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Abstract 

Background:  lncRNAs play a critical role in numerous biological processes and life 
activities, especially diseases. Considering that traditional wet experiments for iden‑
tifying uncovered lncRNA-disease associations is limited in terms of time consump‑
tion and labor cost. It is imperative to construct reliable and efficient computational 
models as addition for practice. Deep learning technologies have been proved to make 
impressive contributions in many areas, but the feasibility of it in bioinformatics has not 
been adequately verified.

Results:  In this paper, a machine learning-based model called LDACE was proposed 
to predict potential lncRNA-disease associations by combining Extreme Learning 
Machine (ELM) and Convolutional Neural Network (CNN). Specifically, the represen‑
tation vectors are constructed by integrating multiple types of biology information 
including functional similarity and semantic similarity. Then, CNN is applied to mine 
both local and global features. Finally, ELM is chosen to carry out the prediction task 
to detect the potential lncRNA-disease associations. The proposed method achieved 
remarkable Area Under Receiver Operating Characteristic Curve of 0.9086 in Leave-
one-out cross-validation and 0.8994 in fivefold cross-validation, respectively. In addi‑
tion, 2 kinds of case studies based on lung cancer and endometrial cancer indicate the 
robustness and efficiency of LDACE even in a real environment.

Conclusions:  Substantial results demonstrated that the proposed model is expected 
to be an auxiliary tool to guide and assist biomedical research, and the close integra‑
tion of deep learning and biology big data will provide life sciences with novel insights.
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Background
In the past few decades, it is believed that only the protein-coding genes contain genetic 
information [1]. As the development continues to deepen, researchers found that the 
number of noncoding RNAs (ncRNAs) in the whole transcriptome is over 98% [2], 
which makes it confident to believe that ncRNAs may be a kind of biomolecules with 
abundant functions [3–5].

Long non-coding RNA (LncRNA) is a kind of ncRNA of which length longer than 
200 nucleotides [6]. At first, the low expression level and high tissue-specific pattern 
of lncRNA mislead many researchers to treat it as “transcriptional noise”. Accumulated 
studies have proved that lncRNA is involved in many life activities such as immune sys-
tem, genome regulation, and cell-fate programming and reprogramming [7]. There is 
also a great number of researches confirm numerous human diseases such as cancers, 
blood diseases and neurodegeneration are associated with various kinds of lncRNAs [8]. 
Therefore, it is critical and urgent to identify uncovered human lncRNA-disease associa-
tions to facilitate understanding the mechanisms [9–11].

It is unrealistic to confirm uncovered lncRNA-disease associations by large-scale wet 
experiments in terms of time consumption, high cost and high error rate [12]. Signifi-
cant advances achieved by Artificial Intelligence (AI) and computational methods have 
had a huge impact in a wide field [13–16]. Due to the assumptions that similar lncRNAs 
are associated with similar diseases and vice versa [17]. Computational methods for the 
detection of uncovered relationships have become a hot topic in bioinformatics [18, 19] 
based on some related databases such as MNDR [20], Lnc2Cancer [21], NONCODE [22] 
and DrugBank [23].

To date, there are approximately 3 categories of methods for predicting potential 
associations or interactions between different bioentities. The first kind of methods is 
based on the matrix decomposition. Lu et al. [24] proposed a method called SIMCLDA 
to predict the lncRNA-disease potential association based on the induction matrix by 
combining ontology associations and function similarity. Chen et al. [25] present a novel 
framework called IMCMDA to infer potential miRNA-disease associations. Secondly, a 
large number of computational models predict associations borrow the idea of network. 
Chen et  al. [26] propose a computational method to discover unknown drug-target 
interactions by network-based random walk with restart. Zhou et  al. [27] proposed a 
rank-based method called RWRHLD to predict lncRNA-disease association by prior-
itizing candidate lncRNA-disease integrated networks. Thirdly, machine-learning-based 
methods for detecting disease-related miRNAs have been extensively mined. Guo et al. 
[28] proposed a supervised machine learning method based on various biological infor-
mation. Computational methods could obtain new lncRNA-disease associations in a 
short time, which significantly provides a broad prospect for low-risk and faster medical 
development [29]. The combination of control theory, machine learning and big data will 
provide relevant researchers with novel insights [30–33].

From the collection of data to the construction of computational models, lncRNA has 
attracted a lot of attention in the field of computational biology [34–36]. Chen et al. [37] 
developed a database called ncRNA Drug Targets Database (NRDTD) that collected 
clinically or experimentally supported ncRNAs as drug targets. Sun et  al. [38] con-
structed a database called Disease Related LncRNA-EF Interaction Database (DLREFD), 
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which contains experimentally verified interactions among lncRNAs. Liu et  al. [39] 
proposed a computational model to infer lncRNA-disease associations by combining 
human lncRNA expression profiles, gene expression profiles, and human disease-asso-
ciated gene data.

In this paper, we proposed a novel learning-based prediction model called LDACE by 
combining CNN and ELM. The framework of the proposed method can be seen in the 
Fig.  1. Firstly, we downloaded known lncRNA-disease associations from LncRNADis-
ease database [40] in October, 2018. 1765 independent associations consist of 328 dif-
ferent diseases and 881 different lncRNAs were obtained after removing redundant and 
invalid items. Then, an adjacency matrix could be constructed with above data to store 
the whole information. Secondly, the semantics similarity matrix and Gaussian interac-
tion profile kernel similarity matrix of disease or lncRNA are calculated respectively to 
enable lncRNA or disease to be represented by abundant biological information. Finally, 
after feature selection and dimension transformation by CNN, the low-dimension vec-
tors in a suitable space are taken into the ELM classifier for training, validation and 
test. As a result, LDACE obtained substantial performance with Area Under Receiver 
Operating Characteristic Curve (AUROC) of 0.9057 under Leave-one-out cross-valida-
tion (LOOCV) and 0.8994 under fivefold cross validation. Moreover, the classifier and 
method comparison experiments are applied to assess the ability of the proposed model 
from different aspects. In addition, we also carried out 2 kinds of case studies to simulate 
the prediction effect of LDACE in the real environment. Considering the competitive 
performance of the various results under numerous evaluation criteria implemented, the 
proposed method can indeed serve as a guidance for practice. Meanwhile, this work can 
be viewed as a attempt to combine machine learning method with biological big data. 

Fig. 1  Flowchart of the proposed model LDACE
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It is anticipated to provide novel insight to understand mechanism and cell activity at 
molecular level for related biomedical researchers.

Results and discussion
Evaluation criteria

Cross validation was chosen to carry out the evaluation task to assess the performance 
fairly and comprehensively. For k-fold cross-validation, the whole data set is divided into 
k mutually exclusive subsets of equal size, each subset can be treated as the test set to 
evaluate the model in turn, and the others are utilized as the training set to construct the 
model. When cross-validation is implemented, ROC and AUROC are drawn and calcu-
lated separately. ROC can be used at different thresholds to evaluate the ability of the 
model. The area of the ROC is Area Under the Curve (AUROC). When the AUROC is 
equal to 1, the classifier will generate a perfect prediction result. If the AUROC value is 
0.5, this classifier can be treated as a random guess. A wide range of evaluation methods 
are used to assess our methods in a different way including accuracy (Acc.), sensitivity 
(Sen.), specificity (Spec.), precision (Prec.), and MCC. They are defined as:

where TP denotes the number of true positives; FP represents the number of false posi-
tives; TN indicates the number of true negatives; FN stands for the number of false 
negatives.

Leave‑one‑out cross validation (LOOCV)

For Leave-One-Out Cross Validation (LOOCV), only one sample is left as the test set 
at each time, and the others are treated as the training set to build the model. The total 
number of the whole v2018 dataset is 3530, so we repeat 3530 times to train and test in 
the end. For LOOCV, LDACE obtained a competitive AUROC of 0.9086. The ROC and 
AUROC achieved by the proposed method can be seen in Fig. 2.

Fivefold cross validation

Considering that LOOCV is labor-intensive, time-consuming and limited by real-world 
experiment. Fivefold cross validation was chosen to evaluate the proposed model from 

(1)Acc. = TN + TP

TN + TP + FN + FP

(2)Sen. = TP

TP + FN

(3)Spec. = TN

TN + FP

(4)Prec. = TP

TP + FP

(5)MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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another perspective. As described in the above section for the k-fold cross validation, 
it is required to repeat 5 times under this kind of evaluation strategy to obtain the final 
predictive performance. Specifically, LDACE achieved mean AUROC of 89.94% under 
fivefold cross validation with a 0.84% standard deviation. A various of evaluation met-
ric including Acc., Sen., Spec., Prec. and MCC were 82.52%, 85.04%, 80, 81%, 65.19% 
and 89.95%, respectively. Their standard deviations were 0.61, 2.76, 2.12, 1.19 and 1.33. 
The high AUROC obtained by LDACE implied that the proposed model with various 
types of biological information indeed was reliable and effective to discover the poten-
tial lncRNA-disease associations. The low standard deviation demonstrated that LDACE 
was stable and robust. The results of the proposed method can be seen in Table 1 and 
Fig. 3.

Classifiers comparison

In order to evaluate the performance of ELM in this dataset, we compared ELM with 
some commonly used classifiers in this section. Under fivefold cross validation, the ROC 
and the AUROCs are as in the Fig. 4. For fairness, all parameters are set to default values 
and it is obvious that ELM achieved the most competitive results. The effective ability 
of ELM can be attributed to the following factors: (1) For NaïveBayes, each feature of 

Fig. 2  The ROC and AUROC achieved by LDACE in LOOCV on v2018 dataset (3530 lncRNA-disease 
associations)

Table 1  Various evaluation criteria under fivefold cross validation achieved by LDACE on v2018 
dataset

Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUROC (%)

0 82.29 83.00 81.59 81.84 64.60 90.13

1 82.44 82.44 82.44 82.44 64.87 89.69

2 82.01 83.85 80.17 80.87 64.07 88.97

3 83.57 88.67 78.47 80.46 67.49 91.26

4 82.29 87.25 77.34 79.38 64.91 89.70

Average 82.52 ± 0.61 85.04 ± 2.76 80.00 ± 2.12 81.00 ± 1.19 65.19 ± 1.33 89.95 ± 0.84
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the representation vector may not be independent which makes the classification effect 
dissatisfied. (2) For SVM, training and test samples may be linearly inseparable, and 
the choice of kernel function under default parameters is not optimal. (3) For decision 
tree, it is easy to over fit and ignore the correlation between attributes. ELMs with fewer 
training parameters, faster speeds, and a wide range of applications is chosen to perform 
the final classification task.

Compared with previous methods

To further assess the performance of our method with existed methods, LDACE was 
compared with other 3 network-based models including LRLSLDA [41], LRLSLDA-
LNCSIM1 [42] and LRLSLDA-LNCSIM2 [42]. Considering previous model was 
implemented on the previous dataset which was collected from LncRNADisease 
in October, 2012. For the sake of fairness, we also applied the proposed framework 
to train, validate and test on the same version 2012 dataset. The ROC and AUROC 
obtained by the LDACE can be seen in the Table  2. In conclusion, the proposed 

Fig. 3  ROCs and AUROCs achieved by LDACE under fivefold cross validation on the v2018 dataset

Fig. 4  Classifiers comparison under fivefold cross validation on the v2018 dataset
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computational method increases the AUROC of 0.08, 0.043, and 0.0362, respectively. 
In addition, machine learning-based models have significant advantages when dealing 
with new sample problems compared to network-based models.

Case study

To further have a more comprehensive evaluation of the proposed model in the real 
world, we implemented LDACE on lung adenocarcinoma and endometrial cancer as 
2 kinds of case studies. The associations in the LncRNA Disease were treated as the 
training set to construct the computational model, and the other 3 databases includ-
ing LncRNADisease 2.0 [43], Lnc2Cancer [21], MNDR [20] and CRlncRNA [44] were 
utilized to verify the prediction results.

In the first kind of case study, lung adenocarcinoma was selected as the research 
object. Positive samples are all associations existed in the LncRNADisease database 
and the number of them is 1765. Negative samples were of the equal size as the posi-
tive pairs randomly selected from unlabeled associations as mentioned above. The 
training set consists of both positive samples and negative samples was together sent 
to ELM for construction of the prediction model. We combined lung adenocarcinoma 
with all 881 lncRNAs appeared in LncRNADisease as the test set and sorted the pre-
diction results to conveniently validate in other database. In the end, the probability 
of H19 was in 4/881 of the list. It has been associated with lung adenocarcinoma by 
recent researches [45] and it did not include in the LncRNADisease database.

In the second kind of case study, endometrial cancer was selected as the subject. In 
order to test the ability of the proposed model in solving new sample problems that is 
the new lncRNA prediction. Positive samples are composed of the remaining associa-
tions that do not contain endometrial cancer related pairs in LncRNADisease. Given 
that there are 48 endometrial cancer associated pairs, the number of positive samples 
is 1717 (1765 − 48). Like case study 1, we also randomly extracted and built the same 
number negative and test samples by similar method. After the construction of the 
classifier, we put the test set into the computational model for prediction and verified 
them in the other databases. The list of the validated top 10 lncRNAs can be seen as 
Table 3.

We carefully analyzed the model construction process and the predicted ranks. We 
think that the result is due to the following factors. From the view of model, due to the 
assumptions that similar lncRNAs are associated with similar diseases and vice versa. 
lncRNA and disease are mainly represented by known associations. Therefore, nodes 
with large degrees are more likely to be predicted. On the other hand, miRNA with 
numerous associations may be a hot spot. Several isolated nodes such as snhg4 may 
actually be associated to disease but has not been verified by wet experiments.

Table 2  The comparison of AUROC between the proposed model and several previous network-
based methods in LOOCV on the v2012 dataset

As a result, the proposed method increases the AUROC of 0.08, 0.043, and 0.0362

Method LDACE LDARF LRLSLDA-LNCSIM1 LRLSLDA-LNCSIM2

AUROC 0.8560 0.7760 0.8130 0.8198
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Discussion

As a kind of regulatory factor in the human cells, lncRNA has proven to be closely 
related to many complex diseases. However, considering the tedious and low efficiency 
of manual experiments, numerous calculation methods have been developed to assist 
in the identification of lncRNA-disease associations. In this paper, we proposed an effi-
cient method to discover potential lncRNA-disease associations. We constructed and 
integrated multi-type features including disease semantics feature, disease and lncRNA 
function feature. CNN was applied to extract low-dimensional abstract information 
from the above integrated features and ELM was applied to carry out the prediction 
task. The proposed method has achieved competitive performance in cross-validation, 
method comparison and case study experiments.

More and more similar methods have been proposed to accelerate the process of 
experiments and expose the internal connection between lncNRAs and diseases. Most 
of these methods make use of the inherent properties of biological entities such as 
semantic similarity and known relationships such as functional similarity. There are also 
some methods that take account of additional biological entities such as genes or other 
ncRNAs as bridges to assist prediction. The method proposed in this paper contains the 
above characteristics to a certain extent but is not complete. In the future, based on the 
premise of sufficient and reliable data, we will expand a richer heterogeneous attribute 
network centered on lncRNA and disease to accelerate reasoning and discovery. We 
hope that the method we propose can not only provide novel insights for similar meth-
ods, but also accelerate the research process of related experimenters.

Conclusions
In this paper, a computational model called LDACE was proposed based on CNN and 
ELM to infer potential associations between lncRNAs and diseases. Specifically, the 
representation vectors of both lncRNA and disease can be constructed by various bio-
logical information including function and semantics similarity. After implementing 
feature extraction and dimension transformation from original space by CNN, the low-
dimension dense vectors were sent into the ELM for prediction task. LDACE obtained 

Table 3  Top 10 lncRNAs associated with endometrial cancer which were predicted by LDACE

Num lncRNA Confirmed database Degree in 
the original 
dataset

1 snhg4 Unconfirmed 1

2 malat1 CRlncRNA/MNDR/LncRNADisease 61

3 hulc Unconfirmed 13

4 tusc7 Unconfirmed 7

5 ifng-as1 Unconfirmed 2

6 miat LncRNADisease 11

7 meg3 CRlncRNA/MNDR/LncRNADisease 46

8 hotair CRlncRNA/MNDR/LncRNADisease 61

9 kcnq1dn Unconfirmed 2

10 tug1 LncRNADisease 24
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a substantial performance of 0.9086 in LOOCV and 0.9014 in fivefold cross validation, 
respectively. Moreover, we carried out the classifier and method comparison experi-
ment. The results achieved by LDACE highlighted that it is an interesting attempt to 
combine CNN with ELM, and the deep learning technology can significantly improve 
the performance of the model to distinguish unknown associations. In addition, 2 kinds 
case studies based on lung adenocarcinoma and endometrial cancer demonstrated the 
effectiveness of LDACE in the practical environment. Competitive results indicate that 
our method has a prominent ability in mining the hidden associations between lncRNA 
and disease. It is believed that the tight integration of deep learning with biological data 
will promote the development of all aspects in both computer and life sciences. We hope 
that our work will not only provide assistance and guidance for manual experiments, but 
also to open up a novel sight to mine potential information and promote deep under-
standing from biological data by machine learning method.

Methods
lncRNA‑disease associations

Known lncRNA-disease associations were collected from the LncRNADisease database 
in August 2018. 2947 lncRNA-disease association pairs were in the initial downloaded 
file. After routine preprocessing operations such as identifier unification and redun-
dancy removal, we got v2018 dataset containing 1765 independent lncRNA-disease 
associations including 881 lncRNAs and 328 diseases. Then we constructed an adja-
cency matrix A with 328 rows and 881 columns to store all associations of the v2018 
dataset. The element A (i, j) was set to 1 if and only if the ith disease and jth lncRNA was 
experimentally validated to be associated.

Randomly selecting negative samples from unlabeled samples is a commonly used 
down sampling technique for construction dataset and widespread in bioinformatics 
[46]. Therefore, the same number of negative samples as the positive samples are ran-
domly selected to form the whole data set together with the positive samples. The total 
number of the training set is 3530 containing 1765 experimental valid positive samples 
and 1765 negative samples.

To compare with the existed methods, we also downloaded the previous lncRNA-
disease associations called v2012 dataset from the first published lncRNA-disease asso-
ciation prediction model [41, 42]. After the same operation as mentioned above, we 
obtained 293 independent associations composed of 118 lncRNAs and 167 diseases 
which is the same as described in the original paper.

Disease MeSH descriptors

Medical Subject Headings (MeSH) is a standard controlled vocabulary which aims at 
indexing life and medical books and journals. It can be roughly classified into 16 catego-
ries, including Health Care [N], Publication Characteristics [V], Geographicals [Z]. We 
downloaded all MeSH descriptors (headings) from National Library of Medicine (NLM) 
in August 2018 to construct and measure the semantics similarity between lncRNA and 
disease.
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Disease semantic similarity matrix 1

Disease is a kind of abnormal life process that occurs when the body is under certain 
conditions and is affected by the damage of the disease. How to effectively represent 
disease as vectors is a difficult task in bioinformatics research for a long period. Previ-
ous method has proven that it is a high quality way to characterize disease by MeSH 
descriptor [47]. The specific calculation step is shown in the Fig. 5. Each disease can 
be represented as a Directed Acyclic Graph (DAG). For example, disease D’s DAG can 
be represented as DAG(D) = (D, ND, ED ), ND is a node set which contains disease D 
and its ancestor disease in DAG(D). ED is an edge set which contains all links between 
nodes in DAG(D).

Inspired by the Jaccard formula, the similarity can be calculated by dividing the 
intersection of two sets by the union of two sets. Disease D could be represented by a 
DAG and the semantics similarity between 2 diseases could be calculated as follows:

where � is the factor and t is the node in DAG. � can be from 0 to 1, and it is set to 
0.5 according to previous literature [42]. In DAG (D), disease D contributes the most to 
itself. The further the distance is, the smaller the contribution of D’s ancestral disease to 
D. Therefore, we can define the sum of the contributions of all nodes in the DAG(D) to 
disease D. DV1(D) can be calculated as:

The semantic similarity of disease i and disease j can be defined as follows:

(6)
{

D1D(t) = 1 if t = D
D1D(t) = max

{

�∗D1D
(

t ′
)

|t ′ ∈ childrenof t
}

if t �= D

(7)DV 1(D) = �t∈NDD1D(t)

Fig. 5  The process of the semantics similarity calculation between diseases “lupus erythematosus, 
systemic” and “acne vulgaris”. (1) Construct their own directed acyclic graphs according to the rules; 
(2) Calculate the contribution of various diseases (nodes) to “lupus erythematosus, systemic” and 
“acne vulgaris” in the directed acyclic graph, of which the lowest level is “lupus” “erythematosus, 
systemic” and “acne vulgaris” contribute 1 to themselves, and the parent node decays layer 
by layer, “autoimmune diseases”, “connective tissue diseases”, etc. contribute 0.5, and so on; (3) 
Calculate “lupus erythematosus, systemic” and “acne vulgaris” constitute the total contribution 
of directed acyclic graphs. DV(lupus erythematosus, systemic) = 1+ 2× 0.5+ 2× 0.25 = 2.5 , 
DV(acne vulgaris) = 1+ 2× 0.5+ 1× 0.25+ 1× 0.125 = 2.375 . 
Similarity(lupus erythematosus, systemic, acne vulgaris) = 0.25+0.125

2.5+2.375
= 0.0769
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Disease semantic similarity matrix 2

In the disease semantic similarity matrix 1, the algorithm only forces on a single object 
from the local view, but does not consider the difference between diseases from the 
whole perspective. Some scholars believe that the contribution is different because of 
the appearance frequency of disease in the whole MeSH. Combined with the view of 
information theory, they proposed novel ideas to improve this situation and achieved a 
certain degree of improvement [42]. The new contribution of disease t to disease D can 
be calculated as follows:

Then the semantic value of disease D can be obtained, DV2(D) as:

The semantic similarity of disease i and disease j can be defined as follows:

Disease Gaussian interaction profile kernel similarity matrix

Obviously, the matrix A includes the whole association contents of the v2018 database. 
Disease i can be represented as a function vector di of 881 dimensions that is a column 
of matrix A. The value of each dimension in di is determined by whether disease have 
been associated with lncRNA or not. If and only if the ith disease is valid proved to be 
associated with the jth lncRNA by wet experiment, the jth dimension of the vector is 
defined as 1, otherwise 0.

In fact, this can be treated as a functional representation of the lncRNA, and we 
transform it by Gaussian interaction profile kernel function to make more suitable for 
downstream classification tasks. Then similarity between diseases i and disease j can be 
defined as follows:

hyperparameters αd can be defined as follows:

Here we set α′
d = 0.5, nd is set to 328 which equals to the number of disease. Finally, 

the disease Gaussian interaction profile kernel similarity matrix DG is a square matrix 
with 328 rows and columns.

(8)DS1
(

i, j
)

=
∑

t∈Ni∩Nj

(

D1i(t)+ D1j(t)
)

DV 1(i)+ DV 1
(

j
)

(9)D2D(t) = −log

(

thenumberofDAGsincludingt

thenumberofdisease

)

(10)DV 2(D) = �t∈NDD2D(t)

(11)DS2
(

i, j
)

=
∑

t∈Ni∩Nj

(

D2i(t)+ D2j(t)
)

DV 2(i)+ DV 2
(

j
)

(12)DG
(

i, j
)

= exp
(

−αddi − d2j

)

(13)αd = α
′
d

(

1

nd

nd
∑

i=1

d2i

)
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Disease integrated similarity matrix

To integrate all biological information, the element of the final disease similarity matrix 
DS (i, j) can be defined as follows:

LncRNA Gaussian interaction profile kernel similarity matrix

It can represent each lncRNA’s function by the row of the matrix A similar to disease. 
The Gaussian profile kernel similarity between lncRNA i and j could be calculated as 
follows:

Given that there is no other information about lncRNAs, we directly regard RG as the 
lncRNA similarity matrix (RS). Parameter αr can be adjusted as follows:

Here, we set α′
r = 0.5, and nl is set to 881 which equals to the number of lncRNA. 

Finally, the lncRNA similarity matrix RS of 328 rows and 328 columns can be 
constructed.

The representation of the association pair

From above operations, each lncRNA and disease can be represented as a vector by inte-
grating various biology information. In summary, the ith disease can be represented as 
the ith row of the matrix DS as shown below:

The jth lncRNA can be represented as the jth row of the matrix RS as shown below:

The combination of the associations between the ith disease and the jth lncRNA is 
seen as follows:

Then we get 3530 1209-dimensional vectors. Each positive sample is given a label 1 
and each negative sample is given a label 0.

Convolutional neural networks (CNN)

Considering that the constructed representation vector is high-dimensional and sparse, 
we hope to extract the effective features through Convolutional Neural Network (CNN) 
[48–50]. Compared to other machine learning method, CNN has its unique advantages in 

(14)DS
(

i, j
)

=
{

DS1(i,j)+DS2(i,j)
2 ifiandjhavesemanticsimilarity

DG
(

i, j
)

otherwise

(15)RS
(

i, j
)

= RG
(

i, j
)

= exp
(

−αrri − r2j

)

(16)αr = α
′
r

(

1

nr

nr
∑

i=1

r2i

)

(17)DSi,∗ =
(

RSi,1,RSi,2, . . . ,RSi,881
)

(18)RSj,∗ =
(

RSj,1,RSj,2, . . . ,RSj,328
)

(19)
AssociationPairi,j =

(

DSi,∗,RSj,∗
)

=
(

RSi,1,RSi,2, . . . ,RSi,881,RSj,1,RSj,2, . . . ,RSj,328
)



Page 13 of 17Guo et al. BMC Bioinformatics          (2021) 22:622 	

feature capture and model capacity [51]. In this paper, we choose CNN to carry out the fea-
ture extraction task [52, 53].

Convolution neural network is a multi-layer neural network which consists of input layer, 
convolution layer, pooling layer, fully-connected layer and output layer [54, 55]. The key 
of CNN lies in the convolutional layer and the pooling layer which extracted features and 
passed them into the fully connected layer for classification [56]. The weight of the convo-
lution window is adjusted by the feedback result [57]. The convolution layer is applied to 
extract both local and global features with different filters. It can be shown in the Fig. 6.

ELM

GB Huang et al. [58] proposed Extreme Learning Machine which is a single hidden layer 
feedforward neural network algorithm. For traditional artificial neural networks, it will 
consume lots of resources and time to determine the paraments when back-propagation 
algorithm is applied [59]. Considering these iterative steps, there is only one hidden layer 
in ELM and when the classifier is trained, the number of hidden layer neuron nodes is the 
only hyperparameter that has to be set. The main steps of ELM are shown in Fig. 7.

ELM is a kind of single hidden layer feedforward network with random hidden 
nodes and the activation function f(x). For N arbitrary distinct samples (xi, li) , where 
xi = [xi1, xi2, . . . , xim]

T ǫRn and li = [li1, li2, . . . , lim]
T
ǫRm . Therefore, the output of ELM is 

represented as follows:

where N ′ is the number of the hidden nodes, pi = [pi1, pi2, . . . , pim]
T is the weight vec-

tor from the input layer nodes to the ith hidden layer node, qi = [qi1, qi2, . . . , qim]
T is the 

weight vector from the ith hidden layer to the output layer, ti is the threshold of the ith 
hidden node. pi · xj is the inner product of pi and ti.

(20)
N ′
∑

i=1

qif
(

pi · xj + ti
)

= Oj , j = 1, . . . ,N

Fig. 6  The convolution and pooling of CNN
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The loss function is defined as follows:

In order to minimize the error between input and output, we need to determine the 
three parameters pi, qiandti such that:

The Eq. (22) can be written compactly as Hq = l where

Therefore, in order to train the ELM, we need to find the appropriate parameters 
p̂i, q̂iandt̂i such that

It is equivalent to minimize the loss function as follows:
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Fig. 7  Structure of Extreme Learning Machine (ELM). The connection weight of the input layer and the 
hidden layer, and the threshold of the hidden layer can be randomly set. The connection weights between 
the hidden layer and the output layer do not need to be adjusted iteratively, but are determined at once by 
solving equations
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ELM combined high learning efficiency and strong generalization ability is widely 
used in solving both academic and industrial issues. Here, all hyperparameters are set to 
default values.
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