
HGGA: hierarchical guided genome
assembler
Riku Walve and Leena Salmela* 

Background
De novo genome assembly asks to reconstruct the genomic sequence of a new previ-
ously unsequenced organism given a set of sequencing reads. The advances in long read
sequencing technologies have allowed for complete or near complete assemblies of bac-
terial and small genomes [1–3] but assembling larger genomes such as vertebrates and
plants typically yields a set of contigs instead of the complete genome of the organism.
Thus resolving the large scale structure of these genomes requires additional long range
data such as genetic linkage maps, optical maps, or Hi-C data [4].

Typically additional long range data is used to order the contigs into scaffolds. A
genetic linkage map consists of a set of markers such as single nucleotide variations
(SNVs). The markers are divided into chromosomes and their partial order within a
chromosome is known. Chromonomer [5] uses a genetic linkage map to scaffold contigs

Abstract 

Background:  De novo genome assembly typically produces a set of contigs instead
of the complete genome. Thus additional data such as genetic linkage maps, optical
maps, or Hi-C data is needed to resolve the complete structure of the genome. Most of
the previous work uses the additional data to order and orient contigs.

Results:  Here we introduce a framework to guide genome assembly with additional
data. Our approach is based on clustering the reads, such that each read in each cluster
originates from nearby positions in the genome according to the additional data.
These sets are then assembled independently and the resulting contigs are further
assembled in a hierarchical manner. We implemented our approach for genetic linkage
maps in a tool called HGGA.

Conclusions:  Our experiments on simulated and real Pacific Biosciences long reads
and genetic linkage maps show that HGGA produces a more contiguous assembly
with less contigs and from 1.2 to 9.8 times higher NGA50 or N50 than a plain assembly
of the reads and 1.03 to 6.5 times higher NGA50 or N50 than a previous approach inte-
grating genetic linkage maps with contig assembly. Furthermore, also the correctness
of the assembly remains similar or improves as compared to an assembly using only
the read data.

Keywords:  Genome assembly, Genetic linkage maps

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167
https://doi.org/10.1186/s12859-022-04701-2 BMC Bioinformatics

*Correspondence:
leena.salmela@helsinki.fi

Department of Computer
Science, Helsinki Institute
for Information Technology
HIIT, University of Helsinki,
Helsinki, Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04701-2&domain=pdf

Page 2 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

and it also detects misassemblies and can correct these based on a genetic linkage map.
Similarly, Lep-Anchor [6] can detect and correct chimeric contigs based on a genetic
linkage map and it can anchor contigs into chromosomes using a genetic linkage map
and additional information such as contig-contig and read alignments.

Optical maps are another type of physical maps that can be used to scaffold contigs.
Optical maps are produced by elongating DNA molecules on a plate, applying a restric-
tion enzyme that cuts or nicks the DNA molecules at specific restriction sites, and then
imaging the cut or nicked molecules. SewingMachine [7] uses a single optical map to
scaffold contigs, whereas OMGS [8] can simultaneously use several optical maps pro-
duced with different enzymes.

Some methods integrate the long range data directly into contig assembly. AGORA
[9] uses optical maps to guide the contig building from a de Bruijn graph. KOOTA [10]
maps reads to an optical map and uses the mapping positions to produce a positional
de Bruijn graph which is less tangled than a regular de Bruijn graph. Kermit [11] maps
reads to a genetic linkage map and then uses this information to remove edges that con-
flict with a genetic linkage map from the assembly graph of miniasm [1]. OpticalKermit
[12] is a modification of Kermit to use optical maps instead of genetic linkage maps.

All previous methods that integrate the long range data directly to contig assembly
build the assembly graph for the whole set of reads and use the long range data to dis-
entangle the graph. Here we propose a different approach. We first map the individual
reads to the long range data and then cluster the reads based on these mappings. Each
cluster is then assembled independently and finally we join the clusters in a hierarchical
manner to produce a complete assembly. We implement our approach for genetic link-
age maps in a tool called HGGA (Hierarchical Guided Genome Assembler) and show
that on real and simulated Pacific Biosciences reads and genetic linkage maps, HGGA
produces a more contiguous assembly with less contigs and from 1.2 to 9.8 times higher
NGA50 or N50 than a plain assembly of the reads and 1.03 to 6.5 times higher NGA50
or N50 than a previous approach integrating genetic linkage maps with contig assembly.
Our approach is also easy to parallelize as the long range data naturally divides the reads
into clusters which can be assembled independently in a parallel fashion.

Related work

The de novo assembly problem asks to reconstruct a genome from a set of sequencing
reads. The two most popular approaches to solve it are the overlap-layout-consensus
approach and the de Bruijn graph based approach. In the overlap-layout-consensus
approach first overlaps between reads are found. These can be represented in the form of
an overlap graph where the nodes are the reads and there is an edge between two reads if
they overlap. The overlap graph can then be simplified by removing transitive edges. The
resulting graph is called the string graph [13]. In the layout phase, contigs are formed as
paths in the string graph. Finally the consensus phase determines the base sequence of
the contigs based on the reads. The alternative approach based on de Bruijn graphs first
extracts all k-mers, i.e. k bases long sequences, that occur in the reads. These k-mers
then form the nodes of the de Bruijn graph and there is an edge between two nodes if
the k-mers overlap by k − 1 bases. Contigs are typically reported as non-branching paths

Page 3 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

in the de Bruijn graph. The term assembly graph is often used to refer to both string
graphs and de Bruijn graphs.

Reference guided assembly gives an attractive alternative to de novo assemblies. Here
we are also given a reference sequence, against which we can compare our input reads.
Schneeberger et al. [14] proposed a reference guided assembly approach which was fur-
ther developed by Lischer and Shimizu [15]. They first map the reads against the ref-
erence. Based on the mappings the reads are divided into overlapping superblocks
which are assembled independently into contigs and unmapped reads are also assem-
bled separately into contigs. All these contigs are then joined into a set of supercontigs.
AlignGraph [16] implements an alternative approach. First, all reads are assembled
into contigs. Then the contigs and paired end reads are aligned against the reference
sequence. Based on these alignments the contigs are further extended and joined into
longer contigs.

In our previous work, we introduced Kermit [11], a method for guiding an assembly
with a genetic linkage map instead of a reference sequence. Genetic linkage maps are a
technique to orient and place contigs within a chromosome and to detect misassembled
contigs. The genetic linkage maps themselves consist of genetic markers. The markers
are divided into chromosomes and within each chromosome, the markers are further
placed into bins. The order of the bins within a chromosome is known but the order of
markers within a bin is not known.

The markers in the map are derived from a set of variations, such as single-nucleotide
variations. The variations are found from a sequenced cross, a population of related indi-
viduals. Variations that are close to each other in the genome are likely to be inherited
together. Genetic linkage maps can therefore be constructed by genotyping the individu-
als in the cross and examining the probabilities of variations being inherited together.
Kermit colors the read set by mapping them to a genetic linkage map and then removes
edges from the assembly graph that are not consistent with the coloring. While the same
method theoretically extends to any guide data that can be represented as a linear order-
ing for reads, such as optical maps [12], it fails to generalize to non-linear guide data.

Kermit uses miniasm [1] for both assembly graph construction and genome assembly
using the graph. We will be similarly using miniasm heavily here for easy comparison.
Miniasm first uses minimap to find overlaps between the reads. Based on the overlaps
it then creates a string graph by removing transitive edges. The graph is then cleaned by
removing tips and popping bubbles. Finally miniasm reports unitigs, i.e. non-branching
paths, in the resulting graph as contigs. Miniasm does not implement a consensus phase
and thus the error rate of contigs produced by miniasm is the same as the error rate of
the reads.

Results
Overview of our method

The input to our method is a set of reads and guide data describing the overall structure
of the genome. First, we use the guide data to cluster the reads into multiple hierarchi-
cal trees where the set of reads is split into the leaves. Each leaf thus consists of a set of
reads originating from nearby locations of the genome according to the guide data and
the leaves are joined into multiple hierarchical binary trees according to the clustering.

Page 4 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

As the genomic distance between reads in different chromosomes is not defined, multi-
ple trees, one for each chromosome, need to be used to cover a full multi-chromosomal
genome.

We have implemented our method using genetic linkage maps as guide data. A genetic
linkage map is usually constructed with respect to a draft assembly. Thus in this case
the input consists of a set of reads, the genetic linkage map, and the draft assembly that
has been used to construct the genetic linkage map. The draft assembly is used only for
calling SNVs which become the markers of the genetic linkage map. The markers are
ordered based on the observed patterns of inheritance and thus the ordering is done
independently of the draft assembly.

The reads are localized on the genetic linkage map by aligning them to the draft
genome and checking which markers of the genetic linkage map are closest to the align-
ment. The read is classified using the set of markers that are roughly equidistant from
the closest marker. The classifications define a partial order for the reads and can thus be
directly used to split the reads into leaves and to construct the hierarchical tree.

Next, we assemble the reads using the hierarchical tree. The assembly pipelines for leaf
nodes and internal nodes are different. For leaf nodes, the input is raw long reads and as
such, we use existing tools for assembling and error correcting the reads into polished
contigs for further assembly in the hierarchy. Finally, for each internal node, we take the
contigs from the child nodes and assemble them. Internal nodes take the error corrected
contigs as input and output longer super-contigs, so we use a simple greedy assembly
algorithm to combine the input contigs. The final assembly is produced at the root of the
tree. The assembly process is shown in Fig. 1.

Data sets and evaluation

We ran several experiments using simulated Caenorhabditis elegans reads and a simu-
lated genetic linkage map, real Arabidopsis thaliana reads and simulated genetic linkage
map, real human reads and a simulated genetic linkage map, and using real reads and a
real genetic linkage map for an additional C. elegans data set [17, 18] and a nine-spined
stickleback Pungitius pungitius data set from a recent assembly project [19, 20]. C. ele-
gans, A. thaliana, and human have good quality reference genomes which allow us to
evaluate the correctness of the produced assemblies accurately.

{r1, r2, r3, r4} {r1, r2, r3, r4, r5, r6} {r3, r4, r5, r6, r7, r8, r9} {r5, r6, r7, r8, r9}

{c1, c2} {c3, c4, c5} {c6} {c7, c8}

{c1, c2+3+4+5} {c6+7+8}

{c1, c2+3+4+5+6+7+8}

Fig. 1  An example of how different points of the hierarchy affect the assembly. At the bottom raw reads are
assembled into contigs in the leaf nodes. Each internal node then takes the contigs and further merges the
contigs from its children together

Page 5 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

The P. pungitius data set allows us to evaluate the assemblers also on a data set
where both reads and genetic linkage maps are real but due to the unavailability
of a good quality reference genome, the correctness of the assemblies needs to be
evaluated with more indirect means such as gene completeness and mappability of
reads back to the assembly as explained in more details below. The C. elegans data
set with real genetic linkage map and reads gives additional weight to any conclu-
sions drawn from the indirect evaluation. The details of the read sets are shown in
Table 1.

The long reads for C. elegans were simulated with 40x coverage using SimLoRD
v1.0.4 [21]. The genetic linkage maps for C. elegans, A. thaliana, and H. sapiens
were simulated by randomly positioning markers until 100,000, 50,000, and 700,000
markers respectively had been placed. Of those markers, the ones that are less than
20 bp away from the previous are removed. Bins were assigned to markers by start-
ing from the first marker in the first chromosome and adding markers to the same
bin until a marker is at least 200 bp away and then moving to the next bin. The real
genetic linkage maps of C. elegans assigns a physical position for each marker in the
genetic linkage map and thus does not divide the markers into bins. Therefore, we
have interpreted the genetic linkage map data as each marker having its own bin.

We ran all the methods on a cluster with 16 cores reserved with default settings
for all tools. The produced assemblies were evaluated with QUAST v5.0.2 [22] and
BUSCO v5.2.2 [23]. QUAST reports genome fraction, misassemblies, and NGA50
values by aligning the assemblies to a reference genome. Additionally QUAST aligns
the reads to the assemblies and reports the fraction of reads that can be mapped to
the assemblies. For the P. pungitius assemblies we do not report misassembly and
NGA50 statistics because a high quality reference sequence is not available.

BUSCO reports the number of single-copy orthologs from a gene set it can detect
from the assemblies. We used the Nematoda, Brassicales, Actinopterygii, and pri-
mates gene sets (odb10 for all sets) for the BUSCO evaluation of C. elegans, A. thali-
ana, P. pungitius, and H. sapiens, respectively. We report the runtime of the methods
as the total wall clock time and the memory usage is reported as the peak memory
usage during execution.

Table 1  Characteristics of the read data sets and genetic maps used in the experiments

The C. elegans (sim) reads were simulated with SimLoRD and the C. elegans (sim), A. thaliana, and H. sapiens genetic linkage
maps were simulated by randomly positioning the markers on the genome. The C. elegans (real), A. thaliana, P. pungitius, and
H. sapiens reads are real PacBio reads

Organism # of reads Mean read
length (bp)

Total read
length (Mbp)

Coverage # of markers # of bins

C. elegans (sim) 478,836 8,214 3,933 40 98,978 81,788

C. elegans (real) 3,316,106 8,801 29,185 291 388,202 –

A. thaliana 1,135,065 9,475 10,755 90 49,617 45,930

P. pungitius 10,918,547 4,948 54,025 115 76,036 34,845

H. sapiens 25,986,153 8,916 231,694 76 996,603 936,534

Page 6 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

The minimum leaf size

The most important parameter in our method is the minimum leaf size, i.e. the mini-
mum number of reads assigned to each leaf in the hierarchical tree. We experimented
with different leaf sizes for both the simulated and the real data. The results of these
experiments are shown in Tables 2 and 3 . We tried different minimum leaf sizes rang-
ing from 0.1 to 5% of the reads. On the simulated data, the best assemblies regarding
the number of contigs and the number of misassemblies are achieved with medium
sized leaves. The genome fraction goes down as the leaf size increases. The propor-
tion of mapped reads is similar across all leaf sizes. The runtime is fairly stable and
the peak memory usage increases as the leaf size increases because assembling the
leaves needs more memory for large leaves as there is more data per leaf to assemble.
The NGA50 is less stable. This is likely due to the low number of contigs as in such
scenarios a single join of two contigs can have a big effect on the NGA50. The BUSCO
completeness is highest for assemblies that also have high NGA50 values but also the
assembly produced with the smallest leaf size has a high BUSCO completeness score.
For further comparisons with other methods, we will use the assemblies producing
the highest NGA50.

On the real P. pungitius data the best N50 value is achieved with the minimum leaf
size 1.5% of all reads. The medium minimum leaf sizes also achieve the longest assem-
blies and the most accurate assemblies as measured by BUSCO completeness and the
proportion of mapped reads. The number of contigs is slightly smaller for the largest
minimum leaf size but this assembly has a lower N50 value and the total length of

Table 2  The effect of the minimum leaf size on the assembly of the simulated C. elegans data

Min leaf
size (%
of reads)

of
contigs

NGA50
(bp)

Genome
fraction

Misassemblies BUSCO
Complete
(%)

Reads
mapped
(%)

Runtime
(min)

Peak
memory
(MB)

0.1% 42 3,901,186 99.699 11 97.8 99.78 60 1564

0.5% 34 4,282,525 99.564 11 93.4 99.76 55 487

1.0% 30 4,274,710 99.592 9 93.4 99.77 53 901

1.5% 31 5,901,436 99.595 14 97.2 99.78 51 1334

2.0% 37 4,691,641 99.604 15 93.5 99.77 53 1776

2.5% 38 3,900,976 99.568 12 93.3 99.78 54 2226

5.0% 39 5,335,812 99.571 16 98.1 99.78 40 3954

Table 3  The effect of the minimum leaf size on the assembly of the real P. pungitius data. The length
of the scaffold level reference assembly (GCA_902500615.3) is 466 Mbp

Min leaf size
(% of reads)

of contigs N50 (bp) Total length (bp) BUSCO
complete
(%)

Reads
mapped
(%)

Runtime (h) Peak
memory
(MB)

0.1% 1945 918,119 453,155,823 88.0 92.6 13.34 6,212

0.5% 1084 1,799,563 489,091,741 91.3 93.52 14.3 8,289

1.0% 884 1,877,796 511,024,231 92.1 93.95 13.88 11,680

1.5% 790 2,119,727 503,905,067 92.5 93.91 13.44 16,001

2.0% 779 2,059,129 499,019,519 91.7 93.82 11.98 17,884

2.5% 784 2,027,447 481,429,790 91.7 93.65 17.95 22,713

Page 7 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

the assembly is lower than the reference GenBank assembly (GCA_902500615.3). For
comparisons with other methods we will use the leaf size 1.5% producing the best
N50 value.

For both of our data sets good minimum leaf size is around 1.5% of the reads. How-
ever, we note that a denser genetic linkage map allows for smaller leaves. Similarly high
coverage of the reads would increase the optimal number of reads per leaf.

Map density

To study the effect of the density of the genetic linkage map, i.e. the number of markers,
we simulated maps with different numbers of markers using the C. elegans data. We ran
both HGGA and Kermit on these data sets. The results are shown in Table 4. HGGA is
using closest marker coloring in all cases. We see that once the map is dense enough,
the quality of the assembly hardly changes because once this threshold is reached, the
reads originating from repeat regions are assigned to different leaves resulting in a good
quality assembly which cannot be further improved by more fine grained division of the
reads. For Kermit this happens when the density reaches 50k and for HGGA when the
density reaches 10k. HGGA is less sensitive to the density because we color the reads
using the marker which is closest to the alignment of the read when the alignment does
not contain any markers. Kermit, on the other hand, colors these reads by propagating
the colors in the overlap graph which can lead to ambiguous colorings.

Assembly height

To evaluate the effects of assembly in the internal nodes, we also ran QUAST and
BUSCO on all the contigs generated during the hierarchical assembly process. The
results are shown in Table 5. It should be noted that the height of the assembly trees is
not an adjustable parameter of the method, rather it is derived from the width of tree,
i.e. the number of leaf nodes. The width of the trees is controlled by both the minimum
leaf size and the density of the map.

Table 4  The effect of the map density on the assembly of the C. elegans data

Method # of
markers

of
contigs

NGA50
(bp)

Genome
fraction

Misassemblies BUSCO
Compl.
(%)

Reads
mapped
(%)

Runtime
(min)

Peak
memory
(MB)

Kermit 1k 850 89,141 74.315 13 73.4 91.84 21 11,943

Kermit 10k 733 82,640 68.808 16 67.8 90.69 21 11,809

Kermit 20k 216 818,928 95.417 9 93.8 98.09 22 12,434

Kermit 50k 69 3,450,849 99.539 12 98.0 99.74 23 12,542

Kermit 100k 61 3,476,344 99.563 11 98.3 99.75 23 12,543

Kermit 150k 64 3,450,700 99.555 12 98.1 99.77 23 12,555

Kermit 200k 64 3,476,344 99.563 11 98.3 99.75 23 12,542

Kermit 500k 64 3,476,344 99.563 11 98.2 99.75 23 12,544

HGGA​ 1k 69 2,488,265 95.627 8 93.8 97.63 38 1902

HGGA​ 10k 44 3,668,792 99.698 9 97.9 99.75 40 1837

HGGA​ 20k 44 3,668,641 99.680 10 95.6 98.52 42 1835

HGGA​ 50k 46 3,668,702 99.708 9 95.9 98.52 42 1827

HGGA​ 100k 49 3,668,667 99.646 9 97.8 99.78 42 1874

HGGA​ 150k 51 3,668,731 99.669 8 98.1 99.75 42 1886

HGGA​ 200k 52 3,869,053 99.568 8 96.2 99.36 43 1833

HGGA​ 500k 47 3,668,735 99.652 13 98.0 99.76 48 1837

Page 8 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

As expected, the contigs get joined to form longer and longer sequences as the assem-
bly process moves up the trees. The leaf contigs contain duplicated sequences by design
as the leaves are forced to overlap. Most of this duplication is removed as contigs are
joined and contigs that are contained in the joined sequences are removed. This can be
seen in the number of contigs plummeting in the first two levels of the internal node
assemblies. The number of misassemblies increases after the final assembly, which takes
the chromosomally separated trees and attempts to find possible overlaps due to errors
in the map.

Comparison to previous work

We compared HGGA to miniasm [1] which uses only the reads and Kermit [11] which
uses both the reads and the genetic linkage map. We ran Racon [24] to polish the assem-
blies produced by miniasm and Kermit since they do not implement a consensus phase.
We note that HGGA uses Racon to polish the leaf assemblies and thus produces a pol-
ished assembly. We limited the comparison to these tools because all of them use the
same module for assembling the reads and thus from this comparison we can see how
the integration of the genetic linkage map improves assembly. The results of the compar-
ison on the simulated C. elegans, A. thaliana, H. sapiens, and real C. elegans and P. pun-
gitius data are shown in Tables 6, 8, 9, 7, and 10 , respectively.

Table 6 shows that on the simulated C. elegans data, both Kermit and HGGA are able
to improve upon the miniasm assembly which uses only the read data. HGGA pro-
duces 63% less contigs than Kermit and twice as large NGA50 value as Kermit but also
seven more misassemblies. Kermit also has the highest BUSCO completeness score, but
slightly higher number of reads can be mapped back to the HGGA assembly. Kermit
is faster but HGGA uses less memory. The results for C. elegans assemblies with real
genetic linkage maps and reads are shown in Table 7. The results mostly agree with those

Table 5  The effect of assembly in the internal nodes on the C. elegans data

Height # of contigs NGA50 (bp) Genome fraction Misassemblies BUSCO
Complete
(%)

Reads
mapped
(%)

leaves 221 2,840,136 99.619 17 98.6 99.88

1 112 3,323,225 99.599 17 97.7 99.84

2 71 3,473,215 99.571 13 98.1 99.81

3 59 3,540,478 99.551 12 97.6 99.79

4 51 3,549,527 99.551 12 97.6 99.78

root 31 5,901,436 99.595 14 97.2 99.78

Table 6  Comparison of HGGA, miniasm, and Kermit on the simulated C. elegans data

Method # of
contigs

NGA50
(bp)

Genome
fraction

Misassemblies BUSCO
complete
(%)

Reads
mapped
(%)

Runtime
(min)

Peak
memory
(MB)

Miniasm 126 1,982,361 99.443 10 98.1 99.75 20 18,332

Kermit 83 2,819,353 99.535 7 98.3 99.75 23 19,578

HGGA​ 31 5,901,436 99.595 14 97.2 99.78 51 1,334

Page 9 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

of the simulated setting, albeit the differences between the tools are less drastic due to
being less perfect.

The results on the A. thaliana data, where the reads are real but the genetic linkage
map is simulated, are shown in Table 8. Kermit produces the smallest number of contigs.
However, HGGA produces an assembly with 1.6 times higher NGA50 value, while the
NGA50 value of the Kermit assembly is actually slightly smaller than for the miniasm
assembly. The assembly produced by Kermit has the smallest number of misassemblies
but less than 90% of reads can be mapped back to it, whereas over 95% of the reads map
back to the HGGA and miniasm assemblies. The number of misassemblies in the HGGA
assembly is still 30% lower as compared to the miniasm assembly and the BUSCO

Table 7  Comparison of HGGA, miniasm, and Kermit on the C. elegans data with real genetic linkage
map and reads

Method # of
contigs

NGA50
(bp)

Genome
fraction

Misassemblies BUSCO
complete
(%)

Reads
mapped
(%)

Runtime
(h)

Peak
memory
(MB)

Miniasm 472 1,582,439 99.478 420 95.2 94.43 5.52 88,371

Kermit 95 1,864,384 99.187 197 95.8 93.41 4.88 88,028

HGGA​ 217 1,927,968 99.072 195 95.1 94.61 9.07 9,101

Table 8  Comparison of HGGA, miniasm, and Kermit on the A. thaliana data with real reads and
simulated genetic linkage map

Method # of
contigs

NGA50
(bp)

Genome
fraction

Misassemblies BUSCO
Complete
(%)

Reads
mapped
(%)

Runtime
(h)

Peak
memory
(MB)

Miniasm 712 2,552,623 98.766 346 84.5 96.63 2.37 34,128

Kermit 123 2,552,489 98.185 174 85.1 89.07 2.08 34,486

HGGA​ 136 4,173,314 98.247 242 86.3 95.87 3.41 10,050

Table 9  Comparison of HGGA, miniasm, and Kermit on the H. sapiens data with real reads and
simulated genetic linkage map

Method # of
contigs

NGA50
(bp)

Genome
fraction

Misassemblies BUSCO
complete
(%)

Reads
mapped
(%)

Runtime
(h)

Peak
memory
(MB)

Miniasm 8,789 692,902 89.761 3,669 76.5 61.37 237.84 565,309

Kermit 4,503 1,050,164 90.069 762 77.9 60.65 239.29 565,307

HGGA​ 2,204 6,814,538 93.181 3,004 86.5 70.45 37.46 69,492

Table 10  Comparison of HGGA, miniasm, and Kermit on the real P. pungitius data. The length of the
scaffold level reference assembly (GCA_902500615.3) is 466 Mbp

Method # of contigs N50 (bp) Total length
(bp)

BUSCO
complete
(%)

Reads
mapped
(%)

Runtime (h) Peak memory
(MB)

Miniasm 1,873 1,182,753 461,795,357 92.7 93.58 13.49 165,716

Kermit 833 1,392,886 432,823,234 92.1 93.08 13.19 165,061

HGGA​ 790 2,119,727 503,905,067 92.5 93.91 13.44 16,001

Page 10 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

completeness score is highest for HGGA. Similar to the C. elegans data Kermit is faster
but HGGA uses less memory.

On the H. sapiens data shown in Table 9, HGGA produces a much more contiguous
assembly compared to the other tools, as shown by the number of contigs and NGA50
value. As with the other datasets, Kermit produces the fewest misassemblies. However,
this experiment shows that HGGA scales well to larger data sets as its memory usage
remains low (69 GB as compared to more than 560 GB used by miniasm and Kermit)
and it is also the fastest method.

Table 10 shows that on the real P. pungitius data, HGGA and Kermit both again
improve over miniasm. Kermit has the lowest number of contigs but gives shortest
assembly overall. HGGA has only slightly less contigs compared to Kermit but the con-
tigs are longer which leads to the highest N50 value. The accuracy of all assemblies are
similar with the miniasm assembly having slightly higher BUSCO completeness score
than the other assemblies, and HGGA having the highest number of reads mapping to it.
The runtime of all the tools is similar while HGGA uses only 10% of the memory used by
the other tools.

HGGA produces an assembly which is longer than the reference genome, whereas the
miniasm assembly is roughly of the same size and the Kermit assembly is smaller. To get
a further estimate of the genome size, we computed the number of distinct 51-mers with
abundancy above five in Illumina reads produced for this same genome, which yielded
a genome size estimate of 450 million. The assemblies produced by miniasm, Kermit,
and HGGA have 429 million, 413 million, and 431 million distinct 51-mers, respectively.
As expected, these numbers are lower since the Illumina reads contain 51-mers from
both haplotypes, whereas the assemblers attempt to produce a single haplotype. To fur-
ther analyse the k-mer spectrum of the assemblies and reads, we generated the copy
number spectrum plots for the three assemblies which are shown in the supplementary
material (Additional file 1: Figure S1). This analysis shows that HGGA has more dupli-
cated k-mers that the other assemblies and thus the longer length is due to duplicated
sequence.

Discussion
We have presented HGGA, a method for assembling read data with the help of genetic
linkage maps. Our experiments show that the number of contigs decreases 12-80% as
compared to an assembly using only read data. When compared to Kermit, our previ-
ous method for assembling read data with genetic linkage maps, the number of con-
tigs increases on the A. thaliana and realC. elegans data sets but decreases on the other
three data sets. HGGA produces up to 9.8 times longer NGA50 values as compared to a
read only assembly with miniasm and up to 6.5 times longer NGA50 when compared to
Kermit.

On the simulated C. elegans data all methods produce few misassemblies and on the
A. thaliana and human data HGGA produces more misassemblies than Kermit but less
than miniasm, whereas on the real C. elegans data set HGGA produces a similar number
of misassemblies as Kermit but less than miniasm. The runtime of HGGA is longer than
the runtime of previous methods on the simulated and real C. elegans and A. thaliana
data sets but similar on the P. pungitius data and less than a sixth on H. sapiens data. On

Page 11 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

all data sets, HGGA uses significantly less memory as the reads are assembled one sub-
set at a time and thus do not reside in the memory simultaneously.

We assume here that the genetic linkage map has been constructed for a draft assem-
bly. Recently, a tool called AFLAP [25] has been published which builds a genetic linkage
map in a reference-free manner using k-mer data. By integrating AFLAP output with
HGGA we could avoid the need for a draft assembly for the genetic linkage map con-
struction. However, this would require localizing the markers on the highly erroneous
PacBio reads based on the k-mers output by AFLAP instead of our current practise of
aligning the reads to the draft assembly.

In this work, we only consider contig assembly, i.e. assembling the reads into contig-
uous sequences without gaps. Our method does not do scaffolding, which is the pro-
cess of ordering the contigs into scaffolds where contigs are separated by gaps. Thus we
did not compare HGGA against scaffolding methods which use genetic linkage maps
for scaffolding. Such tools include for example Chromonomer [5] and Lep-Anchor [6].
Because these tools only scaffold the contigs, the contigs themselves do not change and
thus the contig statistics remain the same as for the input set of contigs. Furthermore,
such a scaffolding method could be run after HGGA to further increase the contiguity of
the assembly.

Our current implementation only supports genetic linkage maps. As further work, it
would be interesting to extend the implementation to use optical maps or Hi-C data.
This would only require developing a method for dividing the reads into leaves based on
the different kind of guide data. The hierarchical assembly of the leaves and the internal
nodes of the hierarchical tree would remain the same.

Conclusions
We have presented a framework for integrating additional data such as genetic linkage
maps, optical maps, and Hi-C data to genome assembly, and implemented it for genetic
linkage maps. The key insight of our method is to use the additional data to partition
the reads into overlapping subsets and assemble the subsets independently. Because the
assembly of the subsets is independent, our approach is inherently easy to parallelize
beyond a single machine. Our implementation of the approach for genetic linkage maps
shows that it improves the contiguity of the assembly on both simulated and real data.

Methods
Genomic distance function

Here, we show how to apply the idea of assembly guiding to any data that can be repre-
sented with a measure of positional similarity between reads. First, we define a distance
function between two reads that gives the 1-dimensional genomic distance in base pairs.
Using hierarchical clustering methods, we can then construct a hierarchy tree using this
distance function.

Given two reads R1 and R2 that originate from positions p1 and p2 in the genome, the
genomic distance D(R1,R2) = |p1 − p2| . In practice, we do not have access to the exact
distance function D but we attempt to estimate it with the guide data.

For reference guided assembly, we can construct a genomic distance function for
the reads by aligning the reads to the reference and computing distances between

Page 12 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

alignments. Assuming a high quality reference and good alignments for the reads, this
gives a good estimate of the distance measure. The drawback is the requirement for high
quality reference genome.

Genetic linkage maps are constructed relative to some draft assembly and so we have
access to the draft assembly and the markers of the map are positioned on the draft
assembly. Thus to estimate the genomic distance function using genetic linkage maps,
we align reads to the map-relative draft assembly of the genome and find all overlap-
ping markers in the map. We then apply all overlapping markers to reads and compute a
distance based on the lists of markers. While the markers will not give a basepair level of
accuracy for distance, they do give a good relative distance.

Optical maps are constructed by applying a restriction enzyme on a DNA molecule.
The restriction enzyme cuts or nicks the DNA at a specific DNA pattern called restric-
tion site. The fragment lengths between the restriction sites are then measured and
they form the optical map. An optical map of a genome thus is a sequence of fragment
lengths. In principle, reads could be in silico digested to a sequence of fragment lengths
and then mapped to the optical map. However, the reads are too short and the optical
maps too sparse for this to work in practice [12]. Thus to localize reads on an optical
map, they need to be assembled first into draft contigs, which then can be mapped to
the optical map. Since alignments of the reads to the contigs are known, the mapping of
reads to the optical maps can be found via the contig mappings [12]. The genomic dis-
tance between two reads can then be estimated based on their mappings to the optical
map.

Once we have an estimate of the genetic distance function for the reads, we can use
any hierarchical clustering method to produce a dendrogram for the reads. We can then
cut the dendrogram at a suitable depth to produce the hierarchical tree for assembly.
The memory and time required for naively constructing both the distance function and
hierarchy are both quadratic over the number of reads. As such, a different approach is
required in practice.

Hierarchical tree

For genetic linkage maps, we can exploit the linear ordering of the bins to fill leaf nodes
with a linear scan of the reads. We align all reads to the map-relative assembly and find
all overlapping markers in the map for each read. Each of the markers belongs to a bin of
the genetic linkage map, and so the bins of the markers overlapping the alignment of a
read are associated with that read. Alternatively, if the genetic linkage map is sparse and
all read alignments do not overlap any markers, we can find the closest marker for the
alignment of each read and define the bins associated with a read as the bins of the set of
markers that are roughly the same distance away from the alignment of the read as the
closest marker.

We then sort the reads based on their associated bins and make a linear scan through
the sorted read set. We add entire bins to the current preliminary leaf node until a min-
imum number of reads is reached and then move on to fill the next preliminary leaf.
The sorting can be done by radix sorting and thus the whole process of constructing
the hierarchical tree in this way only takes linear time and is far more practical than

Page 13 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

constructing a genomic distance function and building the hierarchical tree with hierar-
chical clustering.

In order to guarantee that leaf assemblies have sufficient overlap with each other, we
additionally overlap all preliminary leaf nodes with their neighbors. We split each pre-
liminary leaf node in half into two blocks and take the union of four consecutive blocks
as a final overlapped leaf node. In other words, each leaf node now is the union of a
preliminary leaf node, the left half of the right preliminary leaf, and the right half the left
preliminary leaf. Figure 2 illustrates the process. This also has the added benefit of mak-
ing the coverage in the leaves higher and more even.

Assembly

The first step in our assembly flow is assembling each leaf node in the hierarchy inde-
pendently. Any assembly pipeline that is suitable for the read data is valid here. We use
miniasm [1] for assembly and Racon [24] for polishing the leaf assemblies given the long
read data we use.

After the leaf assemblies, we start going up the hierarchy. For each unassembled node
in the tree, we take its (up to) two children and find all overlaps between the contigs pro-
duced in the child nodes, build an overlap graph, and find an assembly path. This process
looks deceptively similar to a regular assembly flow that we use in the leaves. However,
not only are the input sequences very long and error corrected, we also expect there to
be a very small number of input sequences. As most modern assembly pipelines have to
be optimized for as large number of input sequences as possible, they are required to be
more conservative in terms of time per sequence.

For our assembly flow in internal nodes, we use minimap2 [26] to find all pair-wise
overlaps and filter out self-loops, short overlaps (< 10 kbp), and contained overlaps.
We then build our overlap graph from the remaining overlaps. To correctly handle
the double strandedness of the genome, we use the following undirected graph to
simulate a bidirected overlap graph. Each contig u in the graph is represented by two

{r1, r2, r3, r4} {r1, r2, r3, r4, r5, r6} {r3, r4, r5, r6, r7, r8, r9} {r5, r6, r7, r8, r9}

r1

r2

r3

r4

r5

r6

r7

r8

r9

Fig. 2  An example of how reads, shown as black horizontal lines, are assigned to leaf nodes. Reads have each
been assigned to one or more preliminary leaf nodes (shown in black vertical lines). Each preliminary leaf gets
further split in half (shown as dashed vertical lines). These halves are then merge back together with their
neighbors (shown as grey rectangles) and assigned to the final leaf nodes in their order of appearance

Page 14 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

vertices, us and ue , which represent the start of the contig and the end of the contig,
respectively, and a contig edge (us,ue) . For each overlap between two contigs, u and v,
we add an overlap edge as follows:

•	 If the suffix of u overlaps with the prefix of v, we add the edge (ue, vs).
•	 If the suffix of u overlaps with the prefix of the reverse complement of v, we add the

edge (ue, ve).
•	 If the suffix of the reverse complement of u overlaps with the prefix of v, we add the

edge (us, vs).
•	 If the suffix of the reverse complement of u overlaps with the prefix of the reverse

complement of v, we add the edge (us, ve).

An example of a bidirected overlap graph is shown in Fig. 3.
Longer super-contigs can now be read from this graph as paths where contig and

overlap edges alternate. If we traverse a contig edge in the direction (us → ue) , the
contig is added to the supercontig in forward orientation, and if we traverse a con-
tig edge in the direction (ue → us) , the contig is added to the super-contig in reverse
complementary orientation. We start from the node in the graph with the lowest
number of edges and first traverse the contig edge. Then we choose the edge from the
node corresponding to the largest overlap between the contigs and continue travers-
ing contig and overlap edges alternatingly until there is no overlap edge to follow. We
repeat this until all maximal super-contigs are found.

As the reads get separated into their own trees, no overlaps are observed on pairs
of reads that get mistakenly identified as being in different chromosome in the final
assembly. To attempt to combat this issue, we perform one final assembly step using
the super-contigs from the root nodes of each tree in the hierarchy. This assembly
step can, and by default does, use stronger parameters such as requiring longer over-
laps and longer sequences.

a

b

c

as ae

bs be

cs ce

Fig. 3  A bidirected overlap graph corresponding to overlaps between contigs a, b, and c. The contig edges
are shown in gray and the overlap edges in black. An assembly path through the graph alternates betweem
contig edges and overlap edges. In this graph the path as , ae , bs , be , ce , cs is an assembly path

Page 15 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

Evaluation of assemblies

We use QUAST [22] and BUSCO [23] to evaluate the correctness of the produced
assemblies. Here we explain the metrics used in the experiments in detail.

QUAST computes several metrics based solely on the set of contigs. When given a
reference genome, it aligns the contigs against the reference genome using Minimap2
[26] and evaluates the correctness of the assembly based on the alignments. Addi-
tionally, a set of reads can be provided to QUAST and then it maps the reads to the
assembly using BWA [27] and reports statistics based on the read mappings. In par-
ticular, we report the following statistics for data sets with a reference genome:

•	 # of contigs: The number of contigs in the assembly.
•	 NGA50: NG50 is the shortest contig length such that half of the genome is covered

by contigs of length at least the NG50 size. When computing NGA50, the contigs
are first aligned to the reference genome and then broken at each position where a
misassembly occurs. NGA50 is then the NG50 value of this broken set of contigs.

•	 Genome fraction: The percentage of bases in the reference genome that are
covered by at least one alignment of a contig to the reference genome. Contigs
from repetitive regions are allowed to align to several positions in the reference
genome.

•	 Misassemblies: The number of positions in the contigs such that the sequence to
the left of the positions and the sequence to the right of the position align 1 kbp
away from each other or the two alignments of the two sequences overlap by at
least 1 kbp or they align to different strands or chromosomes.

•	 Reads mapped: The percentage of reads mapping to the assembly.

On the P. pungitius data set, where a reference genome is not available, we cannot
compute NGA50, genome fraction, and the number of misassemblies. In addition to
the number of contigs and reads mapped, we then report

•	 N50: The shortest contig length such that half of the assembly is covered by con-
tigs of length at least the N50 size.

•	 Total length: The total length of the contigs in the assembly.

We use BUSCO [23] to further evaluate the completeness of assemblies. This is espe-
cially important for the P. pungitius data set which lacks a good quality reference genome
and thus genome fraction cannot be computed for the P. pungitius assemblies. However,
we provide the BUSCO completeness score for assemblies on all data sets to facilitate
comparisons across the data sets. BUSCO evaluation is based on universal single-copy
orthologs which are genes expected to be present across different species. For further
accuracy, BUSCO comes with tailored gene sets for different clades. Thus we used the
Nematoda, Brassicales, Actinopterygii, and primates gene sets for the BUSCO evalua-
tion of C. elegans, A. thaliana, P. pungitius, and H. sapiens, respectively. For each assem-
bly, we report the BUSCO completeness score which is the percentage of the universal
single copy orthologs that were found in the assembly in one or more copies.

Page 16 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167

Abbreviations
HGGA​: Hierarchical Guided Genome Assembler; SNV: Single nucleotide variation; GB: Gigabytes; MB: Megabytes; bp: Base
pairs.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04701-2.

Additional file 1.Figure S1: The k-mer spectrum of the P. pungitius Illumina reads (a) and the copy number spectrum
plots of the P. pungitius assemblies produced by miniasm, Kermit, and HGGA. The copy number spectrum plots
divide the k-mersinto subsets according to their copy number in the assembly. For each subset, the spectrum is then
plotted according to the abundancies of the k-mers in the read set.

Acknowledgements
The authors wish to thank the Finnish Grid and Cloud Infrastructure (FGCI, persistent identifier urn:nbn:fi:research-
infras-2016072533) for supporting this project with computational and data storage resources.

Author contributions
RW and LS designed the methods and the experiments. RW implemented the methods and performed the experiments.
RW drafted the initial manuscript. RW and LS revised and edited the manuscript. Both authors read and approved the
final manuscript.

Funding
This work is supported by the Academy of Finland, via Grants 308030, and 335553 (LS). Academy of Finland had no role
in the design of the study, or collection, analysis, and interpretation of data or in writing the manuscript.

Availability of data and materials
HGGA is freely available at https://​github.​com/​rikuu/​hgga. The C. elegans and A. thaliana reference genomes were
downloaded from NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​genome/​41?​genome_​assem​bly_​id=​43998, accession codes
NC_003279.8, NC_003280.10, NC_003281.10, NC_003282.8, NC_003283.11, NC_003284.9 for C. elegans and https://​www.​
ncbi.​nlm.​nih.​gov/​genome/​4?​genome_​assem​bly_​id=​454618, NC_003070.9, NC_003071.7, NC_003074.8, NC_003075.7,
NC_003076.8 for A. thaliana). The P. pungitius draft genome was downloaded from NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​
assem​bly/​GCA_​90250​0615.3, accession code GCA_902500615.3). The human T2T reference genome was downloaded
from NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​assem​bly/​GCA_​00991​4755.3, GCA_009914755.3). The real C. elegans reads
were downloaded from SRA (accession codes SRX4459462, SRX4459460, and SRX4459459) and the real C. elegans
genetic linkage map is from [18]. The A. thaliana reads are available at https://​downl​oads.​pacbc​loud.​com/​public/​Seque​
lData/​Arabi​dopsi​sDemo​Data. The P. pungitius reads were downloaded from ERA (accession code ERR3569182) and the
genetic linkage map is from [20]. The Illumina reads of P. pungitius were also downloaded from ERA (accession codes
ERR3618123 and ERR3618124). The H. sapiens reads were downloaded from SRA (accession codes SRX825577 and
SRX825578). The script for generating simulated genetic linkage maps is included in Kermit at https://​github.​com/​rikuu/​
kermit.

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 22 June 2021 Accepted: 25 April 2022

References
	1.	 Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.

2016;32(14):2103–10.
	2.	 Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol.

2019;37:540–6.
	3.	 Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly

via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
	4.	 Rice ES, Green RE. New approaches for genome assembly and scaffolding. Ann Rev Anim Biosci. 2019;7(1):17–40.

https://​doi.​org/​10.​1146/​annur​ev-​animal-​020518-​115344 (PMID: 30485757).
	5.	 Catchen J, Amores A, Bassham S. Chromonomer: a tool set for repairing and enhancing assembled genomes

through integration of genetic maps and conserved synteny. G3. 2020;10(11):4115–28. https://​doi.​org/​10.​1534/​g3.​
120.​401485.

https://doi.org/10.1186/s12859-022-04701-2
https://github.com/rikuu/hgga
https://www.ncbi.nlm.nih.gov/genome/41?genome_assembly_id=43998
https://www.ncbi.nlm.nih.gov/genome/4?genome_assembly_id=454618
https://www.ncbi.nlm.nih.gov/genome/4?genome_assembly_id=454618
https://www.ncbi.nlm.nih.gov/assembly/GCA_902500615.3
https://www.ncbi.nlm.nih.gov/assembly/GCA_902500615.3
https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.3
https://downloads.pacbcloud.com/public/SequelData/ArabidopsisDemoData
https://downloads.pacbcloud.com/public/SequelData/ArabidopsisDemoData
https://github.com/rikuu/kermit
https://github.com/rikuu/kermit
https://doi.org/10.1146/annurev-animal-020518-115344
https://doi.org/10.1534/g3.120.401485
https://doi.org/10.1534/g3.120.401485

Page 17 of 17Walve and Salmela ﻿BMC Bioinformatics (2022) 23:167 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	6.	 Rastas P. Lep-Anchor: automated construction of linkage map anchored haploid genomes. Bioinformatics.
2020;36(8):2359–64. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz978.

	7.	 Shelton JM, Coleman MC, Herndon N, et al. Tools and pipelines for BioNano data: molecule assembly pipeline and
FASTA super scaffolding tool. BMC Genomics. 2015;16:734.

	8.	 Pan W, Jiang T, Lonardi S. OMGS: Optical map-based genome scaffolding. J Comput Biol. 2020;27(4):519–33.
	9.	 Lin HC, Goldstein S, Mendelowitz L, Zhou S, Wetzel J, Schwartz DC, Pop M. AGORA: assembly guided by optical

restriction alignment. BMC Bioinform. 2012;13:189. https://​doi.​org/​10.​1186/​1471-​2105-​13-​189.
	10.	 Alipanahi B, Salmela L, Puglisi SJ, Muggli M, Boucher C. Disentangled long-read de Bruijn graphs via optical maps.

In: Schwartz, R., Reinert, K. (eds.) 17th International Workshop on Algorithms in Bioinformatics, WABI 2017. Leibniz
International Proceedings in Informatics, pp. 1–14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
2017. https://​doi.​org/​10.​4230/​LIPIcs.​WABI.​2017.1.

	11.	 Walve R, Rastas P, Salmela L. Kermit: linkage map guided long read assembly. Algorithms Mol Biol. 2019;14:8.
	12.	 Leinonen M, Salmela L. Optical map guided genome assembly. BMC Bioinformat. 2020;12:285.
	13.	 Myers EW. The fragment assembly string graph. Bioinformatics. 2005;21:79–85.
	14.	 Schneeberger K, Ossowski S, Ott F, et al. Reference-guided assembly of four diverse Arabidopsis thaliana genomes.

PNAS. 2011;108(25):10249–54.
	15.	 Lischer HEL, Shimizu KK. Reference-guided de novo assembly approach improves genome reconstruction for

related species. BMC Bioinform. 2017;18:474.
	16.	 Bao E, Jiang R, Girke T. AlignGraph: algorithm for secondary de novo genome assembly guided by closely related

references. Bioinformatics. 2014;30(12):319–28.
	17.	 Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I, Wahba L, Smith CL, Edgley ML, Rougvie AE, Fire AZ,

Morishita S, Schwarz EM. Recompleting the caenorhabditis elegans genome. Genome Res. 2019;29:1009–22.
	18.	 Noble LM, Chelo I, Guzella T, Afonso B, Riccardi DD, Ammerman P, Dayarian A, Carvalho S, Crist A, Pino-Querido A,

Shraiman B, Rockman MV, Teotónio H. Polygenicity and epistasis underlie fitness-proximal traits in the Caenorhabdi-
tis elegans multiparental experimental evolution (CeMEE) panel. Genetics. 2017;207(4):1663–85. https://​doi.​org/​10.​
1534/​genet​ics.​117.​300406.

	19.	 Varadharajan S, Rastas P, Löytynoja A, Matschiner M, Calboli FCF, Guo B, Nederbragt AJ, Jakobsen KS, Merilä J. A high-
quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biol Evol. 2019;11(11):3291–
308. https://​doi.​org/​10.​1093/​gbe/​evz240.

	20.	 Kivikoski M, Rastas P, Löytynoja A, Merilä J. Automated improvement of stickleback reference genome assemblies
with lep-anchor software. Mol Ecol Resour. 2021;21(6):2166–76. https://​doi.​org/​10.​1111/​1755-​0998.​13404.

	21.	 Stöcker BK, Köster J, Rahmann S. SimLoRD: simulation of long read data. Bioinformatics. 2016;32(17):2704–6. https://​
doi.​org/​10.​1093/​bioin​forma​tics/​btw286.

	22.	 Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics.
2013;29(8):1072–5.

	23.	 Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along
with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol
Evol. 2021;38(10):4647–54.

	24.	 Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads.
Genome Res. 2017;27:737–46.

	25.	 Fletcher K, Zhang L, Gil J, Han R, Cavanaugh K, Michelmore R. AFLAP: assembly-free linkage analysis pipeline using
k-mers from genome sequencing data. Genome Biol. 2021;22:115.

	26.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​bty191.

	27.	 Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM 2013. arXiv:​1303.​3997

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btz978
https://doi.org/10.1186/1471-2105-13-189
https://doi.org/10.4230/LIPIcs.WABI.2017.1
https://doi.org/10.1534/genetics.117.300406
https://doi.org/10.1534/genetics.117.300406
https://doi.org/10.1093/gbe/evz240
https://doi.org/10.1111/1755-0998.13404
https://doi.org/10.1093/bioinformatics/btw286
https://doi.org/10.1093/bioinformatics/btw286
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
http://arxiv.org/abs/1303.3997

	HGGA: hierarchical guided genome assembler
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Related work

	Results
	Overview of our method
	Data sets and evaluation
	The minimum leaf size
	Map density
	Assembly height
	Comparison to previous work

	Discussion
	Conclusions
	Methods
	Genomic distance function
	Hierarchical tree
	Assembly
	Evaluation of assemblies

	Acknowledgements
	References

