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Background
Next generation sequencing technologies have revolutionized high-throughput analysis 
of the transcriptome. However, zero values present an inherent problem when analyz-
ing the expression matrices generated through these techniques. When transcripts are 
relatively high in some samples, but not in others of the same type, or when the dimen-
sionality of the data is high, technical zeros are even more likely to happen. Distin-
guishing technical zeros from true biologic null expression is essential for correct data 
interpretation.

To highlight the importance of data imputation, in terms of retaining classification 
accuracy, we consider the example problem of classifying images of handwritten digits. 
Classifying images of handwritten digits is a well studied problem in machine learn-
ing, and the test accuracy exceeds 99% using the state-of-the-art models [1]. See Fig. 1a, 
where we have shown an example, synthetic image of a handwritten 1. The same image, 
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but with some missing pixels, is shown in Fig. 1b. The locations of the missing pixels are 
selected at random, and uniformly. If we wish to classify the images with missing pixels, 
then it is ill-advised to perform no data imputation (i.e., imputing zeros), as the accuracy 
would suffer. See Fig. 1c, where we have shown the effect of imputing zeros on the AUC, 
classification accuracy (ACC) and F1 score with the percentage of missing pixels. We see 
a decrease in classification accuracy and F1 score when more than 10% of the pixels are 
missing, and the reduction in accuracy is more pronounced as the percentage of missing 
pixels increases.

Several strategies have been described for data imputation in gene expression and 
miRNA expression analysis [2–11]. Two popular techniques are “VIPER” and “scIm-
pute.” In [3], the authors introduce “VIPER”, which implements data imputation on gene 
expression data using a combination of lasso (or an elastic net), with a box constrained 
regression. That is, first a set of neighboring cells are found, which have related expres-
sion values to the missing cell, using lasso (or elastic nets). Then a box constrained 
regression is performed on the selected neighbors to fill in the missing gene expression 
values. The reason for using lasso as preprocessing, is that the quadratic programming 
code employed in [3] for box constrained regression does not scale well to large matri-
ces, and thus lasso (or an elastic net) is used to select a subset of candidate nearest neigh-
bors to reduce the array size before nonnegative regression. In [9], the authors introduce 
“scImpute”, which shares similarities in the intuition to VIPER. First, in the scImpute 
algorithm, the cells are clustered into K groups using spectral clustering [12]. Then, the 
missing cell expressions are reconstructed from their neighboring cells by a nonnegative 
constrained regression. That is, the missing values are imputed using nonnegative linear 
combinations (i.e., a linear combination with nonnegative coefficients) of their nearest 
neighbors, where the neighboring cells are determined by spectral clustering. We choose 
to focus on VIPER (specifically the lasso variant) and scImpute for comparison here, as 
they share the most similarities with the proposed method.

Here we present a novel, fast method for data imputation using constrained Conjugate 
Gradient Least Squares (CGLS) borrowing ideas from the imaging and inverse prob-
lems literature. As an example of a desired application for this work, we present miRNA 
expression analysis, with a particular focus on cancer prediction. As shown below, highly 
accurate cancer prediction is possible using simple classifiers (e.g., a softmax function 
is used here), on a wide variety of data sets, in the case when all (or a large fraction) of 
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Fig. 1  a Example image of a handwritten number 1. b the same image but with missing pixels c AUC, 
classification accuracy and F1 score with % of missing pixels
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the miRNA expression values are known, and there is little to no missing data. It is not 
always possible to measure all expression values contained in the training set, for every 
patient, however. To combat this, we aim to impute the missing values using the known 
expressions, so that we can retain use of our accurate model fit to the full set of miRNA 
available in the training set. We propose to reconstruct the missing data via nonnega-
tive constrained regression, but with the further constraint that the regression weights 
sum to 1. Such constraints ensure that the imputed values lie within the range of the 
training data, with the idea to prevent overfitting. We enforce the regression weights to 
sum to 1 as a hard constraint in our objective, so that the nonnegative least squares and 
weight normalization steps are carried out simultaneously. To solve our objective, we 
apply the nonnegative Conjugate Gradient Least Squares (CGLS) algorithm of [13], typi-
cally applied in inverse problems and image reconstruction. The CGLS code we apply 
does not suffer the scaling issues encountered in, e.g., VIPER, for large matrices, and can 
process efficiently large scale expression arrays. The algorithm we propose offers a fast, 
efficient, and accurate imputation without the need for preprocessing steps, e.g., as in 
VIPER and scImpute. Our method is also completely nonparametric, and thus requires 
no tuning of hyperparameters before imputation, in contrast to scImpute and VIPER 
which require that two hyperparameters be tuned. Such parameters may be selected, for 
example, by cross validation, as is suggested in [3]. However, cross validation is slow, 
particularly for large data, and is thus impractical for clinical applications. To demon-
strate the technique, we test the performance on miRNA expression data publicly avail-
able in the literature, and give a comparison to VIPER and scImpute. Specifically, as a 
measure of performance, we focus on how effectively each method retains the classifica-
tion accuracy with the percentage of missing data (as in the curves shown in Fig. 1c). The 
proposed method is shown to be orders of magnitude faster than VIPER and scImpute, 
with greater than or equal accuracy, for the examples of interest considered here in can-
cer prediction.

Results
The method proposed here will be denoted by Fast Linear Imputation (FLI), for the 
remainder of this paper. The FLI algorithm and the core objective functions are dis-
cussed in detail in the appendix, section “Description of FLI”. In this section, we present 
a comparison of FLI, and the methods VIPER [3] and scImpute [9] from the literature 
on publicly available miRNA expression data [14–16] and synthetic handwritten image 
data. The specific implementations of VIPER and scImpute used here are discussed in 
the appendix, section “Implementation of VIPER and scImpute”. FLI is also compared 
against (unconstrained) regression, mean, and zero imputation as baseline. The classifi-
cation model, selection of hyperparameters, and classification metrics are detailed in the 
appendix.

Synthetic handwritten image results

In this section, we present our results on the synthetic handwritten image data discussed 
in the introduction. The handwritten image data is included as a visual example to show 
clearly how the imputation methods are performing and to give some intuition as to 
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why some methods perform better than others. For more details on this data see section 
“Data sets”.

In Fig. 2a–c we present plots of the AUC, ACC and F1 scores with the percentage 
of missing dimensions, for each method. Figure 2d–f show the corresponding plots of 
the mean, standard deviation and maximum imputation errors, over all test patients. 
The plots in Fig. 2e, f are cropped on the vertical axis to better highlight the errors 
corresponding to the more competitive methods. This cuts off the end of error curve 
corresponding to scImpute, which spikes when ≈ 95% of the dimensions are missing. 
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Fig. 2  Handwritten image data results. a–c AUC, ACC and F1 scores with percentage of missing dimensions. 
d–f mean ( ǫµ ), standard deviation ( ǫσ ) and maximum ( ǫM ) imputation errors over all test patients, with 
percentage of missing dimensions. The method is given in the figure legend

Table 1  Handwritten image data results

a Mean values over curves shown in Fig. 2a–c. b Mean values over curves shown in Fig. 2d–f. c Mean ( tµ ), standard deviation 
( tσ ), and maximum ( tmax ) imputation times (in seconds) over all test patients. In table (a), ∼ 1 indicates that the AUC is 
strictly greater than than .995. In table (c), ∼ 0 indicates the imputation time is strictly less than .0005 s

Metric FLI VIPER scImpute Regression Mean Zeros

(a) Classification results
AUC​ ∼1 ∼1 .98 .96 .97 .96

F1 .99 .99 .98 .93 .87 .83

ACC​ .99 .99 .98 .93 .90 .76

(b) Imputation errors
ǫµ .15 .15 .35 .71 .59 .68

ǫσ .08 .10 .55 .32 .07 .04

ǫM .53 .70 6.2 2.4 .93 .81

Time FLI VIPER scImpute Regression Mean Zeros

(c) Imputation time
tµ .106 11.0 5.21 .126 ∼0 ∼0

tσ .066 5.47 2.42 .122 ∼0 ∼0

tmax .346 33.8 14.6 1.23 ∼0 ∼0
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In Table 1, we present the average values over the curves in Fig 2a–f, as a measure of 
the average performance over all possible levels of missing data. The mean, stand-
ard deviation, and maximum imputation times, over all test patients, are given in 
Table 1c.

In terms of retaining the classification accuracy, FLI, VIPER, and scImpute offer com-
parable performance. FLI and VIPER are joint best and offer mean AUC, ACC, and F1 
scores exceeding 99% . For the baseline methods, namely (unconstrained) regression, 
mean, and zero imputation, we see a reduction in the classification accuracy, and the 
reduction is more pronounced when > 70% of the dimensions are missing, as evidenced 
by the curves in Fig. 2a–c. In terms of the imputation error, FLI offers the most consist-
ent imputation accuracy, when compared to VIPER and scImpute, in the sense that FLI 
offers the smallest standard deviation and maximum errors.

For an example image imputation, see Fig.  3. where we have shown image recon-
structions of the handwritten one image discussed in the introduction (Fig.  1a). We 
see ghosting artifacts in the VIPER reconstruction, and a significant blurring effect in 
the scImpute reconstruction. The regression imputation appears overfit, and intro-
duces severe artifacts. FLI offers the clearest and sharpest image, with relatively few 
artifacts. So, in some cases, there are artifacts introduced by the VIPER and scImpute 
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Fig. 3  Example image reconstructions of the one image shown in the introduction, using all methods 
considered. The number of missing pixels is 550, which is 550/784 = 70% of all pixels. The ground truth is 
also shown for comparison
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reconstructions. While this is not enough to confuse the classifier (i.e., the classification 
accuracy is still retained), the imputation error is less consistent when compared to FLI. 
In particular, the average maximum imputation error offered by FLI, over all levels of 
missing dimensions, is 17% lower than the next best performing method, namely VIPER. 
See the third row of Table  1b. FLI is also orders of magnitude faster than VIPER and 
scImpute, as indicated by the imputation times of Table 1c.

Singapore results

Here we present our results on the miRNA expression data of Chan et. al. [16], collected 
from Singaporean patients. This data includes significant batch effects due to different 
measurement technologies. See section “Data sets” for more details.

See Fig. 4a–c for plots of the classification accuracy, and Fig. 4d–f for the imputation 
errors with the percentage of missing dimensions. See Table 2 for the mean values over 
the curves in Fig.  4a–f, and the mean, standard deviation, and maximum imputation 
times. In this example, FLI offers the best performance in terms of retaining the AUC, 
ACC and F1 score, on average, across all levels of missing dimensions. As evidenced by 
Fig. 4a, FLI offers the highest AUC over all levels of missing dimensions. We see a similar 
effect in the ACC and F1 score curves of Fig. 4b, c, although, in a minority of cases, scIm-
pute slightly outperforms FLI. The retention of the classification accuracy is significantly 
reduced using regression, mean and zero imputation, when compared to FLI, VIPER, 
and scImpute.

FLI offers the most optimal performance in terms of the mean, standard deviation, and 
maximum imputation error, across all levels of missing dimensions, when compared to 
VIPER and scImpute. A zero imputation offers the best maximum and standard devia-
tion error over all methods. The mean error offered by zero imputation is significantly 
higher than that of FLI, scImpute and VIPER, however. We would expect the standard 
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Fig. 4  Singapore data results. a-c AUC, ACC and F1 scores with percentage of missing dimensions. d–f mean 
( ǫµ ), standard deviation ( ǫσ ) and maximum ( ǫM ) imputation errors over all test patients, with percentage of 
missing dimensions. The method is given in the figure legend
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deviation of a zero imputation to be low, as there is not much variation among the impu-
tations (i.e., many of the values are zeros). The maximum error curves of Fig. 4f indicate 
that, for some patients, the imputation error is high when using FLI, VIPER and scIm-
pute, as simply imputing zeros offers less error. Such erroneous patients can be consid-
ered outliers, and do not greatly effect the overall classification accuracy, as evidenced by 
the plots of Fig. 4a–c.

The imputation time offered by FLI is orders of magnitude faster than VIPER and 
scImpute. For example, FLI is approximately three orders of magnitude faster, in terms 
of mean imputation time, when compared to VIPER, which was the next best perform-
ing method in terms of AUC, ACC and F1 score, after FLI. The imputation time offered 
by FLI is also more consistent when compared to VIPER, as evidenced by the tσ scores. 
When compared to scImpute, FLI is approximately one order magnitude faster in terms 
of mean and maximum imputation time, and is more consistent with lower standard 
deviation. Regression, mean and zero imputation are the fastest methods, but at the cost 
of accuracy.

This example was included given the presence of significant batch effects, as discussed 
at the beginning of this section, and in more detail in section “Data sets”. This example 
provides evidence that FLI is most optimal (compared to similar methods such as VIPER 
and scImpute), in terms of accuracy and imputation time, when imputing data in the 
presence of batch effects.

Korea results

Here we present our results on the miRNA expression data of Lee et. al. [17], collected 
from Korean patients. For more details on this data see section “Data sets”, point (3).

In Fig. 5a–c we present plots of the AUC, ACC and F1 scores with the percentage of 
missing dimensions, for each method. Figure 5d–f show the corresponding plots of the 
mean, standard deviation and maximum imputation errors. The plots in Fig. 5d, f are 

Table 2  Singapore data results

(a) Mean values over curves shown in Fig. 4a–c. (b) Mean values over curves shown in Fig. 4d–f. (c) Mean ( tµ ), standard 
deviation ( tσ ), and maximum ( tmax ) imputation times (in seconds) over all test patients. In table (c), ∼ 0 indicates that the 
imputation time isstrictly less than .0005 s

Metric FLI VIPER scImpute Regression Mean Zeros

(a) Classification results
AUC​ .95 .92 .91 .82 .80 .76

F1 .91 .88 .88 .79 .80 .78

ACC​ .89 .86 .87 .76 .74 .70

(b) Imputation errors
ǫµ .35 .41 .45 .73 .75 .70

ǫσ .25 .34 .39 .54 .43 .06

ǫM 1.12 1.94 2.50 3.53 1.85 .90

Time FLI VIPER scImpute Regression Mean Zeros

(c) Imputation time
tµ .009 7.29 .100 ∼ 0 ∼ 0 ∼ 0

tσ .002 8.42 .060 ∼ 0 ∼ 0 ∼ 0

tmax .027 49.2 .300 .003 .001 ∼ 0
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cropped to ǫ = 0.35 on the vertical axis to better highlight the errors corresponding to 
the more competitive methods. Thus, parts of some of the error curves are missing in 
Fig. 5d, f. For example, in most cases (i.e., for most levels of missing dimensions con-
sidered), the zero imputation mean and maximum error exceeds 0.35 and thus why 
much of the light blue curves corresponding to zero imputation are missing in the plots. 
In Table  3a, b, we present the average values over the curves in Fig.  5a–f. The mean, 
standard deviation, and maximum imputation times, over all test patients, are given in 
Table 3c.
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Fig. 5  Korea data results. a–c AUC, ACC and F1 scores with percentage of missing dimensions. d–f Mean 
( ǫµ ), standard deviation ( ǫσ ) and maximum ( ǫM ) imputation errors over all test patients, with percentage of 
missing dimensions. The method is given in the figure legend

Table 3  Korea data results

(a) Mean values over curves shown in Fig. 5a–c. b Mean values over curves shown in Fig. 5d–f. c Mean ( tµ ), standard 
deviation ( tσ ), and maximum ( tmax ) imputation times (in seconds) over all test patients. In table (c), ∼ 0 indicates that the 
imputation time is strictly less than .0005 s

Metric FLI VIPER scImpute Regression Mean Zeros

(a) Classification results
AUC​ .97 .96 .96 .91 .92 .80

F1 .94 .94 .95 .89 .90 .88

ACC​ .91 .91 .92 .85 .83 .80

(b) Imputation errors
ǫµ .13 .13 .14 .27 .14 .67

ǫσ .01 .01 .01 .17 .01 .02

ǫM .17 .17 .18 75.3 .19 .72

Time FLI VIPER scImpute regression mean zeros

(c) Imputation time
tµ .024 18.2 .365 .005 ∼0 ∼0

tσ .016 5.33 .348 ∼ 0 ∼0 ∼0

tmax .313 48.0 2.58 .063 ∼0 ∼ 0
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In this example, FLI, VIPER, and scImpute offer similar levels of performance in terms 
of retaining the classification accuracy, with FLI offering the best average AUC, and 
scImpute the best average ACC and F1 scores. A standard regression imputations is also 
effective in retaining the classification accuracy up to approximately 85% of dimensions 
missing, and is comparable to FLI, VIPER, and scImpute within this range. We see a 
sharp reduction in accuracy in the regression curves (i.e., the purple curves of Fig. 5a–c) 
when more than 85% of the dimensions are missing, however, and regression signifi-
cantly underperforms FLI, scImpute, and VIPER at this limit. For mean and zero impu-
tation, we see a more gradual reduction in accuracy, when compared to regression. The 
imputation errors offered by FLI, VIPER, scImpute, and mean imputation are compa-
rable, and outperform regression and zero imputation. When compared to VIPER and 
scImpute, FLI offers an imputation time which is orders of magnitude faster, in terms 
of mean imputation time. The imputation time offered by FLI is also more consistent, 
with lower standard deviation and maximum, when compared to VIPER and scImpute. 
As was the case in the previous examples, regression, mean, and zero imputation are the 
fastest methods, but at the cost of accuracy.

Discussion
In this paper we introduced FLI, a fast, robust data imputation method based on con-
strained least squares. To illustrate the technique, we tested FLI on synthetic handwrit-
ten image and real miRNA expression data sets, and gave a comparison to two similar 
methods from the literature, namely VIPER [3] and scImpute [9]. We also compared 
against (unconstrained) regression, mean, and zero imputation as baseline. The results 
highlight the effectiveness of FLI in retaining the classification accuracy in cancer predic-
tion applications using miRNA expression data, and in image classification. When com-
pared to VIPER and scImpute, FLI was shown to offer greater than or equal imputation 
accuracy, with imputation speed orders of magnitude faster than scImpute and VIPER, 
in all examples considered. VIPER, scImpute, and FLI significantly outperformed regres-
sion, mean and zero imputation in terms of imputation accuracy, in all examples consid-
ered, but were slower given the greater computational complexity. For further validation 
of FLI on two more real miRNA expression data sets, see appendix 6.

In section “Singapore results”, we considered an example expression data set collected 
from Singaporean patients, which included significant batch effects. When batch effects 
were present, FLI was shown to outperform VIPER and scImpute in terms of retaining 
the classification accuracy, and imputation error. On the handwritten image and Korean 
data sets, considered in sections “Synthetic handwritten image results” and “Korea 
results”, such batch effects were not detected. In these examples, the imputation accu-
racy offered by FLI, VIPER, and scImpute was comparable. This study provides evidence 
that FLI offers optimal imputation accuracy, when compared to the methods of litera-
ture, on batch data. This is important, since batch effects are common in medical data 
[18] and thus an imputation which is effective in combating batch effects, without the 
need for a-prioiri batch correction steps, is desirable.

In all examples considered, FLI was shown to be orders of magnitude faster than 
VIPER and scImpute. FLI is also completely nonparametric, and thus more straightfor-
ward to implement, in contrast to VIPER and scImpute, which require the tuning of two 
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hyperparameters. It is suggested in [3] to tune the lasso parameter used by VIPER via 
cross validation. The reason for using lasso as preprocessing in VIPER, is that the quad-
ratic programming code employed in [3] for nonnegative regression does not scale well 
to large matrices, and thus lasso (or elastic nets) are used to select a subset of candi-
date nearest neighbors before nonnegative regression. A similar intuition is used in [9] 
in scImpute, whereby the training data is clustered into K groups using spectral cluster-
ing [12] before nonnegative regression. That is, the test samples are imputed using linear 
combinations of their nearest neighbors, where the neighbors are determined a-priori 
by spectral clustering. The algorithm we propose does not suffer such scaling issues for 
large matrices, and does not require any preprocessing steps before imputation. Our 
method is also completely nonparametric, and thus requires no tuning of hyperparam-
eters before imputation, in contrast to scImpute and VIPER which require that two 
hyperparameters be tuned. Cross validation is slow, however, and resulted in long impu-
tation times (in the order of minutes) when using VIPER. As noted by the authors in [3], 
the quadratic programming algorithm, used to implement box constrained regression, is 
slow, and thus why lasso preprocessing is proposed. The nonnegative least squares code 
of scImpute, applied in [9], also suffers efficiency issues. To combat this, the authors 
proposed to limit the number of regression weights a-priori using spectral clustering. 
FLI does not suffer such efficiency concerns, and requires no tuning of hyperparame-
ters or preprocessing steps a-priori. FLI thus offers a faster and more straightforward 
imputation, when compared to VIPER and scImpute. This is important in applications 
where large numbers of samples need to be processed quickly (e.g., large gene expression 
arrays). In such applications, FLI offers the most practical imputation time, in compari-
son to VIPER and scImpute.

Conclusions and further work
The technique FLI proposed here offers accurate and fast imputation for miRNA expres-
sion data. In particular, the imputation offered by FLI was sufficiently accurate to retain 
the classification accuracy in cancer prediction and handwritten image recognition 
problems when a large proportion (up to 85% ) of the dimensions were missing. Thus, 
FLI offers an effective means to classify samples with missing data, without the need for 
model retraining.

The application of focus here is miRNA expression analysis and cancer prediction. 
Since miRNA expression variables are highly correlated, as indicated by the plots in 
Fig. 6, FLI is ideal for miRNA expression data. FLI is not exclusive to miRNA however, 
and is generalizable to any data set with highly correlated variables. This is validated by 
the multivariate normal data results in section “Multivariate normal examples” in the 
appendix. The current iteration of FLI requires a full training set (i.e., with no missing 
data) for the imputation, which can be considered a limitation of FLI. In further work we 
aim to address this limitation and develop FLI for more general missing data problems, 
and test further the generalizability of FLI on a variety of expression technologies com-
monly applied in cancer prediction (e.g., single-cell RNA, mRNA, protein expression, 
metabolite expression).

In this study, we assumed the locations of the missing data points to be random 
and uniform. In practice, the distribution of drop out events may be nonuniform. For 
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example, in miRNA sequencing, the lower limit of detection is related to sequencing 
depth, thus within the technical zero range there may be a broad range of true expres-
sion values. We hypothesize that such expressions will more frequently be drop outs, 
when compared to more significantly expressed miRNA. In further work, we aim to test 
the effectiveness of FLI, and the methods of the literature, in the case when the drop out 
distribution is nonuniform, once the distribution of drop out events is decided upon.

Appendix: Materials and methods
In this section we describe in detail our data imputation strategy FLI, and discuss the 
classification models and metrics used in our results.

Description of FLI

Let X = (x1, . . . , xp) ∈ R
n1×p denote some training data, with no missing entries, 

and let Z = (z1, . . . , zp) ∈ R
n2×p denote some unseen data with NaN columns. 

Let I1 = {i1, . . . , ip1} ⊂ {1, . . . , p} denote the indices of the NaN columns, and let 
I2 = {j1, . . . , jp2} = {1, . . . , p}\I1 , where p = p1 + p2 . Then we aim to find

where

is the set of matrices size n1 × n2 with non-negative entries. Here α is set orders of mag-
nitude larger than the maximum entry of X so that the columns of V all sum to 1 as a 
hard contraint. Specifically, we set α = 106 ×maxi,j

(

Xij

)

 . The missing values are then 
imputed via

The α term and nonnegativity constraints ensure that the imputed values lie within the 
range of the training data. To solve (1) we apply the nonnegative CGLS algorithm of [13], 
typically applied in inverse problems and image reconstruction. Such imputation meth-
ods, which use linear combinations of the known expressions to reconstruct the missing 
values, are appropriate when there is a high level of linear dependence across expres-
sions. The miRNA expressions are highly correlated, and thus FLI (and VIPER and scIm-
pute) are appropriate for imputing miRNA expression data. See section “Singular value 
plots”, where we show singular value plots highlighting the linear dependence across 
micros for the data sets considered. The FLI algorithm detailed above is written in Mat-
lab and is available from the authors upon request.

(1)argminV∈V+

�

�

�

�

�

�





x
T
j1

. . .

x
T
jp2



V −





z
T
j1
. . .

z
T
jp2





�

�

�

�

�

�

2

2

+ α

n2
�

j=1

�

n1
�

i=1

vij − 1

�2

,

V+ = {V ∈ R
n1×n2

: vij ≥ 0, ∀ 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

(2)





z
T
i1
. . .

z
T
ip1



 =





x
T
i1

. . .

x
T
ip1



V .



Page 12 of 21Webber and Elias ﻿BMC Bioinformatics          (2022) 23:145 

Classification and error metrics

Here we introduce the metrics which will be used to assess the quality of the results. Let 
TP, FP, TN, and FN denote the number of true positives, false positives, true negatives, 
and false negatives, respectively, in a binary classification. Then, we report the following 
classification metrics in our comparisons: 

1	 The classification accuracy 

2	 The F1 score 

3	 The Area Under the Curve (AUC) values corresponding to the Receiver Operator 
Characteristic (ROC).

All classification metrics above take values between 0 and 1. A value closer to 1 indicates 
a better performance, and vice versa.

Let x ∈ R
p denote a vector of ground truth expression values corresponding to a given 

patient, and let xǫ ∈ R
p be an approximation (e.g., obtained through imputation). Then 

we define the least squares error

We use ǫ to measure the imputation error in section “Results”.

Data sets

We consider the following four data sets from the literature for real data testing: 

1	 Serum miRNA expression data of [14, 15] collected from n = 2460 Japanese patients. 
The number of expression values measured is p = 2565 . The authors provide expres-
sion values for 1123 control patients, and for patients with 15 different types of dis-
eases (the case number varies with the disease), including bladder cancer, hepatocel-
lular carcinoma (HCC), breast cancer, ovarian cancer, and hepatitis. To compile the 
data used here, we combine the data sets of [14] and [15], making sure to delete any 
replicate patients. We focus on the HCC and bladder cancer case patients as most 
samples are provided for these diseases. We consider two separate binary classifica-
tion problems, whereby we aim to separate the control set from bladder cancer and 
HCC patients.

2	 The expression data of [19] collected by Keller et. al. from n = 454 German patients. 
The number of expression values measured is p = 863 . The samples are comprised 
of 70 healthy control patients, and patients with 14 different cancer and noncancer 
diseases (the case number varies with the disease), including melanoma, ovarian 
cancer, multiple sclerosis, and pancreatic cancer.

ACC =

TP+ TN

TP+ TN+ FP+ FN

F1 =
2TP

2TP+ FP+ FN

(3)ǫ =

�x − xǫ�2

�x�2
.
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3	 miRNA expression data of [17] collected by Lee et. al. from 232 Korean patients. The 
number of expression values measured is p = 2578 . The samples are comprised of 
88 patients with Pancreatic Cancer (PC), and 19 healthy controls. In [17], the authors 
combine the 19 healthy patients with 10 cholelithiasis patients to form a larger con-
trol set of 29 patients for use in the PC classifications. We use the same control set 
here, and aim to separate the controls from the PC patients. In total we consider 
n = 117 patients. The authors provide p = 2578 expression values, for each patient, 
all of which will be used in our classifications.

4	 miRNA expression data of [16] collected by Chan et. al. from n = 116 Singaporean 
patients, consisting of 67 patients with breast cancer and 49 healthy controls. There 
are p = 116 expression values for each patient. The samples are comprised of two 
cohorts, one size n = 62 , and the other n = 54 . The expression values of each cohort 
are measured using different technologies, which creates a batch effect. This exam-
ple is included to test the effectiveness of each considered imputation method in the 
presence of batch effects.

5	 Synthetic handwritten image data - the “Digits” database from Matlab. We focus on 
the images of zeros and ones provided for our classifications. That is, we consider 
a binary classification problem whereby we aim to separate images of zeros from 
images of ones. The data consists of 988 images of zeros and 1026 images of ones, of 
size 28× 28 . In this case, n = 1026+ 988 = 2014 , and p = 282 = 784.

6	 Synthetic multivariate normal data. This data consists of n = 1000 samples drawn 
from a multivariate normal distribution with dimension p = 1000 , mean zero, and 
correlation matrix C, where C is the square p× p matrix whose diagonal entries 
are 1 and all other entries are fixed at some R ∈ [0, 1) . For more details, see section 
“Multivariate normal examples”.

The data sets discussed in points 1-6 above were chosen to have variety in population 
type and size, cancer/disease type, and dimension size. We consider four miRNA data 
sets (discussed in points 1-4 above) from four distinct populations (namely, Japan, Ger-
many, Korea, and Singapore, respectively), which include a number of different cancer 
and disease types, and control groups, e.g., melanoma, pancreatic cancer, breast cancer, 
and healthy controls, as well as a variety of different sample and dimension sizes. The 
chosen data sets also offer a wide variety of ratios between control and case group sizes. 
For example, the Japanese data includes more controls than cases, for all diseases con-
sidered (e.g., 1123 healthy controls vs 40 ovarian cancer samples), whereas the data col-
lected by Keller et. al., from German patients, has more equal balance between cases and 
controls (e.g., 70 healthy controls vs 15 ovarian cancer samples).

We also consider two synthetic data sets, namely handwritten digit and multivariate 
Gaussian data, as discussed in points 5 and 6. The handwritten image data is included as 
a visual example to show the intuition of FLI and the other methods considered. That is, 
one can imagine miRNA expression imputation as filling in missing pixels of an image 
(or “inpainting”). The aim is to help the reader to see clearly the effects of the different 
imputation methods, e.g., as in Fig. 3, and understand how the methods are performing 
and why some methods perform better than others. We feel the inpainting analogy also 
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provides context more generally to a machine learning audience, as image classification 
and inpainting are highly studied problems in machine learning [20, 21].

The multivariate normal data is included as an example where we have the ability to 
more precisely control the correlation level among the variables, and show the relation 
between variable correlation and imputation accuracy and classification performance. 
See section “Multivariate normal examples”.

Classification model

Here we discuss the classification model used to classify patients in the real miRNA 
expression data experiments conducted in this paper. Let X ∈ R

n×p be a set of imputed 
miRNA expression data (i.e., with no missing values). To classify patients, we train a 
softmax function [22] classification model

where j ∈ {0, 1, . . . , nc − 1} is the class label, with nc > 1 the number of classes, x ∈ R
p 

is a patient sample after imputation (e.g., one row of X), and the (wj ,bj) are weights and 
biases to be trained. Here y denotes the class label assigned to x . The class with the high-
est probability P is then chosen for membership.

Validation methods

Here we discuss the validation methods used in the experiments conducted. We use a 
multiple hold out set validation. That is, we randomly and uniformly set aside a subset 
of samples size nt < n1 from the data. After which, we randomly and uniformly assign 
a subset of m < p variables to NaN for each patient, where m is determined by the per-
centage of missing dimensions (see section “Results”). Then the missing dimensions are 
imputed, and the test patients are classified using the model discussed in section “Classi-
fication model”. The above process is repeated over nT trials and the results are averaged. 
For the data sets with small n, i.e., data sets (2)–(3) of section “Data sets”, where n < 150 , 
we set nt = 10 and nT = 30 . For data set (1) of section “Data sets”, where n > 1000 , we 
set nt = 300 and nT = 1 . In total there are nT × nt = 300 test trials for each classifica-
tion performed.

Implementation of VIPER and scImpute

Here we discuss the implementations of VIPER and scImpute used in this paper. Both 
algorithms are implemented in Matlab. The R code provided in [3, 9] was ran from 
within Matlab. The Matlab formulations of VIPER and scImpute are available from the 
authors upon request.

scImpute

We perform scImpute as explained in [9], but with a few technical changes which we 
shall now discuss. First, since no outliers were detected in the data sets used here, we do 
not implement the outlier removal stage of scImpute discussed in [9]. In some instances, 
the Nonnegative Least Squares (NNLS) solver employed in [9] suffered crashing issues 

(4)P(y = j | x) =
ex

T
wj+bj

∑nc−1
i=0 ex

Twi+bi

,
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for underdetermined systems. Hence, in the case of undermined system matrices, we 
multiplied both sides by the matrix transpose so that the input to the NNLS solver was 
a square matrix. That is, we solved the normal equations, which is an equivalent prob-
lem. In rare cases, the NNLS solver produced the error “Matrix inversion failed”. In such 
instances, we imputed the mean value over the nearest neighbors determined by spec-
tral clustering (i.e., the spectral clustering step described in [9]).

VIPER

VIPER is implemented exactly as discussed in [3], with lasso used as preprocessing.
In [3, 9], the authors propose methods to determine the locations of the missing 

data. In this paper, we assume knowledge of the locations of the missing data a-priori, 
and hence we do not implement such aspects of VIPER and scImpute.

Hyperparameter selection

Here we discuss the selection of hyperparameters for the methods compared against. 
For scImpute, there are two hyperparameters, namely the number of clusters K and 
the affinity parameter σ used for the spectral clustering step. Here we are using the 
notation of [9] and [12]. In [12], it is suggested to choose σ so that the within cluster 
variances are minimized. We use a similar idea and choose the K ∈ {2, . . . , 10} and σ 
such that the ratio of the between and within cluster variances is maximized, i.e., we 
maximize the Calinski-Harabasz statistic [23]. In [9], no method for choosing K or σ 
is given so we use the ideas of [12] (cited in [9]) to choose K and σ.

For lasso VIPER, the lasso parameter is chosen by 10-fold cross validation, and the 
threshold parameter is set to t = 0.001 , as in [3]. Note here we are using the notation 
of [3].

As discussed in section “Description of FLI”, the α parameter of FLI (see equation 
(1)) is set orders of magnitude larger than the maximum entry of the expression train-
ing matrix X, so that the imputation weights all sum to 1 as a hard constraint. Specifi-
cally, α = 106 ×maxi,j

(

Xij

)

 is set six orders of magnitude larger than the maximum 
entry of X.

The remaining methods compared against for baseline, namely regression, mean 
and zero imputation, have no hyperparameters.

Singular value plots

Here we show plots of the singular values of the expression matrices X corresponding 
to some of data sets considered. See Fig. 6. We see a high level of linear dependence 
among the expression values, as indicated by the singular value plots. The nuclear 
norm [24] is commonly used to approximate the matrix rank. We use the nuclear 
norm here to measure the level of linear dependence among the miRNA expres-
sion values. A smaller nuclear norm indicates greater linear dependence, and vice-
versa. Based on the nuclear norm values, there is higher linear dependence among 
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the Japanese patients, and thus an imputation using linear combinations (e.g., as with 
FLI) is likely to be more accurate. The Keller data shows the least linear dependence 
among the expression values, and thus we expect the FLI imputation (and those of 
VIPER and scImpute) to be less accurate in this case.

Multivariate normal examples

To facilitate the conversation of section “Singular value plots” further, in this section we 
test the imputation accuracy of FLI on correlated multivariate normal data with varying 
levels of linear dependence among the variables, and plot the imputation error against 
correlation level.

To generate data, we sample from a multivariate normal distribution with mean zero 
and correlation matrix C, where C is the square p× p matrix whose diagonal entries are 
1 and all other entries are fixed at some R ∈ [0, 1) . We use R to vary the linear depend-
ence level among the p variables. We separate the data into two classes which are divided 
by the linear classification boundary {x · (1, . . . , 1)T = 0} , i.e., the (p− 1)-dimensional 
hyperplane through the origin which is perpendicular to (1, . . . , 1)T . We choose this 
classification boundary so that all variables have equal correlation to the class labels, and 
thus have equal weight towards classification performance. In Fig. 7, we show example 
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(a) Singapore, ‖X‖∗ = .07
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(b) Keller, ‖X‖∗ = .10
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(c) Japan, ‖X‖∗ = .02
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(d) Digits, ‖X‖∗ = .06

Fig. 6  Singular value plots of the expression matrices X corresponding to the Japanese, Singapore, 
handwritten digits, and Keller data. The nuclear norm values �X�∗ are given in the figure subcaptions
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data sets simulated in this way for varying R, when p = 2 , for visualization. The number 
of samples is n = 1000 . In this case, the classification boundary is the line y = −x.

To test the effectiveness of FLI, we set p = 1000 and generate multivariate normal 
data with n = 1000 samples. Then, we vary R and the percentage of missing dimen-
sions and record the changes in imputation error and classification accuracy. The 
classification model is a softmax function, as described in section “Classification 
model”. See Fig. 8 for our results.

In Fig. 8a, we plot the percentage of missing dimensions against ǫµ (as in Figs. 2d, 
4d and 5d) for a variety of R values, and in Fig. 8b we plot the mean value over the 
curves in Fig. 8a against R. The same metric was used to measure imputation per-
formance in Tables 1, 2, and 3 in the main text. We also include error bars in Fig. 8b, 
whose width is two times the standard deviation ǫµ value over the curves in Fig. 8a. 
A lower mean and standard deviation ǫµ score indicates more accurate, more con-
sistent imputation performance as the percentage of missing dimensions varies, and 
vise-versa. As R increases, the mean and standard deviation ǫµ scores decrease, and 
the relation appears continuous and monotonic. This is as we would expect and is 
consistent with the singular value analysis in sub-section “Singular value plots”. In 
Fig.  8c, we plot the mean AUC, F1 , and ACC scores against R. As R increases, the 
classification accuracy increases, and the softmax model retains high classification 
accuracy ( AUC, F1, ACC > 0.95 ) with only mild correlation among the variables 
( R > 0.15 ), further indicating the imputation abilities of FLI for binary classification 
problems. In Fig.  8d, we plot R against |X |∗ (i.e., the nuclear norm of the data) to 
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Fig. 7  Example multivariate normal data sets for varying R, when p = 2 . The two classes are highlighted in 
blue and red in each case. Here, R ∼ 1 means R = 1− 10

−6 . Note, R cannot be exactly 1 as then C would not 
be positive definite
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show the relation between R and the nuclear norm introduced in sub-section “Sin-
gular value plots”. The plot shows a continuous, inverse, monotonic relationship 
between R and |X |∗ . Thus, as R increases, or, equivalently, as |X |∗ decreases, we can 
expect to see increased imputation accuracy and greater retention of the classifica-
tion performance using FLI.

Additional miRNA expression results
Here we present additional validation of FLI on two more real miRNA expression data 
sets from the literature.

Japan and Keller data results

In this section, we test the accuracy of FLI on the miRNA expression data of [14, 15], 
collected from Japanese patients, and the expression data of Keller et. al. [19], collected 
from German patients.

For the Japanese data, we focus specifically on the binary classification problems of 
separating bladder cancer and HCC patients from controls, as is considered in [14, 15]. 
For the Keller, we focus on separating melanoma and multiple sclerosis patients from 
the control set. We chose melonoma and multiple sclerosis, as the softmax function 
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classifier (discussed in section “Classification model”) offered the best accuracy scores in 
terms of AUC when separating these diseases from controls, compared to the other dis-
eases considered by Keller. In total, we consider four binary classification problems, two 
associated with the Japanese data (i.e., the HCC and bladder cancer classifications), and 
two from the Keller data set (i.e., the melanoma and multiple sclerosis classifications). 
See Fig. 9 where we show curves of the classification accuracy scores with the percent-
age of missing dimensions, for each of the four classifications considered. In Table 4 we 
present the average scores over the curves shown in Fig. 9, as an average measure of the 
performance of FLI over all levels of missing dimensions.

The results offer further validation of the effectiveness of FLI in retaining the classifi-
cation accuracy on two more large miRNA expression data sets from the literature. The 
imputation times of Table 4b further validate the efficiency of FLI. For example, the max-
imum imputation time recorded, over all test patients processed, was tM = 1.15 s. On the 
Japanese data, FLI is most effective in retaining the classification accuracy, when com-
pared to the Keller data, and offers AUC, ACC, and F1 scores exceeding .95 up to 70% of 
dimensions missing. On the Keller data, FLI is less effective in retaining the classifica-
tion accuracy, and offers AUC, ACC, and F1 scores exceeding .95 up to approximately 
50% of dimensions missing. The mean curve values presented in Table 4a highlight the 
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Table 4  Keller and Japan data results

(a) Mean values over curves shown in Fig. 9a–c. (b) Mean ( tµ ), standard deviation ( tσ ), and maximum ( tmax ) imputation times 
(in seconds) over all test patients. In table (a), ∼ 1 indicates that the AUC is strictly greater than .995

Classification AUC​ F1 score ACC​

(a) Classification results
Multiple sclerosis .96 .85 .93

Melanoma .97 .88 .93

HCC .99 .93 .97

Bladder cancer ∼ 1 .97 .99

Classification tµ tσ tM

(b) Imputation times
Multiple sclerosis .008 .004 .102

Melanoma .009 .006 .128

HCC .273 .155 .922

Bladder cancer .298 .161 1.15
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difference in the effectiveness of FLI on the Japanese and Keller data sets. In Fig. 6, we 
showed singular value plots of the expression data matrices corresponding to the Keller 
and Japanese data sets. The plots indicated a higher level of linear dependence among 
the Japanese miRNA set, when compared to that of Kelller. Thus we would expect an 
imputation such as FLI, which uses linear combinations of the training expressions to 
impute the missing expressions, to be less effective on the Keller data set, as there is less 
linear dependence among the miRNA subset chosen by Keller. The results observed here 
are thus in line with the findings of Fig. 6.
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