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Background
Modern biological research is often based on the collection and analysis of massive and 
high-dimensional datasets. Advances in robotics, microfluidics, sequencing, and infor-
mation technologies have enabled the profiling of both molecular cell states and phe-
notypes across millions of conditions, with 100s of millions or more associations that 
can be explored among the measured variables. With so many relationships to consider, 
filtering out those that are not significant, both in strength and probability of occurring 
through random chance, is a primary task in analyzing these data. Towards this end, 
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statistical inference and machine learning have become standard tools of a scientist try-
ing to make sense of massive biological data [1–3].

Major challenges in the statistical analyses of biological data include the non-stand-
ard distributions of observed values and the noisiness of the measurements, especially 
for high throughput phenotypic measurements. The direct measurements often need to 
be transformed and/or normalized before the values can be interpreted and compared 
with results from other experiments, even within the same study. These transformations 
result in values that are often relative, bounded, highly skewed and/or distributed with 
heavy tails. Furthermore, the complexity of the experimental design and assays used, 
as well as the necessary compromises to enable high throughput collection of data (for 
example, working with small cell numbers and liquid volumes in plates with thousands 
of wells), make measurement noise unavoidable within these data [4–6]. Fortunately, by 
taking replicate measurements of the same conditions, it is possible to directly measure 
the degree of noise introduced by a given experimental protocol.

A common approach in identifying associations from biological data is computing 
similarities between vectors of biological measurements. Correlation coefficients are 
very widely used measures of similarity, of which the most popular is Pearson’s Prod-
uct Moment Correlation. Pearson’s correlation assesses the degree of linear association 
between variables. The standard statistical test of significance for Pearson’s correlation 
makes parametric assumptions, including normality and homoscedasticity of the inputs, 
and testing may be sensitive to outliers. Non-parametric correlation measures, such 
as the Spearman rank correlation and its associated tests, can detect nonlinear, mono-
tonic associations but are commonly accepted as less powered to detect significant lin-
ear associations [7–10]. The concordance index (CI), a linear transformation of Kendall’s 
Tau, is a non-parametric association measure with the advantage of being highly adapt-
able to missing and censored data, where the exact value of a data point is bounded but 
not precisely known. These non-parametric statistics also come with commonly associ-
ated tests for significance, including exact tests (often requiring no ties in the data), and 
asymptotically correct tests. The asymptotic tests make weak assumptions on the dis-
tribution of the data; however, they converge only in the limit of large sample sizes, and 
rates of convergence are difficult to characterize in practice. Beyond correlation coef-
ficients, other metrics are also used, for instance cosine similarity from the field of infor-
mation retrieval (which reduces to Pearson for centered data) [11–13]. In addition, any 
measure of distance can be transformed into a measure of similarity through usage of an 
appropriate kernel. A brief introductory level overview of computing similarities can be 
found in [14].

In our work, we examine the behaviour of the common correlation coefficients when 
applied to regimes motivated by high-throughput screens of cancer cell lines measuring 
viability after treatment with compounds. We show that for realistic sample sizes, com-
mon statistical tests applied to the concordance index fail to control for false positives, 
reinforcing the need for testing against a non-parametric, permutation-derived null 
distribution. We carefully examine the power of permutation tests of standard correla-
tion measures in simulated settings, including the addition of simulated noise of realistic 
magnitudes. We also introduce two novel modifications of the concordance index, the 
robust CI (rCI) and kernelized CI (kCI), which take into account the exact quantification 
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of noise possible through comparing replicates into the assessment of similarity between 
two vectors of measurements. We characterize these novel statistics through compari-
son with existing correlation coefficients, and provide efficient algorithms and imple-
mentations to compute them. We found that the standard CI is more powerful under a 
permutation test in detecting non-zero correlations for bounded and skewed distribu-
tions. We also surprisingly observed that the Pearson correlation was more robust to 
measurement noise than the other correlation coefficients investigated, including the 
proposed rCI and kCI statistics.

Related work
Assessing how correlation coefficients behave when applied to non-normal data and in 
the presence of noise has been previously investigated. Published studies have examined 
the power of correlation based permutation tests, as well as compared permutation tests 
to those based on asymptotic limiting behaviours of the coefficients [15–17]. Work by 
Bishara and Hitter [16] (with followup work by Puth et al. [17]) not only shows a com-
prehensive comparison of Type 1 error control and power between several parametric 
and resampling-based tests for the Pearson and Spearman correlations, but also con-
tains a review of early simulation work on permutation testing of the Pearson correla-
tion. These previous studies tested a wide range of unbounded distributions, but did not 
investigate simultaneously skewed and bounded distributions, a situation which arises 
frequently in analysis of high throughput phenotypic screens. Previous studies (except-
ing Chok’s work [15]) have also left out the Concordance Index/Kendall’s Tau correlation 
or any other pairwise ranking based methods from their comparisons. Previous studies 
have also investigated the effect of assay/measurement noise [18] or non-normal distrib-
uted data [19] on the bias of the sample Pearson correlation coefficient, but not on the 
statistical power to detect a significant effect. The robustness of other correlation coef-
ficients to the presence of such measurement noise likewise remains unstudied. Finally, 
modifications of CI have been proposed previously in literature, both in the context of 
biological data [5], as well as in the computer science literature for assessing information 
retrieval system performance [20]. However, these modified CI statistics were used pri-
marily as a performance metric for concordance between predictors and observations, 
and not as a measure of correlation between two sets of measurements.

Our study differs from existing studies in several aspects. First, we investigate larger 
sample sizes and lower p-value thresholds for significance ( α levels), more reflective 
of the high-throughput assays and the necessary corrections for the multitude of cor-
relations assessed when analyzing modern biological data. Unlike previous studies, our 
intent is not an exhaustive characterization of different tests for significance of corre-
lation coefficients across a variety of distributions. Rather, we advocate permutation 
testing as a general method applicable across correlation coefficients, and ask which 
coefficient is most powerful at detecting a significant (monotonic) effect. We investi-
gate the statistical power only in the normally distributed case and a single bounded and 
skewed distribution, focusing instead on comparing different correlations and assessing 
their performance under noise. Our robust and kernelized Concordance Index meas-
ures are also unique in using replicate measurements to directly address the effect of 
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noise in the analyzed data, and we evaluate their performance in detecting significant 
correlations.

Motivating data: preclinical drug sensitivity screening
While the questions asked in this paper are general and not necessarily tied to the anal-
ysis of any particular type of biological assay or experiment, our analyses were moti-
vated by applications to preclinical drug sensitivity screening. These screens usually test 
the ability of compounds to inhibit cell growth and/or induce cell death across a panel 
of cancer cell line models grown in vitro. Each cell line is treated at several concentra-
tions of compound, and the cell line growth at a particular time-point is compared to a 
matched untreated control to derive a % viability value for each concentration level.

In the analysis of these data, it is common to fit a Hill Curve to the multi-dose viabil-
ity measurements of a cancer cell line in response to treatment by a particular drug, as 
shown in Additional file 1: Figure S1 [21, 22]. From these dose-response curves, sum-
mary metrics are derived that try to capture the sensitivity of a particular cell line to 
treatment with the compound in a single number. The most commonly used summary 
metrics are the IC50, the concentration at which the curve crosses 50%, and the Area 
Above or Under the Curve (AAC or AUC). The IC50 is a measure of compound potency, 
while the AAC/AUC averages the signal between potency and maximum efficacy of a 
compound. The advantage of the IC50 is that it is in micromolar units and can be com-
pared directly between experiments, however, it is not guaranteed to exist in all cases. 
The AUC/AAC metrics can always be calculated, but they are dependent on the exact 
concentration ranges chosen for a particular experiment. In practice, many research-
ers prefer the IC50 measure because of its natural interpretation as a concentration. For 
examples within our study, we will be using the AAC, as it has been shown to be more 
consistent between published datasets and does not suffer from missing or truncated 
values [6, 23]. As is standard practice [24], we calculate the area above the curve in log 
concentration space, and normalize the AAC by the total possible area for each experi-
ment determined by the range of concentration measured, leading to values lying in the 
bounded range between 0 and 1. Note that this is similar to a calculation of mean viabil-
ity over the concentrations range as a fraction.

Coefficients considered
The general problem is to identify monotonic associations between pairs of variables 
drawn from a range of potential distributions, and to that end, we considered several 
parametric and non-parametric association statistics. The Concordance Index (CI) is 
defined as the fraction of pairs of observations that are ordered the same way by two 
variables, and it is a linear transformation of Kendall’s Tau. Formally, for two variables x 
and y, CI is defined as:

where N the number of observations of x and y. CI has a range of [0, 1], is 0 when the 
two variables are perfectly anti-correlated, 1 if they are perfectly correlated, and 0.5 

(1)CI =
# Concordant Pairs

# Pairs
=

2

N (N − 1)

∑

i,j

I(xi > xj , yi > yj)



Page 5 of 24Smirnov et al. BMC Bioinformatics          (2022) 23:188 	

in expectation over the space of all possible orderings, i.e., if there is no association 
between the variables.

Even though the Concordance Index is a useful non-parametric statistic, we hypoth-
esize that incorporating parametric information about two observations are can increase 
the robustness of the Concordance Index to noise. For instance, in physical and biologi-
cal measurements, measurement error often has a characteristic scale smaller than the 
range of possible measurements. If measurement error is localized, increasing magni-
tude of the difference between the value of two observations increases the confidence 
that the two observations are ordered correctly by the measurements.

The Robust Concordance Index (rCI) is a modification of CI that only considers pairs 
of points that are sufficiently dissimilar in both variables. We define two thresholds 
δx ≥ 0 and δy ≥ and define rCI as:

The Kernelized Concordance Index (kCI) is a generalization of rCI, where instead of 
only considering valid pairs, every pair is assigned a weight according to a kernel. The 
rCI is a special case of kCI with a heavyside kernel, where valid pairs are weighted with 1 
and invalid pairs are weighted with 0. We choose the kernel so as the difference in meas-
urements for either x or y approach 0, the weight for the pair of observations should 
tend to 0, and as the difference grows large, the weight should tend to 1. A sigmoid of the 
form 1

1+ekx−c is one such kernel with these properties, and we outline a procedure for fit-
ting the kernel to problem-specific empirical data in the supplemental methods. The 
definition of the kCI formally is:

Where �x = |xi − xj| and �y = |yi − yj| . It is not necessary to define the kernel purely on 
the difference in the observations, though we chose to do so for simplicity. For purposes 
of comparison, in subsequent analyses, we compared CI, rCI, and kCI with Pearson and 
Spearman correlation, which are also commonly used as test statistics for association.

Both rCI and kCI have parameters that must be tuned for the intended data. The 
thresholds in rCI and the kernel shape in kCI can be interpreted as a characteristic range 
within which differences cannot be discriminated from statistical noise or measurement 
error. In the Methods, we define a method for choosing these parameters using prob-
lem-specific empirical data and replicate measurements. For our simulations below, we 
fit the parameters to real data from pharmacogenomic studies.

Software
To efficiently compute CI, rCI, and kCI, we developed an open-source R software pack-
age, wCI (weighted Concordance Index) that implements all three statistics and is freely 
available from https://​github.​com/​bhklab/​wCI under​ the GPLv3.

The CI can be computed in O(N logN ) time because counting the number of inver-
sions in a permutation is computationally equivalent to sorting [25]. Together with 

(2)

rCI =
# Concordant Valid Pairs

# Valid Pairs
=

I(xi > xj , yi > yj , |xi − xj| > δx, |yi − yj| > δy)

I(|xi − xj| > δx, |yi − yj| > δy)

(3)kCI =
2
∑

i,j w(�x,�y)I(xi > xj , yi > yj)
∑

i,j w(�x,�y)

https://github.com/bhklab/wCI%20under%20the%20GPLv3
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our work defining the rCI statistic, we present an algorithm for computing rCI also 
in O(N logN ) time, described in a reference implementation included in the afore-
mentioned repository. While the algorithm looks quite complex in implementation, 
intuitively it exploits three insights: The first is that the concordance index in can be 
computed in O(N logN ) time by sorting both vectors by the ordering permutation for 
one, and then counting the number of “hops” each element in the other makes during 
a merge sort. The second is using “virtual” elements with values at x − δx and x + δx , as 
well as y− δy and y+ δy , and computing the difference between the number of “real” 
elements hopped over during the merge sort for the +δ and −δ elements, with the differ-
ence between these two capturing the number of inverted pairs falling within the 2 ∗ δ 
margin (deemed invalid pairs). The third is to repeat the algorithm twice, once starting 
with X sorted and once with Y sorted, while comparing the computed invalid pair counts 
and applying the inclusion/exclusion principle to compute the pairs deemed invalid dur-
ing a single sort, or during both sorts. To keep the time complexity to O(N logN ) , we 
use a data structure to record the location of corresponding real and virtual items in X 
and Y and track their location when they are moved during the sort.

In its most general case, kCI can depend on a unique weight for each pair of elements. 

As such, it needs to read from memory 
(

n
2

)

 values, and therefore cannot be computed 

faster than O(N 2) . For certain restricted classes of kernels, faster computation may be 
possible, as evidenced by interpreting rCI as kCI with a Heavyside kernel, but an explo-
ration of these special cases is outside the scope of our work.

Results
Inflation of P‑values for association testing

Assessing statistical significance requires comparing an observed value of the test statis-
tic with a proper null distribution. The most commonly tested null hypothesis is one of 
no association, usually formalized as coefficient of association equaling zero for the pop-
ulation - this is the null hypothesis considered throughout this work. There exist analyti-
cal formulations for the distribution under the null hypothesis for all the coefficients 
above, except for kCI. For the Pearson correlation, the statistic t = r

√

n−2
1−r2

 is known to 

asymptotically follow a t-distribution with n-2 degrees of freedom, and is most com-
monly used in significance testing. For the CI, a widely applied analytical distribution of 
the concordance index, due to its general applicability to data including censoring and 
ties, was introduced by Noether [26], and advocated for application to the CI by Pencina 
and D’Agostino [27]. The derived distribution is also only asymptotically correct for non-
Gaussian data. For Spearman’s rho, statistical testing is commonly done using an Edge-
worth series expansion introduced by David et al. [28].

To evaluate the accuracy of these analytical formulations, we took independent sam-
ples from relevant distributions, computed the similarity according to each coefficient, 
and assessed the statistical significance using the analytical formulas. Under the null 
hypothesis, the p-values calculated from the analytical formula should be drawn from 
a uniform [0, 1] distribution. We summarize these findings with a Q-Q plot for both 
normally distributed data and beta-distributed data (Fig. 1a and c, Additional file 1:  fig-
ure  S2). In the context of testing association with a larger number K of features - for 
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instance, 104 genes - multiple hypothesis testing requires the significance threshold be 
at least as small as the reciprocal of the number of features, α < 1

K  . To illustrate this, we 
show the fraction of samples with analytical p-value less than several values of α (Fig. 1b 
and d).

These results show that for the rCI and CI statistics, the analytical p-values are unre-
liable in the regime under 1000 observations, and that the problem is exacerbated for 
samples from non-normal distributions. This is also true to a smaller extent for the Pear-
son correlation test, in the Beta(1.2,4.5) case. The consequence of using the analytical 
p-values when the number of observations is small is an inflated type 1 error rate and 
false positive associations.

Characterization of the null distribution of CI

The null hypothesis for the CI is that the two variables have no association, and thus 
each permutation of the variables is equally likely. A permutation π on n elements has 
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Fig. 1  The asymptotic approximation of the CI null distribution produces an excess of small p-values. 
We took independent samples from a normal and beta distribution, computed their similarity using the 
coefficients above, and calculated asymptotic p-values using the approximations from the text. Because the 
samples are independent, their p-value distribution should be uniform. The Q-Q plots for normal (a) and beta 
(c) distributions for samples of length N = 100 sampled 200,000 times shows an excess of small p-values for 
CI and rCI. In the case of the normal distribution, p-values of 10−4 occur over twenty times more often than 
would be expected, and for the beta distribution nearly one hundred times more often for rCI. (b, Normal) 
and (d, beta) summarize the frequency of p < 10−3 for different sample sizes. As the number of samples 
grows large, the asymptotic approximation becomes more correct, but even in the regime of hundreds of 
samples, extreme p-values occur several times more often than they should under the null
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an inversion if there exist two elements i, j that are out of order, i.e. π(i) > π(j) but i < j . 
The null distribution on CI is then the distribution on the number of inversions over the 
space of permutations of n elements. We have devised an exact null that can correctly 
compute the number of inversions on permutations of sets, in the absence of ties, of up 
to N = 170 elements. In cases of more than 170 elements, calculating the exact distri-
bution breaks numerical precision of our environment, as the number of permutations 
goes as N! and the range on the number of inversions is C(N, 2). The null distribution 
is also exact for pairs of variables which have a tie structure that can be represented as 
a multiset, i.e., observations can be partitioned into equivalence classes based on ties. 
To demonstrate that the exact formula correctly calculates the null for CI with no ties, 
we computed the number of inversions from K = 1e6 permutations of N elements and 
compared this with our exact null. Comparing the exact distribution of the concordance 
index (1 - number of inversions divided by number of pairs) to the empirically observed 
distribution for the simulated permutations (Fig.  2a) we see very good consistency 
between simulation and our implementation of the exact calculation. We also computed 
the p-value according to our exact distribution for each simulation sample, and saw a 
very good concordance of the distribution of p-values with the uniform distribution, as 
expected under the null (Fig. 2b).

In general, if both variables have ties, the analytical null is unknown. This occurs 
with CI when both inputs have ties, with rCI in almost all circumstances, and for CI 
with right-censored data as in survival analysis contexts, all of which have a tie struc-
ture that cannot be represented by a multiset. Similarly, the exact analytical null for kCI 
is unknown. The only unbiased solution for computing statistical significance in cases 
where the limiting null approximation breaks down is a permutation null. Unfortunately, 
this is computationally costly.

Power analysis

We set out to investigate the power of the newly defined rCI coefficient in comparison 
to the other commonly used correlation coefficients discussed above. As the theoretical 
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a permutation null of K = 1e6 samples of length 100 from a standard normal distribution. As CI is entirely 
non-parametric, the choice of distribution is irrelevant. b The Q-Q plot shows the - log 10 empirical rank of the 
CI on the x-axis and the - log 10 theoretical quantile from the analytical null (red) and asymptotic null (blue). 
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distribution of the rCI statistic even under assumptions of normally distributed data is 
unknown, we analyze the power of these statistics in simulation. We sampled from a 
simulated bivariate standard normal distribution with a known correlation between the 
two variables r > 0 . For evaluating the power, we treat the population correlation as the 
effect size. We evaluated the statistical power of the Pearson, Spearman, CI and rCI coef-
ficients for detecting an association at a fixed significance level α , using a permutation-
based test. In these simulations, we investigated the effects of effect size, sample size, 
and the rCI δ parameter on the power of these respective statistics. Lacking a principled 
way to choose a kernel for the kCI applied to normally distributed data in simulation, we 
did not include the kCI statistic in our analysis.

We began by evaluating the effect of the new δ parameter on the power of the rCI 
statistic, seeking to answer the question of what choice of δ is optimal for this new 
statistic. We took 10,  000 samples of length N = 100 from bivariate normal distribu-
tions with expected correlations of 0.2, 0.3 and 0.4, representing low ( < 10% ), medium 
( ∼ 40% ) and high ( > 80% ) power situations for the Pearson correlation with this sample 
size. Examining the medium power case ( r = 0.3 ), we see that the Spearman and CI sta-
tistics are similarly powered under this permutation test, whereas Pearson, as expected 
in this bivariate normal case, is significantly better powered than the most widely used 
non-parametric correlation coefficients (Fig.  3a). The rCI shows a trend to increasing 
power with increasing δ until approximately δ = 1.2 , after which power decreases and at 
around δ = 1.5 the power of the rCI becomes worse than the CI or Spearman statistics. 
Note that in this case, the marginal standard deviation of the data is 1, so the δ parameter 
can be directly interpreted as a multiple of the standard deviation of the population. To 
compare the behaviour of the rCI statistic over the three different effect sizes investi-
gated, we normalized the power at each δ to a percentage of the max power observed in 
simulation across all choices of δ (Fig. 3b). While the exact location of the maximum var-
ies slightly with the effect size, the power is fairly stable in a range around δ = 0.75 and 
δ = 1.25 for all three investigated regimes, and close to the maximum achieved. Moti-
vated by this observation, we chose δ = 1 for our subsequent simulations.

We then explored a range of expected population Pearson correlations between 0 and 
0.5, looking at 1000 samples of N = 100 long vectors for each effect size and computing 
the empirical power observed in simulation (Fig. 3c). Unsurprisingly, the Pearson statis-
tic is most powerful across the range, followed by rCI (at δ = 1 ), and then Spearman and 
CI practically indistinguishable. These simulations reinforce the benefit of the rCI modi-
fication over existing fully non-parametric statistics across the full range from weakly 
powered to well powered situations.

Finally, we wished to investigate how the sample size on which the correlation coef-
ficients are calculate affects their power in a permutation test. For this, we decided to 
calculate a level-set of constant power as decreasing effect size is traded off for increas-
ing sample size, fixing the expected Pearson power to be at 50%, and investigating sam-
ple sizes from N = 50 to N = 300 , in steps of 50. For this simulation, we did 10, 000 
samples from the distribution to calculate the power. We then normalized the power 
observed at each sample size as percentage of observed Pearson power to adjust for 
slight errors in calculation of the level set (Fig. 3d). We see a clear trend among rCI and 
the non-parametric statistics of increased power compared to the Pearson correlation as 
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sample size increases, however, while rCI achieves > 90% of the Pearson power already 
at N = 50 and > 95% by N = 300 , the non-parametric statistics remain at less than 90% 
power even at N = 300.

Power simulation in non‑normal data

Our ultimate motivation for investigating the performance of existing correlation coef-
ficients and proposing modifications of the concordance index was their application to 
noisy biological data. Prior to examining real data, we sought to evaluate the power of 
these permutation tests in cases where the marginal distributions of the observed vari-
ables is non-normal. Motivated by our intended application of drug screening data, we 
chose to investigate data drawn from bivariate beta distributions. In particular, we sim-
ulated data drawn from distributions with both marginals fixed as Beta(1.2, 4.5) dis-
tributions (Additional file 1:  figure S3a), and varying Pearson correlations between the 
two sampled variables. Further details on the simulation are described in the methods 
section.

Unlike the normally distributed data, we did not optimize the selection of delta param-
eters for rCI through power simulations. Rather, we derived these parameters from 
real pharmacogenomics data, by choosing a threshold on differences between AAC 
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Fig. 3  Power analysis for data simulated using the bivariate Gaussian family. a displays the effect of the δ 
parameter on the empirical power at a fixed effect size of population r=0.3. Other statistics unaffected by 
the parameter are plotted for comparison. b displays the empirically observed power for the rCI statistic only, 
plotting the dependence on delta at 3 different effect sizes. The power is normalized as percent of maximum 
power achieved for each effect size to highlight the optimal region for choosing delta. c empirical power 
for as the population expected Pearson correlation increases. d empirical power for a varying sample size, as 
the effect size is modified to keep a theoretically constant power for the Pearson correlation of 0.5. Power is 
plotted as the percent of achieved Pearson correlation power in simulation
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measurements that maximizes our classification performance of replicate vs non-rep-
licate measurements (see Methods). The optimal threshold was very close to 0.1, so for 
the simulations, a delta of 0.1 was used. We also included the kCI statistic in these simu-
lations, deriving kernel parameters from the same data (see Methods).

We first examined the empirical power of these statistics at a modest sample size of 
100 samples, varying the correlation between the two variables. We again explored a 
range of expected Pearson correlations between 0 and 0.5, looking at 1000 samples of 
N = 100 long vectors at each effect size. While the Pearson correlation was more pow-
erful at weaker effect sizes, at larger effect sizes (where all statistics achieve > 50% power 
in simulation), the CI and kCI statistic become slightly more powerful in detecting sig-
nificant effects at this sample size (Additional file 1:  Figure S3b). The rCI statistic per-
forms similarly to Spearman over the range of effect sizes investigated, both falling short 
of the Pearson correlation until all statistics converge to 100% power.

We then investigated how sample size affects the power of these statistics. Similar to 
our previous simulations with normally distributed data, we used a theoretical calcula-
tion of a level set of 50% power for the Pearson correlation test. With the data distribu-
tion deviating significantly from normal, this was even more approximate than before, so 
we once again normalized everything relative to the power we observed for the Pearson 
correlation in simulation. We again took 10,000 samples each for vectors of length 100-
300, in step sizes of 50. We observe that as sample size increases larger than 100, the 
power of the CI statistics in a permutation test continues to increase over the Pearson 
correlation (Additional file 1: Figure S3c). The kCI statistic behaves similarly to the Pear-
son correlation in these simulations, while the rCI and Spearman, both gaining power 
relative to the Pearson correlation, but do not equalize in power even in our largest sam-
ple size tested, 300. We repeated the same simulations, but adjusting effect size to hold 
a theoretical power of 0.25 (Additional file 1:  Figure S3d). Consistent with our previous 
results, at a sample size of 100 the Pearson correlation was the most powerful statistic, 
but as the sample size grew the CI overtook the Pearson correlation in power, and it was 
the most powerful statistic at sample sizes of 300. The rest of the statistics increased in 
power similarly as before, but starting off relatively less powerful compared to Pearson.

Power simulation in non‑normal data with additive noise

Finally, we repeated the simulations at fixed sample size and varying expected cor-
relations with Beta distributed data above, with the addition of noise sampled from a 
Laplace distribution, mimicking noise seen between replicate experiments in AAC 
measurements, as detailed in the methods section. The additive noise was significantly 
smaller in magnitude than the range of the data, and as the rCI δ and kCI kernels were 
picked using the replicate measurements, we expected these statistics to be advantaged 
in terms of power to detect effects “corrupted” by noise.

All statistics were less powerful after the addition of noise (Additional file  1: Fig-
ure S4b). This is unsurprising, as from the point of view of a sample statistic, the data 
generation process is opaque: a particular sample generated with added noise is indistin-
guishable from data generated with a weaker between-variable correlation. In these sim-
ulations, the rCI and kCI exhibit a similar drop in power to non-parametric statistics. 
Interestingly, the Pearson correlation was actually less affected by the addition of noise 
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than all the other statistics, leading to the Pearson correlation outperforming all other 
statistics in observed power throughout the range of effect sizes simulated. It is possible 
that these results are observed because the addition of additive noise increases slightly 
the variance of the data, and may decrease the skewness of the distribution, reducing the 
deviation from normally distributed data.

Querying pharmacogenomic datasets

With some theoretical properties explored, we sought to evaluate the practical perfor-
mance of these coefficients on real pharmacogenomic data. Large-scale pharmacog-
enomic studies have treated panels of cancer cell lines with drugs at a range of doses. 
The sensitivity of a cell line to a drug can be summarized with the area above the dose 
response curve (AAC), and assaying a panel of cell lines gives a vector of drug sensi-
tivities for a particular drug. The studies considered are described in the Methods. For 
each drug measured in two studies across a common set of cell lines, we computed 
the similarity coefficients between that drug’s response vector in one study against all 
other drugs’ response vectors in the other study. We then found the rank of the matched 
drug (Fig. 4a). This has been shown to be a challenging problem in that drug sensitivi-
ties do not necessarily replicate well across pharmacogenomic studies [6, 23]. The sta-
tistic with best resilience to the noise and artifacts in the pharmacogenomic studies 
will tend to rank matched drugs better. Because some of the drugs have been tested on 
very few common cell lines across datasets, we also considered only those comparisons 
made with more than 50 cell lines (Fig. 4b). In addition to examining the distribution of 
the matched-drug ranks, we summarized the results by calculating the area under the 
empirical Cumulative Distribution Function (CDF) (Table 1).

The five metrics had similar performance, though Pearson had the consistently best 
recall. The kCI showed improved recall across datasets compared to CI and Spearman 
correlation, suggesting that incorporating information characterizing the noise in the 
datasets can improve identification of association. While this benchmark is informative, 
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Fig. 4  Drug recall analysis across pharmacogenomic datasets. For all pairs of datasets, the similarity between 
the vector of cell line responses for all pairs of drugs is computed with each coefficient for (a) all drugs and 
(b) those drugs with at least fifty cell lines in common across datasets. For drugs present in both datasets, the 
rank of the matched drug relative to all drugs is extracted. The x-axis is the rank of the matched drug, where 
0 is most similar and 1 is least similar. The y-axis is the empirical CDF of the matched drugs for a given rank, or 
the fraction of matched drugs with rank less than x
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it is ultimately inconclusive about the practical capabilities of the different coefficients to 
identify biomarkers of drug sensitivity.

Discussion
Evaluation and significance testing of coefficients of association is a ubiquitous step in 
modern biological data analyses. However, the behaviour of common correlation coef-
ficients applied to noisy data originating from distributions seen in modern biological 
data is not well characterized. Our study addressed this question for high-throughput 
cell line viability screening. We proposed new measures of association for noisy data, 
investigated the correctness of significance testing for common correlation coefficients, 
introduced efficient and accurate implementations for calculating significance for the 
concordance index, and investigated the power of permutation testing coefficients of 
association in distributions mimicking our area of application. Finally, we demonstrated 
that incorporating information about the measurement noise into calculating associa-
tions between vectors of observations, through our proposed kCI approach, demon-
strates improved performance over the standard concordance index in a cross-dataset 
replicability task.

Researchers in biology will often compute and test thousands of correlations, requiring 
multiple testing correction to keep the expected number of false positives under control, 
often done through a False Discovery Rate or Family Wise Error Rate correction proce-
dure. Hypothesis testing in these situations require methods that can compute p-values 
accurately in the range of 1e-4 - 1e-10, depending on the number of hypotheses inves-
tigated, meaning that correct tail end behaviour dominates the accuracy of inference. 
Pencina and D’Agostino [27] investigated the use of Noether’s method to calculate 95% 
confidence intervals in the presence of complicated tie structures due to right censoring 
of one vector, and showed the method to have moderately precise coverage. Unfortu-
nately, our data suggests that the extension of this approach to calculating p values for 
hypothesis testing does not control false positives at lower alphas than 0.05, at moderate 
to large sample sizes. This is the case not only for the rCI statistic which introduces tied 
pairs in the data, but also for the concordance index applied to data with no ties. While 
this may be unsurprising given the asymptotic arguments for the derivation of Noether’s 
method, what caught us off guard in our results was the slow rate at which the control 
of false positives converged, even for the case without ties and sampling from a bivariate 
normal distribution. As much as 500 samples were not enough to restore proper false 

Table 1  A table of the areas under the empirical CDF curves for drug recall across datasets

Because the drug recall computes the rank of the matched drug, this is equivalent to 1 - the mean rank of matched drugs 
across studies

Coefficient Area under CDF Area under CDF, 
N > 50 cell lines

Pearson 0.8899 0.9382

Spearman 0.8704 0.9230

CI 0.8698 0.9238

rCI 0.8639 0.9222

kCI 0.8808 0.9341
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positive control at an alpha of 0.001, and given the behaviour observed in the Q-Q plots 
for smaller sample sizes, we expect the sample size required for more stringent alpha’s 
will be substantially larger.

Permutation tests are a versatile tool for assessing significance without making strong 
parametric assumptions about the generating distribution for the data. For permutation 
testing to be theoretically justified in making inferences about a population parameter, 
the data has to be independently and identically sampled, and each observation has to 
satisfy exchangeability between the two variables measured [29]. These assumptions are 
all shared by both exact tests for non-parametric correlations, and asymptotic analytical 
tests for the Pearson and CI correlations. Therefore, from a theoretical basis, the permu-
tation test can only increase the range of valid situations for its application. Two con-
cerns often raised by practitioners regarding applying permutation testing is a perceived 
loss of power, and the computational cost of simulating permutation null distributions. 
It is important to note that an inflation of false positives will lead in practice to lower p 
values and the illusion of more power originating from analytical tests. Previous studies 
suggest however, that the power of the permutation test for the Pearson correlation is 
very nearly identical to the Pearson t test in all cases where the t test retains good type 
1 error control [16, 29], with the t test providing significantly more power only in cases 
where data is nearly normally distributed, and at low ( ∼ 5 ) sample sizes [16]. Concerns 
about the computational cost of permutation testing are valid, especially in the context 
of multiple testing correction. However, approaches such as QUICKSTOP [30], for cases 
where the required alpha after correction is known, as well as other approaches focused 
on ensuring FDR control [31], can reduce by orders of magnitude the number of per-
mutations needed to perform inference. Combined with modern computer hardware, 
permutation testing, even at “high-throughput data scale”, becomes feasible. Therefore, 
based on our results assessing Type I error rates for asymptotic approximations of the CI 
distribution, and prior work mentioned above, we advocate for permutation testing to be 
adopted as the default testing strategy for tests of association, and require justification 
for reverting to analytical formulas for calculating p values for correlation coefficients.

Once it has been established that permutation testing is necessary to obtain correct p 
value estimates for sample sizes of interest, we compared the power of the different sta-
tistics under the permutation test. Pearson’s correlation coefficient remained the most 
powerful statistic to detect linear associations between normally distributed variables 
when using a permutation test, but with only a marginal advantage. The power differ-
ence between the Pearson, CI, rCI and Spearman are small, and probably of little signifi-
cance in practice at our investigated sample sizes and α . The newly defined rCI statistic 
exhibited most power with the delta parameter in the range of approximately 1 stand-
ard deviation of the data, and the value of the optimal delta was fairly stable over differ-
ent effect sizes. While less powerful than the Pearson correlation in this simulation, the 
semi-parametric rCI was more powerful than non-parametric statistics, suggesting that 
in cases where the Pearson is not a suitable statistic (for example, looking for non-linear 
relationships), the rCI could be the tool of choice.

Beyond the Gaussian case, none of Pearson, Spearman or CI are consistently most 
powerful over the range of effect sizes investigated in bivariate beta distributed data 
at a moderate sample size of 100. The performance of our newly defined statistics, rCI 
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and kCI, was similar to the others. Interestingly, we noticed that the Concordance Index 
seemed to outperform the Pearson correlation in the well powered ( > 50% ) regime. 
Strikingly, holding the power of the Pearson test at 50% while increasing sample size, the 
relative power gain of the Concordance Index increases. This suggests that for standard 
regimes of biological data analysis, where data is moderately large (100s of samples), and 
non-normally distributed, a permutation test based on the Concordance Index may be 
better powered to detect significant effects than the widely used Pearson correlation. We 
must caution however that precise rankings of these correlations in distributions very 
different from the skewed and bounded data we investigated cannot be extrapolated 
from our results. As a demonstration of this fact, when noise was added to the simulated 
data, Pearson was found to once again be more powerful than the Concordance Index.

There are, of course, limitations to this work. First, we only investigated the task of 
detecting linear associations from data. Undeniably, non-linear effects play a major role 
in biology, however linear analysis is often the first step in understanding any biological 
system. A major focus of our work has been on the concordance index (and by exten-
sion the Kendall Tau) measure of correlation. We have however omitted any investiga-
tion of the CI (and our derivatives) to censored data, where it is most commonly applied. 
Finally, due to computational constraints, we could not exhaustively search the space of 
distributions, sample sizes, hyper-parameters, and effect strengths.

Conclusion
The experiments carried out in our work can be summarized into three categories: 
investigating the Type I error control of common tests applied to correlation statis-
tics in simulation; investigating the power of permutation tests based on common and 
novel (rCI, kCI) correlation statistics in simulation; and benchmarking the performance 
of novel and existing correlation statistics on real high throughput drug screening data 
(Additional file 1: Figure S5).

From the first set of simulations, we conclude that applying asymptotically derived 
tests to the regime of moderate (N≤500) sample sizes can lead to a significant inflation in 
false positives when looking at α small enough to correct for multiple testing. While we 
present an approach to calculate exact p-values for the Concordance Index in a subset 
of cases (dependent on the presence and structure of ties in the data), we advocate for 
permutation testing as a default approach for assessing significance for correlation tests.

We then introduce two modifications to the Concordance Index, the rCI and kCI sta-
tistics, motivated by increasing robustness of the Concordance Index to noisy data. In 
simulations, we demonstrate that CI and kCI are best powered of the tested correlations 
when the data deviates significantly from normality and sample sizes are large enough. 
However, the permutation test based on Pearson correlation showed better robustness 
to noise than all other statistics. Finally, we benchmarked the new correlation coeffi-
cients against Pearson, Spearman and CI in a cross-study replicate similarity task. In this 
benchmark, Pearson correlation and the kCI demonstrated the best performance.

Ultimately, we conclude that researchers working with high-throughput drug screen-
ing data will be best served by using the Pearson correlation as a measure of correlation, 
with significance estimates derived from permutation tests. This result is surprising, giv-
ing that the distribution of both the data and the noise in the data deviate significantly 
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from normality. Nevertheless, both existing non-parametric correlations and novel simi-
larity metrics designed specifically with the task in mind failed to consistently outper-
form the humble Pearson correlation.

Methods
Cell line screening datasets considered

As mentioned previously, our investigations were motivated by the task of finding cor-
relations between high throughput compound screens measuring viability in cancer cell 
lines. For this study, we considered data originating from six different screening data-
sets: the Genomics of Drug Sensitivity in Cancer (versions 1 and 2) [32–34], the Cancer 
Therapeutics Response Portal v2 [35–37], the Genentech Cell Screening Initiative [6], 
the Finnish Institute of Medicine cell line screening dataset [38] and the Oregon Health 
and Science University Breast Cancer Screen [39]. All the data used in this study was 
previously published, except for the data from the Genentech Cell Screening Initiative, 
where an updated version of the original dataset was used for our analyses.

All datasets were downloaded using the PharmacoGx R package [40], from orcestra.ca 
[41]. For the analyses in this manuscript, all dose-response curves were summarized as 
the Area Above the Curve, using a 3 parameter Hill Curve model fit using the Pharma-
coGx package, as previously described [42].

Characterization of the null distributions

There are four situations to consider: 

1.	 Concordance Index with no ties - the two vectors are composed of unique elements, 
i.e.  ∃i, j such that xi = xj or yi = yj

2.	 Concordance Index with ties - ∃i, j such that xi = xj or yi = yj . This problem breaks 
down further into two cases: (A) the tie structure is transitive and can be represented 
by one multiset - if i ∼= j and j ∼= k , then i ∼= k , or (B) the tie structure cannot be rep-
resented by a multiset, so ∃i, j, k|i ∼= j, j ∼= k , i ≇ k , where ∼= denotes a tie in at least 
one of the vectors.

3.	 Robust Concordance Index - we define two thresholds tx and ty such that if 
|xi − xj| < tx or |yi − yj| < ty , the pair is considered invalid and ignored in the CI 
calculation. The denominator in the count of inversions is the number of valid pairs, 
where both �x and �y exceed their respective thresholds. As with non-transitive 
tied CI, rCI’s tie structure does not necessarily form an equivalence relation and is 
not transitive.

4.	 Kernelized Concordance Index assigns a weight w to all pairs that is a function of one 
or both of the differences between the values. Larger differences in x and y can be 
considered a pair with greater confidence. The choice of kernel is typically monotone 
increasing with delta, for instance a sigmoid. rCI can be thought of as a special case 
of kCI where the kernel is a Heavyside step function.

The exact analytical nulls for 1 and 2A are known and presented here. For cases 2B, 3, 
and 4, the exact null is unknown, so statistical significance must be assessed with permu-
tation testing.
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Case 1

In the cases that there are no ties, calculating the concordance index can be reduced to 
counting inversions in a permutation. Given two lists of numbers without ties, x and y, 
to calculate CI(x, y), it is sufficient to find the ordering permutations σx and σy for x and y 
respectively, and then count the number of inversions in σx · σ−1

y  . Computationally, this 
is equivalent to ordering both lists such that x is sorted, and then counting inversions in 
y.

The simplest way to generate the probability distribution on the number of inversions 
from a set is to use a generating polynomial or an ordinary generating function. The dis-
tribution on the permutations which result in a particular inversion number is repre-
sented as coefficients in a polynomial on x; the number (or probability, if normalized) of 
permutations yielding k inversions is the coefficient of xk.

In the absence of ties, from [43], the following result holds: let In(k) denote the num-
ber of permutations of S with k inversions. Then:

The right hand side of (4) admits exact recursive and iterative methods for adding ele-
ments by multiplying polynomials. This is equivalent to convolutions on discrete proba-
bility distributions. We note that this formula is widely used in practice, for example, the 
R Statistical language [44] implements this exact formula for calculating the significance 
of Kendall’s Tau correlation for small sample sizes (by default 50 at the time of writing) 
in the absence of ties, testing against the null hypothesis of no association.

Case 2a

The best way to think about permuting elements with ties between them is as follows: 
Each equivalence class formed by the ties in the original vectors x and y is assigned 
to a specific element ej . Let the set of distinct elements to be permuted be denoted 
E = {e1, ..., en} and let aj ∈ Z>0 denote the multiplicity of element ej , i.e. how many ele-
ments are in this equivalence class. Thus there are α :=

∑n
j=1 αj elements in total. We 

denote by M = {e
α1
1 , ..., eαnn } the multiset containing all elements (with ties).

It turns out that an analogous result to (4) can be obtained for multisets. The original 
reference is from 1915–see [45]–but it’s easier to read in modern notation, such as pre-
sented in [46]. Let inv (σ ) denote the number of inversions of a permutation of the mul-
tiset (set with ties) M. The distribution of inv can be shown to be

with the q-factorial being defined by

(4)�n(x) :=

n(n−1)/2
∑

j=1

In(x)x
k =

n
∏

j=1

j−1
∑

k=1

xk .

(5)DM(x) =
∑

σ∈SM

x inv (σ ) =

[

α

α1...αn

]

x

=
α!x

α1!x..αn!x

(6)m!x =

r
∏

k=1

(

1+ x + ...+ xk−1
)
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(The expression on the right-hand side of (5) is also called the q-multinomial coefficient.) 
Observe that, by splitting the sum over SM according to the number of inversions,

where IM(k) denotes the number of permutations of the multiset M with k inversions. 
Thus, (5) is the exact multiset analogue of (4).

The right hand side of (4), gives a recursive formula for expressing In(k) in terms of 
the In−1(j) : in terms of the generating function this reads

The proof if this formula (presented in [43]) proceeds by looking at permutations of the 
first n− 1 elements and then inserting the last element at all possible position. By keep-
ing track of how many extra inversions this insertion introduces, we arrive at (8).

This argument extends rather well to the case with ties: let M be the multiset as 
described in the introduction and denote by M− the set obtained from M by remov-
ing one occurrence of en . That is, if M = e

α1
1 , .., eαnn  , then

and in particular if |M| = n then |M−| = n− 1 . We can give the following analogue of 
(8):

with m!x defined in (6).
We note that this case, where the Concordance Index can be reduced to counting 

inversions on multisets is of practical interest. Specifically, it will arise whenever only 
one of x or y contains exact ties. However, it is limited to exact ties, as representing 
the vectors as a multiset requires transitivity of ties, and therefore cannot be applied 
to censored data.

Notes on efficient implementation:
Calculating the distribution of inversions over random permutations requires poly-

nomial multiplication, or equivalently, convolution of discrete distributions. This can 
be accomplished in O(n log(n)) time using the Fast Fourier Transform; once trans-
formed, polynomial multiplication is elementwise instead of convolutional. Numeri-
cal precision limitations introduce very slightly complex coefficients after the inverse 
transform introduces, which can be dealt with by rounding to the nearest integer. 
The naive application of FFT for polynomial multiplication would be to take the two 
factors, transform them, multiply, and inverse transform them. We implemented a 
method by which the sequence of polynomials to multiply is generated, transformed 
and multiplied simultaneously, and inverse transformed once to further optimize the 
process.

(7)
DM(x) =

∑

k≥0

∑

σ ∈ SM
inv (σ ) = k

x inv (σ ) =
∑

k≥0

∑

σ ∈ SM
inv (σ ) = k

xk =
∑

k≥0

IM(k)xk

(8)�n(x) =

(

n−1
∑

k=0

xk

)

�n−1(x).

(9)M− = e
α1
1 , e

α2
2 , . . . , e

αn−1

n−1 , e
αn−1
n ,

(10)DM(x) =

[

α

αn

]

x

DM−(x) =
α!x

(α − αn)!xαn!x
DM−(x),
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Computing the distribution on inversions for Case 2a requires dividing polynomi-
als. It turns out that in all cases encountered when applying the recursive formula (10) 
- with the Dn ratios of 

∏n+m
k=n zk to 

∏m+1
k=1 zk , for each polynomial in the denominator, 

there always exists a polynomial in the numerator which is a polynomial multiple of 
the denominator such that the coefficients are integral and the remainder is 0. In our 
experience, doing any polynomial division - including in FFT space - was prohibi-
tively inaccurate, so we implemented a method to simplify the Dn s to just the product 
of the quotients, eliminating the division entirely.

Efficient implementations of these distributions in R are shared with the wCI R 
package.

Cases 2b ‑ 4

We note that the exact distribution under the assumption of no association between 
the two vectors x and y for Cases 2b - 4 are not known. For Cases 2b, as well as 3, the 
multiset representation breaks down. It is likely that a completely different approach 
will be needed to efficiently (in polynomial time) compute these general cases. Note 
that the CI applied to data with censoring falls into this regime.

The continuous nature of the kCI kernel likewise suggests that the null distribu-
tion can not be computed combinatorically. If solved however, the distribution for 
rCI will likely be a limiting case as the kernel approaches the discontinuous Heavyside 
function.

Power analysis

All power analysis was conducted through simulations in the R programming lan-
guage. A link to the code is provided at the end of the manuscript.

Each power analysis simulation followed the same steps: 

1.	 Two vectors of data of chosen length N were sampled from a bivariate distribution 
with a known expected Pearson correlation R as the effect size measure.

2.	 A permutation test was conducted using each of the Pearson, Spearman, CI, rCI 
and kCI (for Beta distributed data) as a test statistic, using the adaptive permutation 
testing algorithm described below. Tests resulting in P values under the chosen α of 
0.001 were considered to have rejected the Null hypothesis, and therefore success-
fully detected the dependence between the two vectors.

3.	 Steps 1-2 were repeated 1000 or 10,000 times (as described in the results section), 
recording for each iteration and each statistic the whether the Null was rejected. The 
power at each effect size was calculated as the percentage of cases in which the Null 
was rejected by each statistic.

4.	 Steps 1-3 were repeated for effect sizes ranging from R = 0 , to R = 0.5 , in 0.1 step 
increments.

Bivariate Normal Data was generated using the function mvrnorm from the MASS R 
package.
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Simulating data distributed as a bivariate beta

We construct a bivariate Beta distribution with a fixed expected Pearson correlation 
from the family of distributions described in [47]. Briefly, the distributions are con-
structed by sampling (U1,U2,U3) from a trivariate Dirichlet distribution, and trans-
forming the variables as follows: X = U1 + U3 , Y = U2 +U3 . This construction is a 4 
parameter family, with 3 parameters fixed by the shapes of the marginal distributions of 
X and Y. The fourth parameter is then optimized to yield the desired correlation between 
X and Y, using the Brent method as implemented by the R optim function.

Adaptive permutation testing

Adaptive stopping during permutation testing was used for all power analyses. Briefly, 
adaptive stopping allows the permutation test to complete once there are enough ran-
dom resamples to determine whether a particular sample falls above or below a prede-
fined significance threshold α . For these analyses, the QUICK-STOP algorithm presented 
by [30] was implemented in the R programming language. The parameters used for our 
simulation were as follows: the indifference parameter d was set to 0.001 ∗ α , the Type I 
and II error probability was set to e−10 , and a stopping criteria was implemented to halt 
after 100 ∗ 1/α permutations.

Choice of rCI thresholds and kCI Kernel

The Robust and Kernelized Concordance indices have parameters that can be optimized 
for the particular distribution of interest: the rCI threshold and the kCI kernel. Because 
both coefficients are premised on downweighting pairs of points with differences that 
cannot be distinguished from statistical noise, replicate measurements are needed to 
characterize the noise distribution from the data. Conceptually, the goal is to identify 
pairs of points with true measurements that are different given the random variable of 
the delta between the measurements. The approach is similar to Storey’s FDR [48].

Let x be a quantity for a set of N points, and x̂ be the measurement of x. For a pair of 
points i and j, consider � ≡ |xi − xj| . The null hypothesis h0 is that the quantity is the 
same for the pair, i.e. xi = xj . The alternate hypothesis is that the two values are differ-
ent: xi  = xj . Let S be a set of empirical deltas where the true difference is unknown. For 
repeated measurements of the same point, the null hypothesis is necessarily true, which 
gives the distribution of δ under they null hypothesis. Let S0 be a set of empirical deltas 
from replicates. The problem is then to deconvolve S into a mixture of null and alternate 
hypotheses.

The main result uses the empirical CDF (eCDF) on S and S0 . From Bayes’ Theorem, 
we have the probability of a pair of points having equal values given a measured delta 
exceeding some value t as:

Here, the numerator is the eCDF of � for replicates multiplied by the estimate of the 
fraction of observed points for which the null hypothesis is true, and the denominator 
is the eCDF of � for the population of measurements. The inequality emerges because 

(11)P(h0|� > t) =
P(� > t|h0)P(h0)

P(� > t)
≤

P(� > t|h0)

P(� > t)
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P(h0) ≤ 1 . Similarly, the probability of the alternate hypothesis can be computed from 
above by the law of total probability, that P(h0)+ P(h1) = 1.

We consider deltas exceeding the threshold t as positive cases, and those with deltas 
less than t as negative cases. From this, a confusion matrix can be generated as a func-
tion of the threshold: 

True Value

Positive Negative

rCI decision boundary Positive P(h1|� > t) P(h0|� > t)

Negative P(h1|� ≤ t) P(h0|� ≤ t)

 The threshold for rCI is given by choosing t = τ that maximizes the Matthew’s Cor-
relation Coefficient (MCC) from the confusion matrix above. While a contingency 
table cannot be perfectly summarized by any one value, MCC has been shown to be a 
balanced measure of classification even when the class sizes are different. For the kCI 
kernel, it is desirable to have a monotonic kernel that is 0 at � = 0 and without loss of 
generality tends to 1 as � gets large. The P(h1|� > t) fits these criteria well, with the 
additional stipulation at 0. For portability, we fit a sigmoid function to P(h1|� > t) , and 
this is the kernel: the weight assigned to a pair of points is the estimate of the probability 
that they have different true values.

The thresholds or kernels for both rCI and kCI depend only on � and not on the spe-
cific values of the measurements. This implicitly assumes homoscedasticity of � over the 
range of the measurements. While it might be useful to explore this further, this choice 
was motivated by practicality, as there often is insufficient data to characterize the het-
eroscedasticity of �.

Simulation of artificial noise

To simulate noise representative of real pharmacological screening data, we first exam-
ined the distribution of pairwise differences in AAC values for experimental replicates 
done by the same study across all of the datasets described above. Upon observing this 
data, it was clear that it was not normally distributed. Using Maximum Likelihood Esti-
mation, we fit a Gaussian [ a exp (−(x−b)2

2c2
) ] and Laplace distribution [ 12b exp (−

|x−µ|
b

) ] to 
the data, and found the Laplace fit to be qualitatively good, and adequate for use in a 
simulation context (Additional file 1: Figure S4a).

For power simulations sampling from the Beta distribution with artificially added 
noise, two vectors of correlated data with a chosen expected correlation were sampled 
as above. A vector of the same length was then sampled from the MLE Laplace noise 
distribution, and added to one of the two vectors of simulated data. Finally, any values 
under 0 or over 1 after the addition of noise were truncated to keep the data bounded in 
the correct range.

Querying pharmacogenomic datasets

To gauge the performance of the coefficients on practical pharmacogenomic data, 
we considered the four pharmacogenomic datasets mentioned above obtained from 
PharmacoGx. We compared two datasets at a time, and compared the matrix of drug 
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sensitivities summarized with the area above the dose response curve as described 
above. First, the pair of matrices were restricted to those cell lines common to both 
studies. Then, for each drug in the first study, the similarity to all drugs in the second 
study was computed using each of the coefficients. For those drugs assayed in both 
studies, the rank of the similarity for the matched drugs was found relative to the 
similarity of the drug to all drugs in the second study. This self-rank of a drug was 
computed over all pairs of the pharmacogenomic datasets. We summarized the ranks 
using the area under the CDF of the ranks. An area under the CDF of the ranks of 1 
indicates that the most similar drug in the second study to that of the first was the 
matched drug in all cases. If the matched drug ranks were uniformly distributed - 
indicating no correspondence between studies, then the area under the curve would 
be 0.5.

An obvious caveat is that the intersections of cell lines across studies was often 
small. If few common cell lines were measured, then the drug was poorly character-
ized and the comparison was less meaningful. To mitigate this, in  Fig.  4b, we con-
sidered only those drugs with at least 50 cell lines in common across datasets. This 
improved the performance of all the coefficients. It is also worth considering the per-
formance of the different metrics for different regimes of drugs, i.e. those with tar-
geted effects with few sensitive cell lines contrasted with those with broad effects and 
many sensitive cell lines. The parameters for the rCI and kCI were chosen based on 
combined replicates from all studies; the threshold for rCI was set to 0.12, and the 
kCI kernel had parameters (-27.52, 0.0646).
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