 1.2 to 9.8 times higher 
NGA50 or N50 than a plain assembly of the reads and 1.03 to 6.5 times higher NGA50 
or N50 than a previous approach integrating genetic linkage maps with contig assembly. 
Our approach is also easy to parallelize as the long range data naturally divides the reads 
into clusters which can be assembled independently in a parallel fashion.

Related work

The de novo assembly problem asks to reconstruct a genome from a set of sequencing 
reads. The two most popular approaches to solve it are the overlap-layout-consensus 
approach and the de Bruijn graph based approach. In the overlap-layout-consensus 
approach first overlaps between reads are found. These can be represented in the form of 
an overlap graph where the nodes are the reads and there is an edge between two reads if 
they overlap. The overlap graph can then be simplified by removing transitive edges. The 
resulting graph is called the string graph [13]. In the layout phase, contigs are formed as 
paths in the string graph. Finally the consensus phase determines the base sequence of 
the contigs based on the reads. The alternative approach based on de Bruijn graphs first 
extracts all k-mers, i.e. k bases long sequences, that occur in the reads. These k-mers 
then form the nodes of the de Bruijn graph and there is an edge between two nodes if 
the k-mers overlap by k − 1 bases. Contigs are typically reported as non-branching paths 
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in the de Bruijn graph. The term assembly graph is often used to refer to both string 
graphs and de Bruijn graphs.

Reference guided assembly gives an attractive alternative to de novo assemblies. Here 
we are also given a reference sequence, against which we can compare our input reads. 
Schneeberger et al. [14] proposed a reference guided assembly approach which was fur-
ther developed by Lischer and Shimizu [15]. They first map the reads against the ref-
erence. Based on the mappings the reads are divided into overlapping superblocks 
which are assembled independently into contigs and unmapped reads are also assem-
bled separately into contigs. All these contigs are then joined into a set of supercontigs. 
AlignGraph [16] implements an alternative approach. First, all reads are assembled 
into contigs. Then the contigs and paired end reads are aligned against the reference 
sequence. Based on these alignments the contigs are further extended and joined into 
longer contigs.

In our previous work, we introduced Kermit [11], a method for guiding an assembly 
with a genetic linkage map instead of a reference sequence. Genetic linkage maps are a 
technique to orient and place contigs within a chromosome and to detect misassembled 
contigs. The genetic linkage maps themselves consist of genetic markers. The markers 
are divided into chromosomes and within each chromosome, the markers are further 
placed into bins. The order of the bins within a chromosome is known but the order of 
markers within a bin is not known.

The markers in the map are derived from a set of variations, such as single-nucleotide 
variations. The variations are found from a sequenced cross, a population of related indi-
viduals. Variations that are close to each other in the genome are likely to be inherited 
together. Genetic linkage maps can therefore be constructed by genotyping the individu-
als in the cross and examining the probabilities of variations being inherited together. 
Kermit colors the read set by mapping them to a genetic linkage map and then removes 
edges from the assembly graph that are not consistent with the coloring. While the same 
method theoretically extends to any guide data that can be represented as a linear order-
ing for reads, such as optical maps [12], it fails to generalize to non-linear guide data.

Kermit uses miniasm [1] for both assembly graph construction and genome assembly 
using the graph. We will be similarly using miniasm heavily here for easy comparison. 
Miniasm first uses minimap to find overlaps between the reads. Based on the overlaps 
it then creates a string graph by removing transitive edges. The graph is then cleaned by 
removing tips and popping bubbles. Finally miniasm reports unitigs, i.e. non-branching 
paths, in the resulting graph as contigs. Miniasm does not implement a consensus phase 
and thus the error rate of contigs produced by miniasm is the same as the error rate of 
the reads.

Results
Overview of our method

The input to our method is a set of reads and guide data describing the overall structure 
of the genome. First, we use the guide data to cluster the reads into multiple hierarchi-
cal trees where the set of reads is split into the leaves. Each leaf thus consists of a set of 
reads originating from nearby locations of the genome according to the guide data and 
the leaves are joined into multiple hierarchical binary trees according to the clustering. 
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As the genomic distance between reads in different chromosomes is not defined, multi-
ple trees, one for each chromosome, need to be used to cover a full multi-chromosomal 
genome.

We have implemented our method using genetic linkage maps as guide data. A genetic 
linkage map is usually constructed with respect to a draft assembly. Thus in this case 
the input consists of a set of reads, the genetic linkage map, and the draft assembly that 
has been used to construct the genetic linkage map. The draft assembly is used only for 
calling SNVs which become the markers of the genetic linkage map. The markers are 
ordered based on the observed patterns of inheritance and thus the ordering is done 
independently of the draft assembly.

The reads are localized on the genetic linkage map by aligning them to the draft 
genome and checking which markers of the genetic linkage map are closest to the align-
ment. The read is classified using the set of markers that are roughly equidistant from 
the closest marker. The classifications define a partial order for the reads and can thus be 
directly used to split the reads into leaves and to construct the hierarchical tree.

Next, we assemble the reads using the hierarchical tree. The assembly pipelines for leaf 
nodes and internal nodes are different. For leaf nodes, the input is raw long reads and as 
such, we use existing tools for assembling and error correcting the reads into polished 
contigs for further assembly in the hierarchy. Finally, for each internal node, we take the 
contigs from the child nodes and assemble them. Internal nodes take the error corrected 
contigs as input and output longer super-contigs, so we use a simple greedy assembly 
algorithm to combine the input contigs. The final assembly is produced at the root of the 
tree. The assembly process is shown in Fig. 1.

Data sets and evaluation

We ran several experiments using simulated Caenorhabditis elegans reads and a simu-
lated genetic linkage map, real Arabidopsis thaliana reads and simulated genetic linkage 
map, real human reads and a simulated genetic linkage map, and using real reads and a 
real genetic linkage map for an additional C. elegans data set [17, 18] and a nine-spined 
stickleback Pungitius pungitius data set from a recent assembly project [19, 20]. C. ele-
gans, A.  thaliana, and human have good quality reference genomes which allow us to 
evaluate the correctness of the produced assemblies accurately.

{r1, r2, r3, r4} {r1, r2, r3, r4, r5, r6} {r3, r4, r5, r6, r7, r8, r9} {r5, r6, r7, r8, r9}

{c1, c2} {c3, c4, c5} {c6} {c7, c8}

{c1, c2+3+4+5} {c6+7+8}

{c1, c2+3+4+5+6+7+8}

Fig. 1  An example of how different points of the hierarchy affect the assembly. At the bottom raw reads are 
assembled into contigs in the leaf nodes. Each internal node then takes the contigs and further merges the 
contigs from its children together
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The P. pungitius data set allows us to evaluate the assemblers also on a data set 
where both reads and genetic linkage maps are real but due to the unavailability 
of a good quality reference genome, the correctness of the assemblies needs to be 
evaluated with more indirect means such as gene completeness and mappability of 
reads back to the assembly as explained in more details below. The C. elegans data 
set with real genetic linkage map and reads gives additional weight to any conclu-
sions drawn from the indirect evaluation. The details of the read sets are shown in 
Table 1.

The long reads for C. elegans were simulated with 40x coverage using SimLoRD 
v1.0.4 [21]. The genetic linkage maps for C. elegans, A. thaliana, and H. sapiens 
were simulated by randomly positioning markers until 100,000, 50,000, and 700,000 
markers respectively had been placed. Of those markers, the ones that are less than 
20 bp away from the previous are removed. Bins were assigned to markers by start-
ing from the first marker in the first chromosome and adding markers to the same 
bin until a marker is at least 200 bp away and then moving to the next bin. The real 
genetic linkage maps of C. elegans assigns a physical position for each marker in the 
genetic linkage map and thus does not divide the markers into bins. Therefore, we 
have interpreted the genetic linkage map data as each marker having its own bin.

We ran all the methods on a cluster with 16 cores reserved with default settings 
for all tools. The produced assemblies were evaluated with QUAST v5.0.2 [22] and 
BUSCO v5.2.2 [23]. QUAST reports genome fraction, misassemblies, and NGA50 
values by aligning the assemblies to a reference genome. Additionally QUAST aligns 
the reads to the assemblies and reports the fraction of reads that can be mapped to 
the assemblies. For the P. pungitius assemblies we do not report misassembly and 
NGA50 statistics because a high quality reference sequence is not available.

BUSCO reports the number of single-copy orthologs from a gene set it can detect 
from the assemblies. We used the Nematoda, Brassicales, Actinopterygii, and pri-
mates gene sets (odb10 for all sets) for the BUSCO evaluation of C. elegans, A. thali-
ana, P. pungitius, and H. sapiens, respectively. We report the runtime of the methods 
as the total wall clock time and the memory usage is reported as the peak memory 
usage during execution.

Table 1  Characteristics of the read data sets and genetic maps used in the experiments

The C. elegans (sim) reads were simulated with SimLoRD and the C. elegans (sim), A. thaliana, and H. sapiens genetic linkage 
maps were simulated by randomly positioning the markers on the genome. The C. elegans (real), A. thaliana, P. pungitius, and 
H. sapiens reads are real PacBio reads

Organism # of reads Mean read 
length (bp)

Total read 
length (Mbp)

Coverage # of markers # of bins

C. elegans (sim) 478,836 8,214 3,933 40 98,978 81,788

C. elegans (real) 3,316,106 8,801 29,185 291 388,202 –

A. thaliana 1,135,065 9,475 10,755 90 49,617 45,930

P. pungitius 10,918,547 4,948 54,025 115 76,036 34,845

H. sapiens 25,986,153 8,916 231,694 76 996,603 936,534
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The minimum leaf size

The most important parameter in our method is the minimum leaf size, i.e. the mini-
mum number of reads assigned to each leaf in the hierarchical tree. We experimented 
with different leaf sizes for both the simulated and the real data. The results of these 
experiments are shown in Tables 2 and 3 . We tried different minimum leaf sizes rang-
ing from 0.1 to 5% of the reads. On the simulated data, the best assemblies regarding 
the number of contigs and the number of misassemblies are achieved with medium 
sized leaves. The genome fraction goes down as the leaf size increases. The propor-
tion of mapped reads is similar across all leaf sizes. The runtime is fairly stable and 
the peak memory usage increases as the leaf size increases because assembling the 
leaves needs more memory for large leaves as there is more data per leaf to assemble. 
The NGA50 is less stable. This is likely due to the low number of contigs as in such 
scenarios a single join of two contigs can have a big effect on the NGA50. The BUSCO 
completeness is highest for assemblies that also have high NGA50 values but also the 
assembly produced with the smallest leaf size has a high BUSCO completeness score. 
For further comparisons with other methods, we will use the assemblies producing 
the highest NGA50.

On the real P. pungitius data the best N50 value is achieved with the minimum leaf 
size 1.5% of all reads. The medium minimum leaf sizes also achieve the longest assem-
blies and the most accurate assemblies as measured by BUSCO completeness and the 
proportion of mapped reads. The number of contigs is slightly smaller for the largest 
minimum leaf size but this assembly has a lower N50 value and the total length of 

Table 2  The effect of the minimum leaf size on the assembly of the simulated C. elegans data

Min leaf 
size (% 
of reads)

# of 
contigs

NGA50 
(bp)

Genome 
fraction

Misassemblies BUSCO 
Complete 
(%)

Reads 
mapped 
(%)

Runtime 
(min)

Peak 
memory
(MB)

0.1% 42 3,901,186 99.699 11 97.8 99.78 60 1564

0.5% 34 4,282,525 99.564 11 93.4 99.76 55 487

1.0% 30 4,274,710 99.592 9 93.4 99.77 53 901

1.5% 31 5,901,436 99.595 14 97.2 99.78 51 1334

2.0% 37 4,691,641 99.604 15 93.5 99.77 53 1776

2.5% 38 3,900,976 99.568 12 93.3 99.78 54 2226

5.0% 39 5,335,812 99.571 16 98.1 99.78 40 3954

Table 3  The effect of the minimum leaf size on the assembly of the real P. pungitius data. The length 
of the scaffold level reference assembly (GCA_902500615.3) is 466 Mbp

Min leaf size 
(% of reads)

# of contigs N50 (bp) Total length (bp) BUSCO 
complete 
(%)

Reads 
mapped 
(%)

Runtime (h) Peak 
memory 
(MB)

0.1% 1945 918,119 453,155,823 88.0 92.6 13.34 6,212

0.5% 1084 1,799,563 489,091,741 91.3 93.52 14.3 8,289

1.0% 884 1,877,796 511,024,231 92.1 93.95 13.88 11,680

1.5% 790 2,119,727 503,905,067 92.5 93.91 13.44 16,001

2.0% 779 2,059,129 499,019,519 91.7 93.82 11.98 17,884

2.5% 784 2,027,447 481,429,790 91.7 93.65 17.95 22,713
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the assembly is lower than the reference GenBank assembly (GCA_902500615.3). For 
comparisons with other methods we will use the leaf size 1.5% producing the best 
N50 value.

For both of our data sets good minimum leaf size is around 1.5% of the reads. How-
ever, we note that a denser genetic linkage map allows for smaller leaves. Similarly high 
coverage of the reads would increase the optimal number of reads per leaf.

Map density

To study the effect of the density of the genetic linkage map, i.e. the number of markers, 
we simulated maps with different numbers of markers using the C. elegans data. We ran 
both HGGA and Kermit on these data sets. The results are shown in Table 4. HGGA is 
using closest marker coloring in all cases. We see that once the map is dense enough, 
the quality of the assembly hardly changes because once this threshold is reached, the 
reads originating from repeat regions are assigned to different leaves resulting in a good 
quality assembly which cannot be further improved by more fine grained division of the 
reads. For Kermit this happens when the density reaches 50k and for HGGA when the 
density reaches 10k. HGGA is less sensitive to the density because we color the reads 
using the marker which is closest to the alignment of the read when the alignment does 
not contain any markers. Kermit, on the other hand, colors these reads by propagating 
the colors in the overlap graph which can lead to ambiguous colorings.

Assembly height

To evaluate the effects of assembly in the internal nodes, we also ran QUAST and 
BUSCO on all the contigs generated during the hierarchical assembly process. The 
results are shown in Table 5. It should be noted that the height of the assembly trees is 
not an adjustable parameter of the method, rather it is derived from the width of tree, 
i.e. the number of leaf nodes. The width of the trees is controlled by both the minimum 
leaf size and the density of the map.

Table 4  The effect of the map density on the assembly of the C. elegans data

Method # of 
markers

# of 
contigs

NGA50 
(bp)

Genome 
fraction

Misassemblies BUSCO 
Compl. 
(%)

Reads 
mapped 
(%)

Runtime 
(min)

Peak 
memory 
(MB)

Kermit 1k 850 89,141 74.315 13 73.4 91.84 21 11,943

Kermit 10k 733 82,640 68.808 16 67.8 90.69 21 11,809

Kermit 20k 216 818,928 95.417 9 93.8 98.09 22 12,434

Kermit 50k 69 3,450,849 99.539 12 98.0 99.74 23 12,542

Kermit 100k 61 3,476,344 99.563 11 98.3 99.75 23 12,543

Kermit 150k 64 3,450,700 99.555 12 98.1 99.77 23 12,555

Kermit 200k 64 3,476,344 99.563 11 98.3 99.75 23 12,542

Kermit 500k 64 3,476,344 99.563 11 98.2 99.75 23 12,544

HGGA​ 1k 69 2,488,265 95.627 8 93.8 97.63 38 1902

HGGA​ 10k 44 3,668,792 99.698 9 97.9 99.75 40 1837

HGGA​ 20k 44 3,668,641 99.680 10 95.6 98.52 42 1835

HGGA​ 50k 46 3,668,702 99.708 9 95.9 98.52 42 1827

HGGA​ 100k 49 3,668,667 99.646 9 97.8 99.78 42 1874

HGGA​ 150k 51 3,668,731 99.669 8 98.1 99.75 42 1886

HGGA​ 200k 52 3,869,053 99.568 8 96.2 99.36 43 1833

HGGA​ 500k 47 3,668,735 99.652 13 98.0 99.76 48 1837
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As expected, the contigs get joined to form longer and longer sequences as the assem-
bly process moves up the trees. The leaf contigs contain duplicated sequences by design 
as the leaves are forced to overlap. Most of this duplication is removed as contigs are 
joined and contigs that are contained in the joined sequences are removed. This can be 
seen in the number of contigs plummeting in the first two levels of the internal node 
assemblies. The number of misassemblies increases after the final assembly, which takes 
the chromosomally separated trees and attempts to find possible overlaps due to errors 
in the map.

Comparison to previous work

We compared HGGA to miniasm [1] which uses only the reads and Kermit [11] which 
uses both the reads and the genetic linkage map. We ran Racon [24] to polish the assem-
blies produced by miniasm and Kermit since they do not implement a consensus phase. 
We note that HGGA uses Racon to polish the leaf assemblies and thus produces a pol-
ished assembly. We limited the comparison to these tools because all of them use the 
same module for assembling the reads and thus from this comparison we can see how 
the integration of the genetic linkage map improves assembly. The results of the compar-
ison on the simulated C. elegans, A. thaliana, H. sapiens, and real C. elegans and P. pun-
gitius data are shown in Tables 6, 8, 9, 7, and 10 , respectively.

Table 6 shows that on the simulated C. elegans data, both Kermit and HGGA are able 
to improve upon the miniasm assembly which uses only the read data. HGGA pro-
duces 63% less contigs than Kermit and twice as large NGA50 value as Kermit but also 
seven more misassemblies. Kermit also has the highest BUSCO completeness score, but 
slightly higher number of reads can be mapped back to the HGGA assembly. Kermit 
is faster but HGGA uses less memory. The results for C.  elegans assemblies with real 
genetic linkage maps and reads are shown in Table 7. The results mostly agree with those 

Table 5  The effect of assembly in the internal nodes on the C. elegans data

Height # of contigs NGA50 (bp) Genome fraction Misassemblies BUSCO 
Complete 
(%)

Reads 
mapped 
(%)

leaves 221 2,840,136 99.619 17 98.6 99.88

1 112 3,323,225 99.599 17 97.7 99.84

2 71 3,473,215 99.571 13 98.1 99.81

3 59 3,540,478 99.551 12 97.6 99.79

4 51 3,549,527 99.551 12 97.6 99.78

root 31 5,901,436 99.595 14 97.2 99.78

Table 6  Comparison of HGGA, miniasm, and Kermit on the simulated C. elegans data

Method # of 
contigs

NGA50 
(bp)

Genome 
fraction

Misassemblies BUSCO 
complete 
(%)

Reads 
mapped 
(%)

Runtime 
(min)

Peak 
memory 
(MB)

Miniasm 126 1,982,361 99.443 10 98.1 99.75 20 18,332

Kermit 83 2,819,353 99.535 7 98.3 99.75 23 19,578

HGGA​ 31 5,901,436 99.595 14 97.2 99.78 51 1,334



Page 9 of 17Walve and Salmela ﻿BMC Bioinformatics          (2022) 23:167 	

of the simulated setting, albeit the differences between the tools are less drastic due to 
being less perfect.

The results on the A. thaliana data, where the reads are real but the genetic linkage 
map is simulated, are shown in Table 8. Kermit produces the smallest number of contigs. 
However, HGGA produces an assembly with 1.6 times higher NGA50 value, while the 
NGA50 value of the Kermit assembly is actually slightly smaller than for the miniasm 
assembly. The assembly produced by Kermit has the smallest number of misassemblies 
but less than 90% of reads can be mapped back to it, whereas over 95% of the reads map 
back to the HGGA and miniasm assemblies. The number of misassemblies in the HGGA 
assembly is still 30% lower as compared to the miniasm assembly and the BUSCO 

Table 7  Comparison of HGGA, miniasm, and Kermit on the C. elegans data with real genetic linkage 
map and reads

Method # of 
contigs

NGA50 
(bp)

Genome 
fraction

Misassemblies BUSCO 
complete 
(%)

Reads 
mapped 
(%)

Runtime 
(h)

Peak 
memory 
(MB)

Miniasm 472 1,582,439 99.478 420 95.2 94.43 5.52 88,371

Kermit 95 1,864,384 99.187 197 95.8 93.41 4.88 88,028

HGGA​ 217 1,927,968 99.072 195 95.1 94.61 9.07 9,101

Table 8  Comparison of HGGA, miniasm, and Kermit on the A.  thaliana data with real reads and 
simulated genetic linkage map

Method # of 
contigs

NGA50 
(bp)

Genome 
fraction

Misassemblies BUSCO 
Complete 
(%)

Reads 
mapped 
(%)

Runtime 
(h)

Peak 
memory 
(MB)

Miniasm 712 2,552,623 98.766 346 84.5 96.63 2.37 34,128

Kermit 123 2,552,489 98.185 174 85.1 89.07 2.08 34,486

HGGA​ 136 4,173,314 98.247 242 86.3 95.87 3.41 10,050

Table 9  Comparison of HGGA, miniasm, and Kermit on the H.  sapiens data with real reads and 
simulated genetic linkage map

Method # of 
contigs

NGA50 
(bp)

Genome 
fraction

Misassemblies BUSCO 
complete 
(%)

Reads 
mapped 
(%)

Runtime 
(h)

Peak 
memory 
(MB)

Miniasm 8,789 692,902 89.761 3,669 76.5 61.37 237.84 565,309

Kermit 4,503 1,050,164 90.069 762 77.9 60.65 239.29 565,307

HGGA​ 2,204 6,814,538 93.181 3,004 86.5 70.45 37.46 69,492

Table 10  Comparison of HGGA, miniasm, and Kermit on the real P. pungitius data. The length of the 
scaffold level reference assembly (GCA_902500615.3) is 466 Mbp

Method # of contigs N50 (bp) Total length 
(bp)

BUSCO 
complete 
(%)

Reads 
mapped 
(%)

Runtime (h) Peak memory 
(MB)

Miniasm 1,873 1,182,753 461,795,357 92.7 93.58 13.49 165,716

Kermit 833 1,392,886 432,823,234 92.1 93.08 13.19 165,061

HGGA​ 790 2,119,727 503,905,067 92.5 93.91 13.44 16,001
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completeness score is highest for HGGA. Similar to the C. elegans data Kermit is faster 
but HGGA uses less memory.

On the H. sapiens data shown in Table 9, HGGA produces a much more contiguous 
assembly compared to the other tools, as shown by the number of contigs and NGA50 
value. As with the other datasets, Kermit produces the fewest misassemblies. However, 
this experiment shows that HGGA scales well to larger data sets as its memory usage 
remains low (69 GB as compared to more than 560 GB used by miniasm and Kermit) 
and it is also the fastest method.

Table  10 shows that on the real P.  pungitius data, HGGA and Kermit both again 
improve over miniasm. Kermit has the lowest number of contigs but gives shortest 
assembly overall. HGGA has only slightly less contigs compared to Kermit but the con-
tigs are longer which leads to the highest N50 value. The accuracy of all assemblies are 
similar with the miniasm assembly having slightly higher BUSCO completeness score 
than the other assemblies, and HGGA having the highest number of reads mapping to it. 
The runtime of all the tools is similar while HGGA uses only 10% of the memory used by 
the other tools.

HGGA produces an assembly which is longer than the reference genome, whereas the 
miniasm assembly is roughly of the same size and the Kermit assembly is smaller. To get 
a further estimate of the genome size, we computed the number of distinct 51-mers with 
abundancy above five in Illumina reads produced for this same genome, which yielded 
a genome size estimate of 450 million. The assemblies produced by miniasm, Kermit, 
and HGGA have 429 million, 413 million, and 431 million distinct 51-mers, respectively. 
As expected, these numbers are lower since the Illumina reads contain 51-mers from 
both haplotypes, whereas the assemblers attempt to produce a single haplotype. To fur-
ther analyse the k-mer spectrum of the assemblies and reads, we generated the copy 
number spectrum plots for the three assemblies which are shown in the supplementary 
material (Additional file 1: Figure S1). This analysis shows that HGGA has more dupli-
cated k-mers that the other assemblies and thus the longer length is due to duplicated 
sequence.

Discussion
We have presented HGGA, a method for assembling read data with the help of genetic 
linkage maps. Our experiments show that the number of contigs decreases 12-80% as 
compared to an assembly using only read data. When compared to Kermit, our previ-
ous method for assembling read data with genetic linkage maps, the number of con-
tigs increases on the A. thaliana and realC. elegans data sets but decreases on the other 
three data sets. HGGA produces up to 9.8 times longer NGA50 values as compared to a 
read only assembly with miniasm and up to 6.5 times longer NGA50 when compared to 
Kermit.

On the simulated C. elegans data all methods produce few misassemblies and on the 
A. thaliana and human data HGGA produces more misassemblies than Kermit but less 
than miniasm, whereas on the real C. elegans data set HGGA produces a similar number 
of misassemblies as Kermit but less than miniasm. The runtime of HGGA is longer than 
the runtime of previous methods on the simulated and real C. elegans and A. thaliana 
data sets but similar on the P. pungitius data and less than a sixth on H. sapiens data. On 
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all data sets, HGGA uses significantly less memory as the reads are assembled one sub-
set at a time and thus do not reside in the memory simultaneously.

We assume here that the genetic linkage map has been constructed for a draft assem-
bly. Recently, a tool called AFLAP [25] has been published which builds a genetic linkage 
map in a reference-free manner using k-mer data. By integrating AFLAP output with 
HGGA  we could avoid the need for a draft assembly for the genetic linkage map con-
struction. However, this would require localizing the markers on the highly erroneous 
PacBio reads based on the k-mers output by AFLAP instead of our current practise of 
aligning the reads to the draft assembly.

In this work, we only consider contig assembly, i.e. assembling the reads into contig-
uous sequences without gaps. Our method does not do scaffolding, which is the pro-
cess of ordering the contigs into scaffolds where contigs are separated by gaps. Thus we 
did not compare HGGA against scaffolding methods which use genetic linkage maps 
for scaffolding. Such tools include for example Chromonomer [5] and Lep-Anchor [6]. 
Because these tools only scaffold the contigs, the contigs themselves do not change and 
thus the contig statistics remain the same as for the input set of contigs. Furthermore, 
such a scaffolding method could be run after HGGA to further increase the contiguity of 
the assembly.

Our current implementation only supports genetic linkage maps. As further work, it 
would be interesting to extend the implementation to use optical maps or Hi-C data. 
This would only require developing a method for dividing the reads into leaves based on 
the different kind of guide data. The hierarchical assembly of the leaves and the internal 
nodes of the hierarchical tree would remain the same.

Conclusions
We have presented a framework for integrating additional data such as genetic linkage 
maps, optical maps, and Hi-C data to genome assembly, and implemented it for genetic 
linkage maps. The key insight of our method is to use the additional data to partition 
the reads into overlapping subsets and assemble the subsets independently. Because the 
assembly of the subsets is independent, our approach is inherently easy to parallelize 
beyond a single machine. Our implementation of the approach for genetic linkage maps 
shows that it improves the contiguity of the assembly on both simulated and real data.

Methods
Genomic distance function

Here, we show how to apply the idea of assembly guiding to any data that can be repre-
sented with a measure of positional similarity between reads. First, we define a distance 
function between two reads that gives the 1-dimensional genomic distance in base pairs. 
Using hierarchical clustering methods, we can then construct a hierarchy tree using this 
distance function.

Given two reads R1 and R2 that originate from positions p1 and p2 in the genome, the 
genomic distance D(R1,R2) = |p1 − p2| . In practice, we do not have access to the exact 
distance function D but we attempt to estimate it with the guide data.

For reference guided assembly, we can construct a genomic distance function for 
the reads by aligning the reads to the reference and computing distances between 



Page 12 of 17Walve and Salmela ﻿BMC Bioinformatics          (2022) 23:167 

alignments. Assuming a high quality reference and good alignments for the reads, this 
gives a good estimate of the distance measure. The drawback is the requirement for high 
quality reference genome.

Genetic linkage maps are constructed relative to some draft assembly and so we have 
access to the draft assembly and the markers of the map are positioned on the draft 
assembly. Thus to estimate the genomic distance function using genetic linkage maps, 
we align reads to the map-relative draft assembly of the genome and find all overlap-
ping markers in the map. We then apply all overlapping markers to reads and compute a 
distance based on the lists of markers. While the markers will not give a basepair level of 
accuracy for distance, they do give a good relative distance.

Optical maps are constructed by applying a restriction enzyme on a DNA molecule. 
The restriction enzyme cuts or nicks the DNA at a specific DNA pattern called restric-
tion site. The fragment lengths between the restriction sites are then measured and 
they form the optical map. An optical map of a genome thus is a sequence of fragment 
lengths. In principle, reads could be in silico digested to a sequence of fragment lengths 
and then mapped to the optical map. However, the reads are too short and the optical 
maps too sparse for this to work in practice [12]. Thus to localize reads on an optical 
map, they need to be assembled first into draft contigs, which then can be mapped to 
the optical map. Since alignments of the reads to the contigs are known, the mapping of 
reads to the optical maps can be found via the contig mappings [12]. The genomic dis-
tance between two reads can then be estimated based on their mappings to the optical 
map.

Once we have an estimate of the genetic distance function for the reads, we can use 
any hierarchical clustering method to produce a dendrogram for the reads. We can then 
cut the dendrogram at a suitable depth to produce the hierarchical tree for assembly. 
The memory and time required for naively constructing both the distance function and 
hierarchy are both quadratic over the number of reads. As such, a different approach is 
required in practice.

Hierarchical tree

For genetic linkage maps, we can exploit the linear ordering of the bins to fill leaf nodes 
with a linear scan of the reads. We align all reads to the map-relative assembly and find 
all overlapping markers in the map for each read. Each of the markers belongs to a bin of 
the genetic linkage map, and so the bins of the markers overlapping the alignment of a 
read are associated with that read. Alternatively, if the genetic linkage map is sparse and 
all read alignments do not overlap any markers, we can find the closest marker for the 
alignment of each read and define the bins associated with a read as the bins of the set of 
markers that are roughly the same distance away from the alignment of the read as the 
closest marker.

We then sort the reads based on their associated bins and make a linear scan through 
the sorted read set. We add entire bins to the current preliminary leaf node until a min-
imum number of reads is reached and then move on to fill the next preliminary leaf. 
The sorting can be done by radix sorting and thus the whole process of constructing 
the hierarchical tree in this way only takes linear time and is far more practical than 
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constructing a genomic distance function and building the hierarchical tree with hierar-
chical clustering.

In order to guarantee that leaf assemblies have sufficient overlap with each other, we 
additionally overlap all preliminary leaf nodes with their neighbors. We split each pre-
liminary leaf node in half into two blocks and take the union of four consecutive blocks 
as a final overlapped leaf node. In other words, each leaf node now is the union of a 
preliminary leaf node, the left half of the right preliminary leaf, and the right half the left 
preliminary leaf. Figure 2 illustrates the process. This also has the added benefit of mak-
ing the coverage in the leaves higher and more even.

Assembly

The first step in our assembly flow is assembling each leaf node in the hierarchy inde-
pendently. Any assembly pipeline that is suitable for the read data is valid here. We use 
miniasm [1] for assembly and Racon [24] for polishing the leaf assemblies given the long 
read data we use.

After the leaf assemblies, we start going up the hierarchy. For each unassembled node 
in the tree, we take its (up to) two children and find all overlaps between the contigs pro-
duced in the child nodes, build an overlap graph, and find an assembly path. This process 
looks deceptively similar to a regular assembly flow that we use in the leaves. However, 
not only are the input sequences very long and error corrected, we also expect there to 
be a very small number of input sequences. As most modern assembly pipelines have to 
be optimized for as large number of input sequences as possible, they are required to be 
more conservative in terms of time per sequence.

For our assembly flow in internal nodes, we use minimap2 [26] to find all pair-wise 
overlaps and filter out self-loops, short overlaps (< 10 kbp), and contained overlaps. 
We then build our overlap graph from the remaining overlaps. To correctly handle 
the double strandedness of the genome, we use the following undirected graph to 
simulate a bidirected overlap graph. Each contig u in the graph is represented by two 

{r1, r2, r3, r4} {r1, r2, r3, r4, r5, r6} {r3, r4, r5, r6, r7, r8, r9} {r5, r6, r7, r8, r9}

r1

r2

r3

r4

r5

r6

r7

r8

r9

Fig. 2  An example of how reads, shown as black horizontal lines, are assigned to leaf nodes. Reads have each 
been assigned to one or more preliminary leaf nodes (shown in black vertical lines). Each preliminary leaf gets 
further split in half (shown as dashed vertical lines). These halves are then merge back together with their 
neighbors (shown as grey rectangles) and assigned to the final leaf nodes in their order of appearance
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vertices, us and ue , which represent the start of the contig and the end of the contig, 
respectively, and a contig edge (us,ue) . For each overlap between two contigs, u and v, 
we add an overlap edge as follows:

•	 If the suffix of u overlaps with the prefix of v, we add the edge (ue, vs).
•	 If the suffix of u overlaps with the prefix of the reverse complement of v, we add the 

edge (ue, ve).
•	 If the suffix of the reverse complement of u overlaps with the prefix of v, we add the 

edge (us, vs).
•	 If the suffix of the reverse complement of u overlaps with the prefix of the reverse 

complement of v, we add the edge (us, ve).

An example of a bidirected overlap graph is shown in Fig. 3.
Longer super-contigs can now be read from this graph as paths where contig and 

overlap edges alternate. If we traverse a contig edge in the direction (us → ue) , the 
contig is added to the supercontig in forward orientation, and if we traverse a con-
tig edge in the direction (ue → us) , the contig is added to the super-contig in reverse 
complementary orientation. We start from the node in the graph with the lowest 
number of edges and first traverse the contig edge. Then we choose the edge from the 
node corresponding to the largest overlap between the contigs and continue travers-
ing contig and overlap edges alternatingly until there is no overlap edge to follow. We 
repeat this until all maximal super-contigs are found.

As the reads get separated into their own trees, no overlaps are observed on pairs 
of reads that get mistakenly identified as being in different chromosome in the final 
assembly. To attempt to combat this issue, we perform one final assembly step using 
the super-contigs from the root nodes of each tree in the hierarchy. This assembly 
step can, and by default does, use stronger parameters such as requiring longer over-
laps and longer sequences.

a

b

c

as ae

bs be

cs ce

Fig. 3  A bidirected overlap graph corresponding to overlaps between contigs a, b, and c. The contig edges 
are shown in gray and the overlap edges in black. An assembly path through the graph alternates betweem 
contig edges and overlap edges. In this graph the path as , ae , bs , be , ce , cs is an assembly path
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Evaluation of assemblies

We use QUAST [22] and BUSCO [23] to evaluate the correctness of the produced 
assemblies. Here we explain the metrics used in the experiments in detail.

QUAST computes several metrics based solely on the set of contigs. When given a 
reference genome, it aligns the contigs against the reference genome using Minimap2 
[26] and evaluates the correctness of the assembly based on the alignments. Addi-
tionally, a set of reads can be provided to QUAST and then it maps the reads to the 
assembly using BWA [27] and reports statistics based on the read mappings. In par-
ticular, we report the following statistics for data sets with a reference genome:

•	 # of contigs: The number of contigs in the assembly.
•	 NGA50: NG50 is the shortest contig length such that half of the genome is covered 

by contigs of length at least the NG50 size. When computing NGA50, the contigs 
are first aligned to the reference genome and then broken at each position where a 
misassembly occurs. NGA50 is then the NG50 value of this broken set of contigs.

•	 Genome fraction: The percentage of bases in the reference genome that are 
covered by at least one alignment of a contig to the reference genome. Contigs 
from repetitive regions are allowed to align to several positions in the reference 
genome.

•	 Misassemblies: The number of positions in the contigs such that the sequence to 
the left of the positions and the sequence to the right of the position align 1 kbp 
away from each other or the two alignments of the two sequences overlap by at 
least 1 kbp or they align to different strands or chromosomes.

•	 Reads mapped: The percentage of reads mapping to the assembly.

On the P.  pungitius data set, where a reference genome is not available, we cannot 
compute NGA50, genome fraction, and the number of misassemblies. In addition to 
the number of contigs and reads mapped, we then report

•	 N50: The shortest contig length such that half of the assembly is covered by con-
tigs of length at least the N50 size.

•	 Total length: The total length of the contigs in the assembly.

We use BUSCO [23] to further evaluate the completeness of assemblies. This is espe-
cially important for the P. pungitius data set which lacks a good quality reference genome 
and thus genome fraction cannot be computed for the P. pungitius assemblies. However, 
we provide the BUSCO completeness score for assemblies on all data sets to facilitate 
comparisons across the data sets. BUSCO evaluation is based on universal single-copy 
orthologs which are genes expected to be present across different species. For further 
accuracy, BUSCO comes with tailored gene sets for different clades. Thus we used the 
Nematoda, Brassicales, Actinopterygii, and primates gene sets for the BUSCO evalua-
tion of C. elegans, A. thaliana, P. pungitius, and H. sapiens, respectively. For each assem-
bly, we report the BUSCO completeness score which is the percentage of the universal 
single copy orthologs that were found in the assembly in one or more copies.
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