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Background
Circular RNAs (circRNAs) are a new type of non-coding RNA produced by reverse 
splicing of introns, exons, or intergenic regions. CircRNA is more stable than linear 
RNA due to the absence of a covalent closed-loop structure and free terminal. Circular 
RNA is widely expressed in the human body, and its expression level is more than 10 
times that of the corresponding linear mRNA. Recent studies have reported that circR-
NAs significantly affect the drug sensitivity of cells. For example, the expression of cir-
cAKT3 is high in cisplatin-resistant gastric cancer cells, and circ-PVT1 can promote the 
paclitaxel resistance of gastric cancer cells [1, 2]. In contrast, the high expression level 
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of circCELSR1 can make ovarian cancer cells less sensitive to paclitaxel [3]. In addition, 
circSMARCA5 can increase the sensitivity of human breast cancer cells to cisplatin and 
bleomycin [4]. Therefore, identifying the circRNA-drug sensitivity associations is essen-
tial for circRNA-based therapy and drug discovery.

Traditional biological experiments take a long time and cost a lot. Efficient and accu-
rate computational methods can significantly reduce the time and resources consumed 
by traditional biological research in predicting circRNA-drug sensitivity associations 
experiments. However, at present, researchers have done little work in this critical direc-
tion. Some studies in related fields have brought ideas for predicting circRNA-drug 
sensitivity associations. Chen et  al. summarized some computational models which 
are used to identify miRNA-small molecule associations, and explained the develop-
ment direction of computational methods for miRNA-small molecule association 
identification [5]. Moreover, Chen et  al. proposed a new evaluation and validation for 
interaction prediction models [6]. In predicting gene regulatory networks and interac-
tions, Liu et al. proposed the IMBDANET method to infer Gene Regulatory Networks 
based on the Improved Markov Blanket Discovery Algorithm [7]. Zhang et  al. pro-
posed the NDALMA model to predict lncRNA-miRNA Interactions by Network Dis-
tance Analysis [8]. In the prediction of small molecular-miRNA associations, Wang 
et al. proposed an EKRRSMMA model for predicting small molecule-miRNA associa-
tions based on ensemble of kernel ridge regression [9]. Chen et  al. proposed a BNN-
RSMMA model for predicting potential small molecule-miRNA associations based on 
bounded nuclear norm regularization [10]. Recently, deep learning has been widely used 
in the field of association prediction and has achieved outstanding results. Peng et  al. 
proposed a deep learning framework LPI-DLDN based on a dual-net neural architec-
ture to find new associations of lncRNA-protein interactions [11]. LPI-DLDN integrates 
various biological features and can effectively reduce prediction errors. Zhou et al. pro-
posed a gradient-boosting decision trees-based multi-layer framework LPI-deepGBDT 
to identify lncRNA-protein interactions [12]. Zhou et al. proposed a hybrid framework 
LPI-HyADBS to predict lncRNA-protein interactions [13]. LPI-HyADBS integrates mul-
tiple classification models, including deep neural networks, XGBoost, and SVM models 
with misclassification penalty coefficients. In the manuscript, we propose a new com-
putational framework to predict the circRNA-drug sensitivity associations, hoping to 
improve the development efficiency of discovering circRNA-related drugs.

Fortunately, the circRic database systematically describes circRNA expression profiles 
in 935 cancer cell lines across 22 cancer lineages from Cancer Cell line Encyclopedia 
(CCLE) and furtherly analyzes the influence of circRNAs profile on drug sensitivity [14]. 
These data allow us to identify circRNA-drug sensitivity associations by computational 
methods.

In this study, we propose GATECDA, which is based on Graph Attention Auto-
encoder(GATE) [15], to infer the circRNA-drug sensitivity associations. First, we curate 
the sequences of host genes of circRNAs, drug structure data and the circRNA-drug 
sensitivity associations, then calculate the circRNA similarities and drug similarities, 
respectively. Second, we generate the low-dimensional vector representations of the cir-
cRNA and drug nodes through GATE. Finally, we build a fully connected neural net-
work, in which the vector representations are used as inputs, to make predictions of 
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unknown associations. In the 5-fold and 10-fold cross-validation, GATECDA achieves 
the average area under the curve (AUC) of 89.18% and 88.45%, respectively. The results 
indicate that the GATECDA model we proposed can effectively predict circRNA-drug 
sensitivity associations.

At the same time, because drugs structure dramatically affects drugs function, we also 
use the structure information of drugs.

Methods
Dataset

In this work, we download the circRNA-drug sensitivity associations from the circRic 
[14] database, in which the drug sensitivity data comes from the GDSC database [16], 
containing 80076 associations that involve 404 circRNAs and 250 drugs. The circRic 
database systematically characterizes circRNAs expression profiles in 935 cancer cell 
lines across 22 cancer lineages from Cancer Cell line Encyclopedia, and analyzed the 
circRNAs biogenesis regulators, the effect of circRNAs on drug response and associa-
tion between circRNAs with mRNA, protein, and mutation, and predicted RNA regula-
tory element in circRNAs. For each individual circRNA, the Wilcoxon test is applied to 
identify drug sensitivity which is significantly associated with the circRNAs expression. 
Meanwhile, the association with a false discovery rate (FDR) less than 0.05 is defined 
as a significant association. In our method, only these significant associations are 
extracted as a training set which includes 4134 associations involving 271 circRNAs and 
218 drugs. We finally construct an association matrix A ∈ R271×218 between circRNAs 
and drugs based on these significant associations. In A, element Aij = 1 indicates that 
circRNA and drug sensitivity are interrelated; otherwise, Aij = 0 . Here, i and j denote 
the index of circRNA and drug in A, respectively. Besides the circRNA-drug sensitiv-
ity associations, we also curate the sequences of host genes of circRNAs and structure 
data of drugs, which come from the National Center for Biotechnology Information 
(NCBI) Gene database and PubChem database of NCBI, respectively [17, 18]. According 
to the sequences of host genes and structural information of drugs, their similarities are 
respectively calculated.

Similarity networks

Sequence similarity of host genes of circRNAs

We calculate the sequence similarity between host genes as the similarity of circRNAs. 
The similarities are computed based on the Levenshtein distance of sequences through 
the ratio function of Python’s Levenshtein package. In the work, sequence similarities 
are represented by matrix CSS ∈ R271×271.

GIP kernel similarity of circRNA

The GIP (Gaussian interaction profile) kernel similarity is widely used in the similarity 
calculation of biological entities in previous research [19]. Similarly, we calculate the 
GIP kernel similarity of circRNAs according to the circRNA-drug sensitivity associa-
tions matrix A based on the assumption that circRNAs associated with the same drug 
sensitivity are more likely to be similar. The GIP kernel similarity matrix of circRNAs is 
denoted by CGS ∈ R271×271.
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Structural similarity of drug

Since drugs structure dramatically affects drugs function, we can measure the simi-
larity of drugs through their structures. Based on past studies, we chose the RDKit 
toolkit and the Tanimoto method to calculate the structural similarity of drugs [20, 
21]. After obtaining these structure data from the PubChem database, we first used 
RDKit to calculate the topological fingerprint of each drug, then calculate the struc-
ture similarity between drugs through the Tanimoto method. Finally, the structure 
similarity matrix of drug is derived, denoted by DSS ∈ R218×218.

GIP kernel similarity of drug

Similar to circRNA, we also calculate the GIP kernel similarity of drugs, which is rep-
resented by DGS ∈ R218×218.

Similarity fusion method

As described above, we respectively calculate the similarities of circRNAs and drugs 
from different aspects. To obtain their comprehensive similarity matrix, the similari-
ties from different aspects need to be fused. The circRNA’s comprehensive similarity 
matrix is constructed as follows.

Similarly, the drug’s comprehensive similarity matrix is computed as follows.

After obtaining the similarity networks, we binarize the similarity network for the down-
stream GATE model. In this step, we set the thresholds cth and dth for the binarization 
of circRNA similarity network and drug similarity network, respectively. We set the ele-
ment in the similarity matrix to 1 if its value is greater than the threshold, otherwise 0.

GATECDA framework

Our GATECDA model, the flowchart of which is depicted in Fig.  1, is based on 
Graph Attention Auto-encoder. The primary processing is composed of several steps: 
(1) Construct the circRNA and drug similarity network, respectively; (2) GATE is 
adopted to extract the vector representations of circRNAs and drugs; (3) The rep-
resentations of circRNAs and drugs are combined and fed to a fully connected neu-
ral network for predicting the association score of each pair of circRNA and drug 
sensitivity.

Graph attention auto‑encoder

Graph Attention Auto-encoder(GATE) is an unsupervised learning model used for 
representation learning of structured Graph data. GATE can reconstruct node attrib-
utes and graphical structures of structured Graph data by stacking encoders and 

(1)CSij =

{

(CSSij+CGSij)

2
, if CSSij �= 0

CGSij , otherwise

(2)DSij =

{

(DSSij+DGSij)

2
, if DSSij �= 0

DGSij , otherwise
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decoders. In the encoder, the attributes of nodes are fed into the encoders as the 
initial representation of nodes, and each encoder generates new representations of 
nodes by considering their relations based on a self-attention mechanism [22]. Fur-
therly, the encoder updates the representation of the current node with neighbors’ 
representations. In the decoder, the encoding process is reversed to reconstruct the 
initial attributes of nodes.

In this study, we used the GATE model to extract the representation of circRNAs 
and drugs. GATE assigns different weights to each neighbor of the current node 
through the attention mechanism, which can help the model to obtain better node 
representation.

The GATE model consists of multiple encoder layers and decoder layers. In GATE, 
encoders and decoders have the same number of layers. The multiple encoder layers 

Fig. 1  The flowchart of GATECDA. (1) We build a comprehensive similarity matrix CS for circRNAs and 
a comprehensive similarity matrix DS for drugs, respectively. (2) Two thresholds are utilized to binarize 
the corresponding comprehensive similarity matrices CS and DS. (3) GATE is employed to extract the 
representations of circRNAs and drugs respectively. (4). The representations of circRNAs and drugs are 
combined and fed into a fully connected neural network to predict the associations of each pair of circRNA 
and drug sensitivity
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can improve the learning ability of the model and produce a better node representa-
tion. Figure 2 shows the process of GATE encoding and decoding.

The Encoder layer generates new representations for nodes by taking into account 
their neighbors’ representations based on their relevance. Inspired by the work of 
Velickovic et al. [22], the GATE model employs a self-attention mechanism with shared 
parameters among nodes to determine the relations between one node and its neigh-
bors. In the kth layer encoder, the correlation between node i and its neighbor node j is 
calculated as follows:

Here, W (k) ∈ Rd(k)×d(k−1) , V (k)
s ∈ Rd(k) , and V (k)

r ∈ Rd(k) are the trainable parameter of 
the kth layer encoder, σ and Sigmoid represent the activation function and the Sigmoid 
function, respectively.

To solve the problem of comparability among coefficients of node i’s neighbors, we 
employ the Softmax function to normalize the coefficients as shown in the following 
Equ. (4):

where Ni denotes the neighbors of node i, including node i itself.
The node features are taken as initial node representations, namely h(0)i = xi , and then 

the representation of node i in the kth layer is generated by the Eq. (5):

The last encoder layer’s output will be considered as the node representations used in 
our model.

GATE unsupervised learn node representations through utilizing the same number of 
decoder layers as the encoder. Each decoder layer reconstructs the representations of 

(3)c
(k)
ij = Sigmoid(V (k)T

s σ(W (k)h
(k−1)
i )+ V (k)T

r σ(W (k)h
(k−1)
j ))

(4)α
(k)
ij =

exp(c
(k)
ij )

∑

l∈Ni
exp(c

(k)
il )
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ij σ(W (k)h

(k−1)
j )

Fig. 2  The process of using two-layer GATE to reconstruct the features of node 3. the neighbors of the node 
3 are (1, 2, 3, 4, 5). we note that h(0)

i
= xi , hi = h

(2)
i

= ĥ
(2)
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 , and x̂i = ĥ
(0)
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 , ∀i ∈ 1, 2, . . . ,N
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nodes according to the representations of their neighbors based on their relevance. The 
normalized relevance between node i and a neighbor j in the kth layer decoder is calcu-
lated by the Eq. (6) and (7).

Similar to the encoder layers, Ŵ k ∈ Rd(k)×d(k−1) , v̂(k)s ∈ Rd(k−1) , and v̂(k)r ∈ Rd(k−1) are also 
the trainable parameters of the kth layer decoder. The input of the decoder comes from 
the output of the last layer encoder, and the kth decoder will reconstruct the node repre-
sentation of layer k-1 according to the Eq. (8).

After decoding via L decoder layers, the last decoder layer’s output is considered the 
reconstructed node features.

The loss function consists of two parts, namely the reconstruction loss of node fea-
tures and the reconstruction loss of graph structure. We combine them through the 
equation as follows:

Here, � is a hyperparameter, which balances the contribution of reconstruction loss of 
graph structure. xi and x̂i represent the node features and the reconstructed features of 
nodes respectively. hj is the representation of a neighboring node j to node i. We can 
obtain high-quality node representations by minimizing the Loss function.

Results and discussion
Evaluation metrics

In this work, we evaluate the predictive performance of our method by employing 5-fold 
and 10-fold cross-validation (CV). During the evaluation, we randomly divide all cir-
cRNA-drug sensitivity associations into 5 folds or 10 folds, one of which is used as a test 
set and the other as a training set. Then, we draw the Receiver Operating Characteristics 
(ROC) curve and calculate the area under the ROC curve (AUC) to quantify the perfor-
mance of the approach. In order to comprehensively assess the method, we also utilize 
the F1 score, accuracy, recall, specificity, precision, and area under the accuracy-recall 
curve (AUPR) to evaluate the performance.

Parameters tuning

Different parameter values will affect the prediction performance of GATECDA. There 
exist numerous hyperparameters to be tuned, and they can be divided into three parts: 

(6)α̂
(k)
ij =

exp(ĉ
(k)
ij )

∑

l∈Ni
exp(ĉ

(k)
il )

(7)ĉkij = Sigmoid(v̂(k)
T

s σ(Ŵ (k)ĥ
(k)
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T
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the parameters in GATE, the parameters in the classifier (a fully connected neural net-
work), and the cutoffs in binarization.

Optimizable hyperparameters in GATE: 

i	The number of layers. According to the research in GATE, the number of layers of the 
encoder and decoder are both set to 2.

ii	 the number of neurons in each layer. The decoder layer has the same number of neu-
rons as the corresponding encoder layer. There are 128 and 64 neurons in the two 
encoder layers, respectively.

iii	 Learning rate. We select the learning rate of GATE in { 10−2, 10−3, 10−4 }. When we 
set the learning rate to 10−2 or 10−4 , it will be difficult or slow for the loss of GATE to 
converge. When the learning rate is 10−3 , GATE can quickly reach the state of con-
vergence. Based on the above results, we set the learning rate of GATE to 10−3.

iv	lambda and dropout. lambda controls the contribution of graph structure reconstruc-
tion in the loss function. dropout refers to temporarily dropping out network units 
from the network during training in a certain probability. These two parameters 
have no significant impact on the performance of the model. We set lambda and 
dropout to their default values of 1 and 0.

Optimizable hyperparameters in classifier: 

i	The number of layers and the number of hidden neurons in each layer. The output of 
GATE is fed into the classifier, which is implemented by a neural network. We uti-
lize a classical three-layer neural network architecture, which contains 128, 64, and 
32 neurons, respectively.

ii	 Optimizer and learning rate. Adam optimizer is employed in the classifier and the 
initial learning rate is set to 10−4.

iii	Initial values of weights and biases. The Glorot uniform distribution initializer is 
employed to initialize the weights, and the biases are initialized to 0.

Optimizable hyperparameters in binarization: 

i	 threshold (cth) and (dth). In our method, cth and dth are the cutoffs for the bina-
rization of circRNA similarity network and drug similarity network, respectively. 
The two parameters are tuned using 5-fold cross-validation through grid search. As 
shown in Fig. 3, the model’s performance is gradually improved with the increase of 
cth and dth. Moreover, when cth and dth reach 0.7 and 0.6, AUC and AUPR will con-
verge. A higher threshold can effectively reduce the noise in the similarity network, 
but it will eliminate the practical information in the similarity network. In order to 
ensure that there is more helpful information in the similarity network, we consider 
it is more appropriate to set cth and dth to 0.7 and 0.6, respectively.

The benefits of merging multiple similarity networks

In order to compare the effect of single similarity and fusion similarity on model 
As mentioned above, not only the circRNA-drug sensitivity associations but also 
the sequences of host genes of circRNAs and structural information of drugs are 
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integrated into our GATECDA method. To examine the effect of considering the mul-
tiple similarity networks, we test GATECDA on four different network configurations:

•	 GATECDA-S: The global network consisting of Sequence similarity network of host 
gene of circRNAs and Structure similarity network of drugs.

•	 GATECDA-G:The global network consisting of GIP kernel similarity network of 
circRNAs and GIP kernel similarity network of drugs.

•	 GATECDA-SNF: This global network consisting of comprehensive similarity net-
work of circRNAs and drugs, which are built through the SNF methods [23], 
respectively.

•	 GATECDA: This global network consisting of comprehensive similarity network of 
circRNAs and drugs, which are built through the arithmetic average strategy accord-
ing to the formulas (1) and (2), respectively.

The comparison based on 10-fold CV is carried out and the results are shown in Fig. 4 
and Table 1. The AUC and AUPR scores are 0.8918 and 0.9025 for GATECDA in Fig. 4 
respectively. The F1 score is 0.8234 for GATECDA in Table 1. GATECDA-SNF achieves 
the similar results of 0.8921, 0.8982 and 0.8236 on the three evaluation metrics respec-
tively. Clearly, the results show that GATECDA and GATECDA-SNF both outperform 

Fig. 3  Performance with different combinations of the two hyperparameters

Fig. 4  Comparison on different network configurations in terms of AUC and AUPR
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GATECDA-S and GATECDA-G. The two models can benefit from merging multiple 
similarity networks.

GATECDA-SNF gains the performance comparable to that of GATECDA. However, 
the SNF method requires more computations compared to that of the arithmetic average 
strategy. Therefore, in GATECDA, we still choose the arithmetic mean strategy which is 
more convenient to calculate the similarity fusion.

Comparison with other methods

To our knowledge, there are few models for predicting the circRNA-drug sensitiv-
ity associations. Therefore, we compare the GATECDA model with four models that 
address other association prediction tasks in the bioinformatics field, including one 
classic method and three state-of-the-art models. Among the four methods, the KATZ 
measure [24] is a classic network-based method to calculate the similarity between nodes 
in a heterogeneous network. The other three methods are all developed based on GNN. 
VGAE [25] and VGAMF [26] are used to predict the associations between miRNA and 
disease. The GCNMDA [27] model is used to predict the associations between microbes 
and drugs.

The best parameter values in each comparison method are set according to the 
authors’ recommendation in their papers. To perform a fair comparison, these 
methods are carried out by employing the same data. Among all the methods, our 
GATECDA model gains the best prediction performance. Figure  5, Tables  2 and 3 
depict the experimental results of GATECDA and the four comparison methods in 
terms of 10-fold CV and 5-fold CV. In 10-fold cross-validation, the average AUC and 
AUPR of GATECDA reach 0.8918 and 0.9015, respectively. Following GATECDA, the 

Table 1  Comparison on different network configurations in terms of F1 score, accuracy, recall, 
specificity and precision using 10-fold cross-validation

The values with bold indicate the best results in terms of different metrics

Methods Precision Recall F1 score Accuracy Specificity

GATECDA-S 0.7576 0.8468 0.7997 0.7879 0.7290

GATECDA-G 0.7896 0.8500 0.8187 0.8118 0.7735

GATECDA-SNF 0.8138 0.8335 0.8236 0.8214 0.8093
GATECDA 0.8128 0.8343 0.8234 0.8211 0.8079

Fig. 5  Comparison results of GATECDA with the four state-of-the-art methods using 10-fold CV and 5-fold CV
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GCNMDA method obtains 0.8834 and 0.8864 in terms of AUC and AUPR, respec-
tively. In addition, we also compare these methods in terms of other metrics includ-
ing precision, recall, F1 , accuracy and specificity. GATECDA almost outperforms the 
other four methods except that the recall is relatively lower. Considering that the 
F1 score can more comprehensively reflect the model’s performance, the results in 
Table 2 show that the overall performance of GATECDA is still the best.

The result in Table 3 is similar to that in Table 2. From the two tables, we can find 
that the results in terms of 10-fold CV are slightly better than those in terms of 5-fold 
CV. The improvement in results should be due to more data available in 10-fold CV 
than that in 5-fold CV during training. Hence, these results indicate that GATECDA 
is an effective method to predict the circRNA-drug sensitivity associations.

Case studies

To further evaluate the predictive performance of the GATECDA method, we con-
duct case studies on two drugs: PAC-1 and Foretinib. The circRNA-drug sensitivity 
associations corresponding to drug sensitivity in GDSC database is used as the train-
ing set, and the circRNA-drug associations corresponding to drug sensitivity in CTRP 
is as the test set [28]. Among the predicted scores of associations between each drug 
and these circRNAs, we select the top 20 circRNAs with the highest scores.

The drug PAC-1 is a potent activator of Procaspase-3. PAC-1 acts on primary cancer 
cells and induces apoptosis. In cell culture, PAC-1 has produced cytotoxicity against 
various cancer cells, including lymphoma, multiple myeloma, and many others [29]. 

Table 2  Comparison with the four state-of-the-art methods in terms of aupr, F1 score, accuracy, 
recall, specificity and precision using 10-fold cross-validation

The values with bold indicate the best results in terms of different metrics

Methods AUPR Precision Recall F1 score Accuracy Specificity

KATZ 0.8269 0.7176 0.8800 0.7906 0.7669 0.6538

VGAE 0.8725 0.7683 0.8313 0.7986 0.7864 0.7398

VGAMF 0.8681 0.7783 0.8471 0.8113 0.8029 0.7588

GCNMDA 0.8864 0.8039 0.8420 0.8225 0.8183 0.7946

GATECDA 0.9015 0.8128 0.8343 0.8234 0.8211 0.8079

Table 3  Comparison with the four state-of-the-art methods in terms of aupr, F1 score, accuracy, 
recall, specificity and precision using 5-fold cross-validation

The values with bold indicate the best results in terms of different metrics

Methods AUPR Precision Recall F1 score Accuracy Specificity

KATZ 0.8223 0.7141 0.8756 0.7866 0.7625 0.6494

VGAE 0.8730 0.7763 0.8226 0.7988 0.7892 0.7546

VGAMF 0.8661 0.7911 0.8437 0.8165 0.8104 0.7772

GCNMDA 0.8761 0.7938 0.8427 0.8175 0.8119 0.7810

GATECDA 0.8928 0.8076 0.8316 0.8194 0.8167 0.8018
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PAC-1 has been used in the trials studying for the treatment of Lymphoma, Mela-
noma, Solid Tumors, Breast Cancer, and Thoracic Cancers [30].

As shown in Table 4, among the top 10 predicted circRNAs related to PAC-1, there 
are 9 circRNAs which have been confirmed in circRic, and 17 of the top 20 have been 
confirmed.

Foretinib is an orally bioavailable small molecule with potential antineoplastic activity 
[31–33]. Foretinib inhibits tumor angiogenesis, proliferation, and metastasis by blocking 
the C-Met and VEGFR2 pathways [34]. Table 5 shows that 7 of the top 10 and 16 of the 
top 20 have been confirmed in circRic.

To evaluate the predictive performance of GATECDA for potential circRNAs relevant 
to new drugs, we select two drugs with only one known circRNA-drug association in 
the dataset for de novo testing. We remove the only association of these two drugs with 
circRNAs and consider them as new drugs. They are erlotinib and MG-132 respectively. 
Erlotinib is a tyrosine kinase receptor inhibitor commonly used in pancreatic or non-
small cell lung cancer [35]. MG-132 is a tripeptide that acts as a proteasome inhibitor to 
alleviate DNA damage and apoptosis [36]. For new drugs without any known circRNA-
drug associations, GATECDA can calculate its features through neighbor nodes in the 
network. Considering that the new drug has no circRNA-drug association, which will 

Table 4  The top 20 circRNAs associated with drug PAC-1. circRic(CTRP) indicates that the drug 
sensitivity in one circRNA-drug association is derived from the CTRP database

Nonsignificant means non-significant association. circRNAs marked with ‘*’ are verified

Rank circRNA Evidence Rank circRNA Evidence

1 VIM* circRic(CTRP) 11 MEF2D* circRic(CTRP)

2 CTTN* circRic(CTRP) 12 PEA15* circRic(CTRP)

3 POLR2A* circRic(CTRP) 13 FBLN1* circRic(CTRP)

4 CRIM1* circRic(CTRP) 14 NCL Nonsignificant

5 THBS1* circRic(CTRP) 15 COL1A2* circRic(CTRP)

6 ANP32B* circRic(CTRP) 16 DCBLD2* circRic(CTRP)

7 COL1A1* circRic(CTRP) 17 COL6A2* circRic(CTRP)

8 PTMS* circRic(CTRP) 18 EHBP1L1 Nonsignificant

9 SPINT2 Nonsignificant 19 PSAP* circRic(CTRP)

10 ASPH* circRic(CTRP) 20 ANKRD36C* circRic(CTRP)

Table 5  The top 20 circRNAs associated with drug Foretinib

circRNAs marked with ‘*’ are verified

Rank circRNA Evidence Rank circRNA Evidence

1 MUC16* circRic(CTRP) 11 THBS1* circRic(CTRP)

2 EVPL Nonsignificant 12 PSAP* circRic(CTRP)

3 ANP32B* circRic(CTRP) 13 ARID1B* circRic(CTRP)

4 ASPH* circRic(CTRP) 14 WASF1* circRic(CTRP)

5 GJB3* circRic(CTRP) 15 LTBP3* circRic(CTRP)

6 PTMS* circRic(CTRP) 16 CRIM1* circRic(CTRP)

7 CNKSR1* circRic(CTRP) 17 MYC Nonsignificant

8 LCN2* circRic(CTRP) 18 ANKRD36C* circRic(CTRP)

9 FBLN1 Nonsignificant 19 PLEKHG2* circRic(CTRP)

10 PHF21A Nonsignificant 20 ANXA2* circRic(CTRP)
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affect the calculation of the model, we choose to generate the initial features of new drug 
in the graph by random assignment. Finally, we evaluate the prediction results using 
circRNA-drug associations in the circRic database, in which drug sensitivity data are 
obtained from CTRP.

As shown in Table 6, 5 of the top 10 predicted circRNAs associated with erlotinib have 
been confirmed in circRic, and 4 of the top 10 circRNAs related to MG-132 have been 
confirmed in circRic.

Conclusions
Recent studies have shown that circRNA plays an essential role in human health. Pre-
dicting the circRNA-drug sensitivity associations can advance the development and 
utilization of drugs, so as to help in the treatment of diseases. The computation-based 
approaches could accelerate the discovery of circRNA-drug sensitivity associations. In 
this manuscript, we propose GATECDA, an efficient computational method based on 
graph attention autoencoder, to predict circRNA-drug sensitivity associations. Many 
experimental results and case studies show that our proposed GATECDA method can 
effectively predict the relationship between circRNA and drug sensitivity. In the experi-
ments of 5-fold CV and 10-fold CV, the AUC of GATECDA reaches 0.8846 and 0.8918, 
respectively. This result is superior to other comparable methods. Of course, the GAT-
ECDA model also has certain shortcomings. For example, when predicting circRNAs 
related to new drugs, because the new drugs do not have known associations with circR-
NAs in the dataset, this will lead to the cold start of the model. In predicting circRNAs 
related to new drugs, we choose to solve this problem by random assignment, but the 
effect is not particularly good. To address these issues and further improve the model 
performance. In subsequent studies, we will collect more circRNA-drug sensitivity asso-
ciations and integrate more biological information to reduce the model’s reliance on 
known circRNA-drug associations, such as multiple circRNA-drug similarities and asso-
ciations between circRNAs, drugs, and diseases. We will eliminate the model’s deficien-
cies in new drug prediction by enriching the data from various sources.

Table 6  The top 10 predicted circRNAs related to two new drugs

circRNAs marked with ‘*’ are verified

Erlotinib MG-132

Rank circRNA Evidence Rank circRNA Evidence

1 SPINT2* circRic(CTRP) 1 CRIM1 Nonsignificant

2 KRT19* circRic(CTRP) 2 THBS1* circRic(CTRP)

3 POLR2A Nonsignificant 3 SPINT2 Nonsignificant

4 LTBP3 Nonsignificant 4 AHNAK Nonsignificant

5 KRT7* circRic(CTRP) 5 KRT19* circRic(CTRP)

6 FN1 Nonsignificant 6 EFEMP1* circRic(CTRP)

7 THBS1 Nonsignificant 7 COL1A2 Nonsignificant

8 MAL2* circRic(CTRP) 8 ANXA2* circRic(CTRP)

9 CRIM1 Nonsignificant 9 COL8A1 unconfirmed

10 LCN2* circRic(CTRP) 10 COL6A2 Nonsignificant
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