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Introduction
Long non-coding RNAs (lncRNAs) is a kind of non-protein-coding RNA, which has 
over 200 nucleotides [1]. More and more researches have indicated that the mutations 
and dysregulations of lncRNAs are closely related to the development and progression 
of various human complex diseases, including cancer [2]. For example, the down-reg-
ulation of H19 significantly decreased breast cancer and lung cancer cell clonogenicity 
and anchorage- independent growth [3]. BCYRN1 was increased in non-small cell lung 
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cancer (NSCLC), and its downregulated expression could suppress NSCLC cell prolifer-
ation and cell cycle progression by inhibiting the Wnt/βcatenin pathway [4]. MALAT-1 
was highly expressed in NSCLC [5]. LncRNA-IUR family was a key negative regulator of 
Bcr-Abl- induced tumorigenesis. LncRNA-IUR-5 suppressed Bcr-Abl-mediated tumo-
rigenesis by negatively regulating STAT5-mediated expression of CD71 [6]. HOTAIR 
played a carcinogenic role in different cancers, including breast cancer, gastric cancer, 
colorectal cancer and cervical cancer cell [7]. Preclinical studies indicated that LncRNA-
SARCC could attenuate RCC cell invasion, migration and proliferation in  vitro and 
in vivo [8]. The specific HOTAIRM1 cytoplasmicisoform HM1-3 was downregulated in 
over 90% of clear cell renal cell carcinomas (ccRCCs) [9].  Therefore, the identification of 
disease-related lncRNAs will help to understand human complex disease mechanism, 
disease diagnosis, treatment, prognosis and prevention at lncRNA level.

In recent years, the experimentally supported lncRNA-disease associations are grad-
ually increasing, and these association data have been collected into several databases 
such as NONCODE [10], LncRNADisease [11], and Lnc2Cancer [12]. However, the 
known lncRNA-disease associations still involve small part of lncRNA-disease pairs. 
Due to the biological experiments are expensive and time-consuming, it is very neces-
sary to develop effective and accurate computational method to identify the potential 
lncRNA-disease associations, which provide the basis for further biological experimen-
tal verification.

The existing LDAs prediction methods can be mainly categorized into the network-
based methods, machine learning-based methods and matrix factorization-based 
methods.

The network-based methods construct global heterogeneous network by integrating 
known LDAs, disease similarities, and lncRNA similarities, and use random walk to 
identify potential LDAs [13, 14]. Sun et al. [15] proposed a novel LDAs prediction model 
based on a random walk on an lncRNA functional similarity network, called RWRlncD, 
to infer potential human LDAs. The limitation of the method was not applicable for 
lncRNAs that did not have any known associated diseases. Chen et al. [16] developed the 
prediction model KATZLDA using KATZ measure to predict potential lncRNA-disease 
association on the heterogeneous network. Huang et  al. [17] developed an improved 
lncRNA functional similarity calculation model called ILNCSIM to improve predic-
tion performance. Hu et  al. [18] developed a bi-random walks algorithm BiWalkLDA 
to predict the LDAs. The bi-random walk referred that the two scores was obtained by 
performing random walk on disease similarity network and lncRNA similarity network 
respectively, and then the mean of two scores was used as the prediction result. Li et al. 
[19] proposed a target convergence set based LDAs prediction method, called TCSR-
WRLD. TCSRWRLD would establish a node set called Target Convergence Set (TCS) 
for each lncRNA/disease node in the constructed heterogeneous lncRNA-disease net-
work, and an improved random walk with restart (RWR) was implemented on the het-
erogeneous lncRNA-disease network to infer potential LDAs. TCSRWRLD introduced 
the concept of TCS, which could effectively accelerate convergence of the algorithm. 
In order to improve prediction accuracy, some researchers integrated other biological 
information except lncRNA and disease, such as miRNAs and protein [20, 21]. Fan et al. 
[22] developed a method called IDHI-MIRW to predict LDAs. IDHI-MIRW used RWR 
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algorithm on different lncRNA/disease similarities network to obtain the lncRNA/dis-
ease topological similarity through the positive pointwise mutual information (PPMI). 
Then, IDHI-MIRW applied the RWR algorithm on heterogeneous network by integrat-
ing the lncRNA/disease topological similarity and the known LDAs to predict the LDAs.

With the application of machine learning and deep learning in Biology [23–25], 
some LDAs prediction methods using different machine learning have been pro-
posed, such as Bayesian classifier based prediction method [26], random forest based 
prediction method [27], and normal Laplacian regularized least squares based predic-
tion method [28]. Chen et al. [29] proposed a semi-supervised learning method called 
LRLSLDA to identify potential associations between lncRNAs and diseases by using 
Laplacian regularized least squares, which was the first computational model to predict 
LDAs. LRLSLDA calculated lncRNA similarities and disease similarities, and formu-
lated two classifiers based on Laplacian Regularized Least Squares in the disease space 
and lncRNA space respectively, and combined these two classifiers into a single classi-
fier to obtain final association probability between disease and lncRNA. Xie et al. [30] 
presented a similarity kernel fusion method to predict LDAs, called SKF-LDA, which 
also used a normal Laplacian regularized least-squares method. SKF-LDA selected 
more appropriate fusion method to integrate more biological knowledge to obtain more 
accurate prediction results. The fusion method built the refined similarity matrices by a 
neighbor-based constraint and iteration over the similarity matrices instead of a simply 
weighted addition.

Deep learning has been applied to various prediction problems in Biology [31–33]. 
Xuan et al. proposed different deep learning-based lncRNA-disease prediction models, 
such as CNNLDA [34], GCNLDA [35], CNNDLP [36] and LDAPred [37]. CNNLDA 
used a double convolution neural network based on attention mechanism. GCNLDA 
used a graph convolution neural network. CNNDLP used convolution neural network 
and convolution automatic encoder. LDAPred used convolutional neural network and 
information flow propagation. Wei et al. [38] proposed a predictor named iLncRNAdis-
FB to identify new LDAs. The method constructed three-dimensional feature blocks of 
lncRNA-disease pairs by integrating six different biological data, and then used convo-
lutional neural network to predict unknown LDAs. Wang et al. [39] developed a multi-
label classification with deep forest to predict LDAs. The model implemented multi-label 
classification by multi-grained scanning and cascade forest. In the multi-grained scan-
ning part, the corresponding transformed feature representation was classified accord-
ing to different forests. In the cascade forest, layer-wise random forest was used to get 
more discriminative representations. Yang et al. [40] proposed a bidirectional generative 
adversarial network model called BiGAN, which consisted of an encoder, a generator, 
and a discriminator. The encoder and generator were used to learn high-level features, 
the discriminator was used to predict LDAs.

At present, matrix factorization has been applied to identify potential LDAs [41–46]. 
Fu et al. [47] developed a matrix factorization based prediction model MFLDA. MFLDA 
fused the data sources by assigning different weights and decomposed the heterogeneous 
data sources into low-rank matrices by matrix tri-factorization. Lu et al. [48] proposed 
a LDA prediction method called SIMCLDA based on the inductive matrix comple-
tion. The method extracted primary feature vectors from lncRNA similarity and disease 
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similarity by principle components analysis (PCA) respectively, and calculated the inter-
action profile between a new lncRNA and its neighbors, and completed the association 
matrix with inductive matrix completion using primary feature vectors and constructed 
interaction profiles. Compared with traditional matrix factorization-based prediction 
methods, deep learning based prediction methods can capture non-linear relationship 
between lncRNAs and diseases. Therefore, some researchers combined matrix factoriza-
tion with deep learning to improve the performance of predicting LDAs [49, 50].

Recently, GNNs including graph convolution network and graph attention network 
have been applied in Bioinformatics [51–53]. Fan et al. [54] proposed a novel compu-
tational method GCRFLDA based on the graph convolutional matrix completion. The 
GCRFLDA integrated conditional random field (CRF) and attention mechanism into the 
encoder layer to learn the embedding of nodes, and scored potential lncRNA-disease 
associations. To improve prediction performance, we propose a novel method for pre-
dicting potential LDAs based on graph-level graph attention network. The main contri-
butions of this paper are summarized as follows:

(1)	 We propose a new disease similarity calculation based on gene–gene interaction 
network.

(2)	 We propose a novel lncRNA-disease associations prediction method based on 
graph-level graph attention network.

(3)	 The experimental results show that our method is superior to other state-of-the-art 
methods in evaluation metrics such as AUC, AUPR, F1-Score, recall, precision and 
accuracy.

The remainder of this paper is organized as follows: Section “Results” shows experi-
mental results. Section “Conclusion” concludes the paper. Section “Datasets and meth-
ods” describes our proposed method in detail.

Results
Experimental setting

In our study, five fold cross-validation (CV) is conducted on the experiments to evaluate 
the prediction performance of our method and other methods. Three cross-validation 
settings are as follows:

1.	 CVP (cross-validation based on the LDA pairs): We randomly partition all experi-
mentally verified LDA pairs into five subsets. In each fold, one subset is used as test 
set and the other four subsets are used as the training set. The previous training set 
and test set are positive samples. The unknown lncRNA-disease pairs with the same 
number of positive samples are randomly selected as negative samples.

2.	 CVL (cross-validation based on the lncRNAs): We randomly select 20% rows (i.e. 
lncRNAs) as testing set. The remaining 80% rows (i.e. lncRNAs) are used as training 
set.

3.	 CVD (cross-validation based on the diseases): We randomly select 20% columns (i.e. 
diseases) as testing set. The remaining 80% columns (i.e. diseases) are used as train-
ing set.
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The CVL and CVD methods are designed to evaluate the capability of predicting LDAs 
for new lncRNAs and new diseases. Each cross-validation is repeatedly conducted for 10 
times, and the average of 10 experimental results is used for final result.

Comparisons with existing works

We compare our method gGATLDA with five state-of-the-art LDAs prediction meth-
ods: BiWalkLDA [18], MFLDA [47], SIMCLDA [48], BiGAN [40] and GCRFLDA [54]. 
BiWalkLDA performed bi-random walks on lncRNA- disease network integrating 
interaction profile and gene ontology information to predict LDAs. MFLDA fused dif-
ferent heterogeneous data and predicted new associations using matrix factorization. 
SIMCLDA was a method for predicting potential LDAs based on inductive matrix 
completion. BiGAN was an lncRNA-disease association prediction method based on 
bidirectional generative adversarial network. GCRFLDA was a prediction method based 
on the graph convolutional matrix completion. We implemented the experimental codes 
based on deep learning framework Pytorch.

We evaluate our method gGATLDA and other five methods in terms of AUC and 
AUPR. We select the three different benchmark datasets including different numbers of 
known LDAs. Dataset1 contained only 621 LDAs, Dataset2 contained 2697 LDAs, and 
Dataset3 contained 3207 LDAs obtained by merging the Dataset1 and Dataset2. Under 
three cross-validation settings (CVP, CVL, and CVD), we conduct the experiments on 
three benchmark datasets respectively. The experimental results are shown in Figs. 1, 2 
and 3.

As can be seen from Figs. 1, 2 and 3, our method gGATLDA can achieve the best pre-
diction performance. For example, as shown in Fig. 1a, gGATLDA achieve the highest 
average AUC of 0.948 under the setting CVP, which is 11.9% higher than the secondly 
best BiWalkLDA. Figure 1b show that GATLDA achieve a higher precision with respect 
to the other five methods for any given recall value. As shown in Fig. 1c, under the CVL 
and CVD, the AUC and AUPR value of gGATLDA are highest respectively.

On different benchmark datasets, the prediction performance of each method is 
different. As can be seen from Figs.  1, 2 and 3, the prediction performance of our 
method and SIMCLDA is more stable, and the AUC and AUPR value of our method 
gGATLDA have higher than that of SIMCLDA on three different datasets. On Data-
set1, our method has highest AUC and AUPR. On Dataset2 , the AUC of our method 
are 3.7%, 10.2%, 15.7%, 16.3% and 55.8% higher than the other five methods GCR-
FLDA, BiGAN, MFLDA, SIMCLDA and BiWalkLDA respectively. On Dataset3, the 
AUC of our method are 2.9%, 9.3%, 15.4%, 15.9% and 20.3% higher than the other five 
methods GCRFLDA, BiGAN, MFLDA, SIMCLDA and BiWalkLDA respectively. The 
other four methods, such as BiWalkLDA, MFLDA, BiGAN and GCRFLDA, have dif-
ferent prediction performance on different datasets. For example, the AUC of BiGAN 
is only 0.4847 on Dataset 1, but its AUC value is 0.9042 on Dataset 3 (the latter is 
about twice the former). BiGAN and GCRFLDA both obtain the highest AUC and 
AUPR on Dataset 3, which show that the two methods are more suitable for Dataset 3. 
MFLDA has the lowest values of AUPR on Dataset 1 under the CVP, CVL, and CVD 
cross-validation settings, which are 0.4993, 0.4697 and 0.4712 respectively. However, 
on Datasets 2 and 3, the AUPR of MFLDA achieved 0.8891 and 0.9066 respectively. 



Page 6 of 24Wang and Zhong ﻿BMC Bioinformatics           (2022) 23:11 

These indicates that MFLDA is sensitive to different datasets. BiWalkLDA perform 
best on Dataset 1, and perform worst on Dataset 2. Therefore, BiWalkLDA is also sen-
sitive to different datasets.

Different cross validation settings have different influence on the prediction perfor-
mance of different methods. Under three cross-validation settings, the ROC curve and 
PR curve of our method are essentially the same. However, the prediction performance 
of other five methods greatly differs under different cross validation settings. For exam-
ple, on Dataset1, the AUC of SIMCLDA are 0.8044, 0.4861 and 0.6124 under the CVP, 

Fig. 1  Performance comparison of predicting methods under the setting CVP, CVL and CVD on Dataset 
1. a–b Performance of all methods based on the CVP cross-validation settings. c–d Performance of all 
methods based on the CVL cross-validation settings. e–f Performance of all methods based on the CVD 
cross-validation settings
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CVL and CVD respectively, while on the Dataset 2, its AUC are 0.8483, 0.6825 and 
0.7674 respectively.

In addition to AUC and AUPR, we utilize other evaluation metrics including the 
F1-score, accuracy, precision and recall to evaluate the performance of our model. 
Under CVP setting, the experimental results on the three datasets are shown in 
Tables 1, 2 and 3. As shown in Table 1, on Dataset 1, our method obtain the highest 
value of all evaluation metrics such as AUC, AUPR, accuracy, F1-score, recall and pre-
cision, which show that gGATLDA can achieve better prediction results on Dataset1. 

Fig. 2  Performance comparison of predicting methods under the setting CVP, CVL and CVD on Dataset 
2. a–b Performance of all methods based on the CVP cross-validation settings. c–d Performance of all 
methods based on the CVL cross-validation settings. e–f Performance of all methods based on the CVD 
cross-validation settings
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Considering that the number of known associations in Dataset 2 is relatively more, 
we also compare the different performance evaluation metrics of the six prediction 
methods on Dataset 2. Table 2 show that gGATLDA obtain the best prediction per-
formance. For example, the accuracy of gGATLDA, BiWalkLDA, SIMCLDA, MFLDA, 
BiGAN and GCRFLDA are 0.9395, 0.4930, 0.7549, 0.7698, 0.8016 and 0.8859 respec-
tively. The F1-score of our method is 0.0661 higher than that of the second ranked 
method GCRFLDA. Table  3 show that evaluation metrics (AUC, AUPR, F1-score 

Fig. 3  Performance comparison of predicting methods under the setting CVP, CVL and CVD on Dataset 
3. a–b Performance of all methods based on the CVP cross-validation settings. c–d Performance of all 
methods based on the CVL cross-validation settings. e–f Performance of all methods based on the CVD 
cross-validation settings
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and recall) of our method are higher than other five prediction methods on Dataset3. 
However, the value of the accuracy and precision are lower than GCRFLDA.

In summary, our method outperforms the other five methods in six evaluation metrics 
such as AUC, AUPR, accuracy, F1-score, recall and precision.

Comparison of two disease similarities

For the same model, different disease similarities have different effects on the perfor-
mance of lncRNA-disease association prediction method. In the paper, we propose a 
new disease similarity calculation based on gene–gene interaction network. In order to 
evaluate the performance of our proposed disease similarity calculation, we compare it 
with disease semantic similarity using DAGs on Dataset1 and Dataset2 by evaluation of 

Table 1  Experiment results of six methods on Dataset1 under CVP setting

The best results in each row are represented in bold

gGATLDA BiWalkLDA SIMCLDA MFLDA BiGAN GCRFLDA

AUC​ 0.9442 ± 
0.0025

0.8435 ± 0.0028 0.7836 ± 0.0113 0.7223 ± 0.0118 0.5246 ± 0.0475 0.8120 ± 0.0174

Precision 0.8124 ± 
0.0346

0.7538 ± 0.0325 0.6822 ± 0.0832 0.6928 ± 0.1351 0.4972 ± 0.0555 0.7273 ± 0.0197

Recall 0.9029 ± 
0.0276

0.7968 ± 0.0135 0.7591 ± 0.0861 0.6705 ± 0.1342 0.5025 ± 0.0759 0.7025 ± 0.0473

AUPR 0.9493 ± 
0.0022

0.8727 ± 0.0079 0.8203 ± 0.0125 0.7895 ± 0.0100 0.5029 ± 0.0422 0.7806 ± 0.0236

Accuracy 0.8455 ± 
0.0150

0.7768 ± 0.0216 0.6866 ± 0.0546 0.6432 ± 0.0941 0.4992 ± 0.0551 0.7473 ± 0.0153

F1-Score 0.8541 ± 
0.0093

0.7740 ± 0.0128 0.7087 ± 0.0200 0.6552 ±0.0205 0.4995 ± 0.0651 0.7127 ± 0.0323

Table 2  Experiment results of six methods on Dataset2 under CVP setting

The best results in each row are represented in bold

gGATLDA BiWalkLDA SIMCLDA MFLDA BiGAN GCRFLDA

AUC​ 0.9870 ± 0.0024 0.6499 ± 0.0022 0.8433 ± 0.0035 0.8270 ± 0.0033 0.8932 ± 0.0118 0.9548 ± 0.0055

Precision 0.9098 ± 0.0136 0.4958 ± 0.0040 0.6979 ± 0.0114 0.9261 ± 0.0368 0.8031 ± 0.0129 0.8840 ± 0.0063

Recall 0.9759 ± 0.0068 0.8466 ± 0.0264 0.8997 ± 0.0103 0.5905 ± 0.0646 0.7990 ± 0.0443 0.8689 ± 0.0208

AUPR 0.9864 ± 0.0025 0.7419 ± 0.0036 0.8824 ± 0.0053 0.8720 ± 0.0027 0.8857 ± 0.0200 0.9512 ± 0.0088

Accuracy 0.9395 ± 0.0083 0.4930 ± 0.0065 0.7549 ± 0.0080 0.7698 ± 0.0166 0.8016 ± 0.0214 0.8859 ± 0.0077

F1-Score 0.9416 ± 0.0076 0.6253 ± 0.0104 0.7859 ± 0.0041 0.7174 ± 0.0358 0.8005 ± 0.0261 0.8755 ± 0.0125

Table 3  Experiment results of six methods on Dataset3 under CVP setting

The best results in each row are represented in bold

gGATLDA BiWalkLDA SIMCLDA MFLDA BiGAN GCRFLDA

AUC​ 0.9888 ± 0.0065 0.8185 ± 0.0024 0.8465 ± 0.0030 0.8478 ± 0.0048 0.9045 ± 0.0185 0.9583 ± 0.0055

Precision 0.7980 ± 0.0367 0.6370 ± 0.0033 0.7247 ± 0.0142 0.8667 ± 0.1310 0.6572 ± 0.0073 0.9020 ± 0.0052

Recall 0.9913 ± 0.0078 0.7297 ± 0.0121 0.8475 ± 0.0162 0.6942 ± 0.1089 0.9495 ± 0.0132 0.8632 ± 00,202

AUPR 0.9890 ± 0.0060 0.8416 ± 0.0031 0.8450 ± 0.0053 0.8860 ± 0.0032 0.9058 ± 0.0192 0.9548 ± 0.0090

Accuracy 0.8670 ± 0.0271 0.6568 ± 0.0032 0.7623 ± 0.0065 0.7652 ± 0.0867 0.7270 ± 0.0088 0.9103 ± 0.0044

F1-Score 0.8830 ± 0.0217 0.6801 ± 0.0049 0.7810 ± 0.0022 0.7523 ± 0.0324 0.7767 ± 0.0068 0.8817 ± 0.0130
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ROC curves, AUC values, PR curves and AUPR values in the five fold CV experiment. 
The experimental results are shown in Fig. 4. We can see from Fig. 4 that for the Data-
set2, the AUC and AUPR values of our proposed disease similarity are higher than that 
of disease semantic similarity, and for the Dataset1, the prediction model using our pro-
posed disease similarity also performed better than the prediction model using disease 
semantic similarity. It illustrates that the performance of the lncRNA-disease association 
prediction method using our proposed disease similarity can be improved.

Influence of different number of hops on the accuracy of the model

GNN explores how to generate node embedding by aggregating neighborhood nodes, 
most of which are node-level embedding. GNN based on subgraph-level embedding can 
better learn the local structure of graph to improve performance. Weisfeiler-Lehman 
Neural Machine (WLNM) method proposed a solution to find the appropriate meth-
ods automatically, based on the extracted subgraphs in its neighborhood [55]. WLNM 
used high-order heuristics to achieve significant accuracy. However, high-order heuris-
tics required a large number of hops that span the enclosing subgraphs to the global 
network, which would lead to additional computation time and memory. SEAL derived 
γ-decaying theory to infer that a small number of hops was enough to extract the high-
order heuristics and achieved better accuracy than WLNM [56].

Fig. 4  Performance comparison of predicting methods using different disease similarity. a–b For Dataset1, 
ROC curve and PR curve of predicting methods using different disease similarity. c–d For Dataset2, ROC curve 
and PR curve of predicting methods using different disease similarity
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In this study, we focus on whether different hops are influence on the accuracy of the 
prediction model. We test the effects of different number of hops. We train our model 
using different number of hops respectively. Table 4 show that our model has little differ-
ence in performance evaluation metrics for enclosing subgraphs with different number 
of hops. However, when the number of hops increases, the number of nodes in the sub-
graph also increases, which will lead to memory and computational overhead. Based on 
comprehensive consideration, we choose 1-hop enclosing subgraphs in our experiment.

Parameter optimization

Different hyper-parameters will affect the prediction performance of gGATLDA. To 
obtain the best performance, we have tried a set of different hyper-parameters to find 
the best hyper-parameter for predicting lncRNA-disease associations. For the parameter 
dropout, we use the value suggested in most papers, i.e. 0.5. We perform a grid search 
to optimize three main hyper-parameters, namely, epochs from 10 to 100 with step 10, 
batch size with the values in {16, 32, 64, 128}, and learning rate with the values in {0.1, 
0.01, 0.001}. We respectively tune each parameter combination to calculate the AUC, 
AUPR, F1-score, accuracy, recall of our model based on five  fold cross validation. As 
shown in Fig. 5a, the four evaluation metrics including AUC, AUPR, F1-score and recall 
achieve the best results considering 60 as the number of epochs. From Fig. 5b and c, we 
can find that all evaluation metrics obtained the best performance when batch size is 64 
and learning rate is 0.001. Finally, the optimal values of hyper-parameters such as learn-
ing rate, batch size, and number of training epochs is 0.001, 64 and 60 respectively.

Case study

For further confirming the effectiveness of gGATLDA, we conduct case studies on 
four diseases, i.e., breast cancer, gastric cancer, prostate cancer, and renal cancer. All 
the known LDAs in Dataset1 are used as training samples, and other unknown asso-
ciations are regarded as candidate associations for validation. For the investigated dis-
ease d, all lncRNAs unassociated with disease d are considered as candidate lncRNAs. 
We rank the candidate lncRNAs according to their predicted scores, and select the top 
15 ones to verify whether associated with diseases based on two databases, namely, 
Lnc2Cancer and LncRNADisease v2.0. For those predicted results that are not been 
included in the Lnc2Cancer and LncRNADisease, we manually check in PubMed and 
list the supportive literatures. Moreover, in order to verify the effectiveness of our 

Table 4  Influence of different hops on the prediction model

Dataset1 Dataset2

hop = 1 hop = 2 hop = 3 hop = 1 hop = 2 hop = 3

AUC​ 0.948 0.943 0.945 0.986 0.982 0.953

Precision 0.731 0.794 0.754 0.658 0.698 0.730

Recall 0.965 0.900 0.926 0.999 0.995 0.988

AUPR 0.953 0.948 0.951 0.985 0.983 0.950

Accuracy 0.799 0.825 0.800 0.732 0.777 0.802

F1-Score 0.830 0.838 0.824 0.791 0.819 0.837
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proposed disease similarity calculation method, we compare the two different disease 
similarities in the case studies. The validation results are shown in Tables 5, 6, 7 and 8. 
As can be seen from Tables 5–8 that in each case study, the verified proportion of the 
top 15 candidate lncRNAs obtained using our disease similarity is higher than that 
using disease semantic similarity.
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Fig. 5  Hype-parameter optimization results for F1-score, accuracy, recall, AUC, AUPR. a Results comparing 
different epochs. b Results comparing different batch size. c Results comparing different learning rate

Table 5  Top 15 predicted lncRNAs associated with breast cancer

Disease similarity based on gene–gene interaction 
network

Disease similarity based on disease semantic

Rank lncRNA Evidence Rank lncRNA Evidence

1 KCNQ1OT1 Lnc2Cancer 3.0 1 TRAF3IP2-AS1 PMID: 30157476

2 UCA1 Lnc2Cancer 3.0 2 DLX6-AS1 Lnc2Cancer 3.0

3 MIAT Lnc2Cancer 3.0 3 MINA PMID: 30254753

4 MINA PMID: 30254753 4 KCNQ1OT1 Lnc2Cancer 3.0

5 NPTN-IT1 Lnc2Cancer 3.0 5 NEAT1 Lnc2Cancer 3.0

6 LincRNA-p21 Lnc2Cancer 3.0 6 LincRNA-p21 Lnc2Cancer 3.0

7 IGF2-AS PMID: 33175607 7 UCA1 Lnc2Cancer 3.0

8 DRAIC LncRNADisease v2.0 8 SOX2-OT Lnc2Cancer 3.0

9 NEAT1 Lnc2Cancer 3.0 9 NPTN-IT1 Lnc2Cancer 3.0

10 PCAT29 PMID: 32521844 10 HULC Lnc2Cancer 3.0

11 HULC Lnc2Cancer 3.0 11 CRNDE LncRNADisease v2.0

12 CCND1 LncRNADisease v2.0 12 TUSC7 Lnc2Cancer 3.0

13 SPRY4-IT1 Lnc2Cancer 3.0 13 7SK unconfirmed

14 SOX2-OT Lnc2Cancer 3.0 14 WT1-AS LncRNADisease v2.0

15 TUSC7 Lnc2Cancer 3.0 15 ESCCAL-1 unconfirmed
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Breast neoplasms is one of the most common female cancers. With the development of 
cancer research, lncRNAs have become an essential target for breast cancer prevention, 
diagnosis, and treatment. The top 15 predicted lncRNAs were experimentally verified by 
Lnc2Cancer, LncRNADisease v2.0, and published literatures (see Table 5). KCNQ1OT1 
is found to be remarkably high expression in breast cancer tissues and cells, which pro-
moted tumor growth in vivo by regulatingmiR-145/CCNE2 [57]. CCND1 is associated 
with cell cycle dysregulation in breast cancer [58]. CCND1 is a target of miR-142, and 
miR-142 inhibited proliferation of endometrial cancer cells by targeting CCND1 [59].

Gastric cancer is the fifth most common cancer and the third most common cause 
of cancer death globally. It is a molecularly and phenotypically highly heterogeneous 
disease. Multiple evidences demonstrate that lncRNAs play a vital role in gastric can-
cer resistance to chemotherapy reagents and targeted therapy drugs [60]. All top-15 
candidate lncRNAs predicted by gGATLDA have confirmed to be associated with 
gastric cancer (see Table 6). DLX6-AS1 is over-expressed in gastric cancer tissues and 
cell lines, which regulate tumor growth and aerobic glycolysis in gastric cancer by tar-
geting miR-4290 and PDK1 [61].

Prostate cancer is the most common malignancy in male around the world. For 
identifying a novel bio-labeling for early prediction and treatment in prostate can-
cer, it is urgently needed that identifying LDAs. We have confirmed 14 of the top-15 
candidate lncRNAs to be association with prostate cancer by Lnc2Cancer, LncRNA-
Disease, and published literatures (see Table 7). LncRNA MEG3 has a downregulated 
in prostate cancer and impact on the abilities of cell proliferation, migration and 
invasion, and cell apoptosis rate [62]. The candidate lncRNA TRAF3IP2-AS1 has no 
experimental evidence to prove that it is related to prostate cancer.

Renal cancer is one of the most rapidly growing malignant tumors. Abnormal 
expression of lncRNAs has been detected in several kinds of renal cancers. It is 

Table 6  Top 15 predicted lncRNAs associated with gastric cancer

Disease similarity based on gene–gene interaction 
network

Disease similarity based on disease semantic

Rank lncRNA Evidence Rank lncRNA Evidence

1 KCNQ1OT1 Lnc2Cancer 3.0 1 TRAF3IP2-AS1 PMID: 25370763

2 SOX2-OT Lnc2Cancer 3.0 2 SOX2-OT Lnc2Cancer 3.0

3 LincRNA-p21 Lnc2Cancer 3.0 3 DLX6-AS1 Lnc2Cancer 3.0

4 XIST LncRNADisease v2.0 4 NEAT1 Lnc2Cancer 3.0

5 NPTN-IT1 Lnc2Cancer 3.0 5 MALAT1 Lnc2Cancer 3.0

6 MIAT Lnc2Cancer 3.0 6 GAS5 Lnc2Cancer 3.0

7 DRAIC Lnc2Cancer 3.0 7 XIST LncRNADisease v2.0

8 MALAT1 Lnc2Cancer 3.0 8 LincRNA-p21 Lnc2Cancer 3.0

9 HULC Lnc2Cancer 3.0 9 KCNQ1OT1 Lnc2Cancer 3.0

10 IGF2-AS PMID: 31183590 10 NPTN-IT1 Lnc2Cancer 3.0

11 NEAT1 Lnc2Cancer 3.0 11 HULC Lnc2Cancer 3.0

12 PCAT29 LncRNADisease v2.0 12 TUG1 Lnc2Cancer 3.0

13 AIR Lnc2Cancer 3.0 13 MIAT Lnc2Cancer 3.0

14 GAS5 Lnc2Cancer 3.0 14 DRAIC Lnc2Cancer 3.0

15 TUG1 Lnc2Cancer 3.0 15 SRA1 unconfirmed
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important to find associations between lncRNAs and renal cancer for cancer preven-
tion, diagnosis, and treatment. The research find that relative level of H19 is signifi-
cantly higher in clear cell renal carcinoma (ccRCC) compared to the adjacent normal 
renal tissues. The higher expression of H19 is found in renal cancer cells compared 
to the nonmalignant renal cells HK-2. So H19 is considered as a potential prognostic 
indicator and a target for gene therapy of ccRCC [63]. In top 15 results, 93% of lncR-
NAs are verified to be related to renal cancer (see Table 8). For example, KCQN1OT1 

Table 7  Top 15 predicted lncRNAs associated with prostate cancer

Disease similarity based on gene–gene interaction 
network

Disease similarity based on disease semantic

Rank lncRNA Evidence Rank lncRNA Evidence

1 H19 LncRNADisease v2.0 1 TRAF3IP2-AS1 unconfirmed

2 MALAT1 Lnc2Cancer 3.0 2 DLX6-AS1 PMID: 33035382

3 TRAF3IP2-AS1 unconfirmed 3 SNHG11 Lnc2Cancer 3.0

4 PVT1 Lnc2Cancer 3.0 4 H19 LncRNADisease v2.0

5 MEG3 Lnc2Cancer 3.0 5 IGF2-AS Lnc2Cancer 3.0

6 XIST Lnc2Cancer 3.0 6 TERC LncRNADisease v2.0

7 CDKN2B-AS1 LncRNADisease v2.0 7 GAS5 Lnc2Cancer 3.0

8 UCA1 Lnc2Cancer 3.0 8 MALAT1 Lnc2Cancer 3.0

9 KCNQ1OT1 Lnc2Cancer 3.0 9 C1QTNF9B-AS1 Lnc2Cancer 3.0

10 GAS5 Lnc2Cancer 3.0 10 MEG3 Lnc2Cancer 3.0

11 IGF2-AS Lnc2Cancer 3.0 11 XIST Lnc2Cancer 3.0

12 HOTAIR Lnc2Cancer 3.0 12 PVT1 Lnc2Cancer 3.0

13 TUG1 Lnc2Cancer 3.0 13 HOTAIR Lnc2Cancer 3.0

14 TERC LncRNADisease v2.0 14 KCNQ1OT1 Lnc2Cancer 3.0

15 CTBP1-AS Lnc2Cancer 3.0 15 CDKN2B-AS1 LncRNADisease v2.0

Table 8  Top 15 predicted lncRNAs associated with renal carcinoma

Disease similarity based on gene–gene interaction 
network

Disease similarity based on disease semantic

Rank lncRNA Evidence Rank lncRNA Evidence

1 TRAF3IP2-AS1 PMID: 33741027 1 TRAF3IP2-AS1 PMID: 33741027

2 H19 LncRNADisease v2.0 2 DLX6-AS1 Lnc2Cancer 3.0

3 XIST Lnc2Cancer 3.0 3 SNHG11 PMID: 32126023

4 CDKN2B-AS1 Lnc2Cancer 3.0 4 H19 LncRNADisease v2.0

5 MALAT1 Lnc2Cancer 3.0 5 MALAT1 Lnc2Cancer 3.0

6 MIAT PMID: 30041179 6 CDKN2B-AS1 Lnc2Cancer 3.0

7 UCA1 Lnc2Cancer 3.0 7 XIST Lnc2Cancer 3.0

8 DRAIC LncRNADisease v2.0 8 MIAT PMID: 30041179

9 MIR17HG PMID: 24511118 9 GAS5 Lnc2Cancer 3.0

10 MEG3 Lnc2Cancer 3.0 10 MEG3 Lnc2Cancer 3.0

11 KCNQ1OT1 LncRNADisease v2.0 11 NEAT1 Lnc2Cancer 3.0

12 NEAT1 Lnc2Cancer 3.0 12 KCNQ1OT1 LncRNADisease v2.0

13 TUG1 Lnc2Cancer 3.0 13 UCA1 Lnc2Cancer 3.0

14 PCAT29 LncRNADisease v2.0 14 LSINCT5 unconfirmed

15 MINA unconfirmed 15 MIR17HG PMID: 24511118
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and MALAT-1 are the kidney cancer-associated onco-lncRNAs, and H19 and GAS5 
are the kidney cancer-associated tumor suppressive lncRNAs [64].

The experimental results show that the prediction results using the disease similarity 
based on gene–gene interaction network are more accurate than other results using the 
disease similarity based on disease semantic.

Conclusions
Predicting disease-related lncRNAs will help people understand the underlying patho-
genesis of diseases. To overcome the time-consuming and expensive shortcomings of 
experimental methods, researchers have focused on identifying lncRNA-disease poten-
tial association by computational methods.

In this paper, we propose an effective LDA prediction method using graph-level graph 
attention network called gGATLDA. We firstly extract enclosing subgraphs of lncRNA-
disease pairs from lncRNA-disease bipartite graph. Next, we compute lncRNA/disease 
similarity to construct the features of lncRNA/disease nodes in subgraphs. Finally, graph 
attention network is used to classify lncRNA-disease pairs into true pairs and false pairs 
according the subgraphs and feature vectors. Three datasets are used to verify the per-
formance of gGATLDA. We compare gGATLDA with several state-of-the-art methods. 
The experimental results show that our method gGATLDA can achieve higher values 
of AUC and AUPR. Furthermore, case study also show that our method can accurately 
predict LDAs. In the future, we will further improve the prediction performance of 
gGATLDA by the following aspects. Firstly, we will study better selecting negative sam-
ple method to avoid false negative caused by random selection. Secondly, lncRNA simi-
larity and disease similarity are important to improve the prediction performance. At 
present, most models only use lncRNA-disease functional similarity based on lncRNA-
disease interaction. In addition, there are lncRNA/disease similarities based on other 
different biological data sources, such as lncRNA expression based functional similarity, 
GO term based lncRNA functional similarity, lncRNA-disease association based func-
tional similarity and miRNA/mRNA-lncRNA interaction based functional similarity. 
Each similarity has its own strengths and weaknesses [65]. We will study methods for 
integrating different functional similarities. Lastly, we will extend our method to predict 
potential interaction relationship in other biologic interaction networks.

Moreover, the advancement of miRNA-disease association prediction can provide val-
uable reference for LDAs prediction. For example, Chen et al. [66] presented a model 
of inductive matrix completion for miRNA-disease association prediction. This method 
based on matrix completion had been successfully applied to LDA prediction [48]. How-
ever, the miRNA-disease prediction methods based on matrix decomposition and het-
erogeneous graph inference had been not used to LDA prediction [67]. Therefore, we 
will study how can more accurate predict lncRNA-disease potential associations in the 
future work by referencing some important computational models in literate [68].

Datasets and methods
Datasets

In order to experimentally verify the advantages of the method gGATLDA, we use 
two benchmark lncRNA-disease datasets: one dataset contains fewer known LDAs 
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and another dataset contains more known LDAs. We download the Dataset1 from the 
lncRNADisease established in 2015, which includes 621 associations between 256 lncR-
NAs and 189 diseases. The Dataset2 in literate [47] is downloaded from http://​mlda.​
swu.​edu.​cn/​codes.​php?​name=​MFLDA, which includes 2697 associations between 240 
lncRNAs and 412 diseases. Dataset density represents the proportion of known asso-
ciations among all in the dataset. The density of Dataset1 and Dataset2 are 0.96% and 
2.73% respectively. We obtain Dataset3 by merging the two datasets Dataset1 and Data-
set2. The overlap of Dataset1 and Dataset2 are shown in Fig. 6. We remove all repeated 
lncRNAs and diseases in Dataset1 and Dataset2. Finally, we obtain 3207 known associa-
tions between 443 lncRNAs and 608 diseases. The three benchmark datasets are shown 
in Table 9.

We construct an adjacency matrix A ∈ R
L×D to represent the association pairs 

between L lncRNAs and D diseases, where A(l, d) = 1 if there is an experimentally veri-
fied association between lncRNA l and disease d , otherwise A(l, d) = 0.

Gaussian interaction profile kernel similarity of lncRNAs

Gaussian kernel function has been used to effectively measure lncRNA similarity [48]. 
Let the lncRNA similarity matrix be Slnc ∈ R

L×L . The Gaussian interaction profile kernel 
similarity Slnc

(

li, lj
)

 between lncRNA li and lj can be calculated as follows:

where the ith row IP(li) of the lncRNA-disease association matrix is a binary vector, 
which represents whether lncRNA li is associated with each disease, i = 1, 2 , … , L. The 

(1)A(l, d) =

{

1, if lncRNA l associated with disease d
0, otherwise

(2)Slnc
(

li, lj
)

= exp
(

−βl�IP(li)− IP
(

lj
)

�
2
)

Fig. 6  Venn diagrams of the two datasets

Table 9  Three benchmark datasets

Datasets lncRNAs Diseases Associations

Dataset1 285 226 621

Dataset2 240 412 2697

Dataset3 443 608 3207

http://mlda.swu.edu.cn/codes.php?name=MFLDA
http://mlda.swu.edu.cn/codes.php?name=MFLDA
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normalized bandwidth βl is calculated by the average number of diseases associated with 
each lncRNA, its formula are as follows:

Disease similarity computation based on gene–gene interaction network

The network distance between two disease modules indicates their pathobiological and 
clinical similarity. If two disease modules are topologically separated in the network, they 
are considered as pathobiologically distinct. If two disease modules are topologically over-
lapped, the magnitude of the overlap is indicative of their biological relationship. The higher 
the overlap degree, the more significant pathobiological similarity between the two disease 
modules [69]. We propose a new disease similarity computation based on gene–gene inter-
action network. We define a set of all genes related to a disease as a disease module, and 
measure the disease similarity by distance between two disease modules in the gene inter-
action network. The shorter their distance, the more similar the two diseases. The calcula-
tion of disease similarity based on gene–gene interaction network are mainly described as 
follows:

(1)We download the two datasets, one is disease-gene associations from the database 
DisGeNET at https://​www.​disge​net.​org/ [70] and another one is gene–gene interaction 
network at https://​scien​ce.​scien​cemag.​org/​conte​nt/​suppl/​2015/​02/​18/​347.​6224.​12576​01.​
DC1 [69]. We unify the name of diseases of synonymous but different terms in the disease-
gene database, and retain the disease-gene association data of those diseases in the bench-
mark dataset.

(2)For any two diseases, we solve the gene sets associating with diseases di and dj respec-
tively according to the disease-gene association network. Let the gene set related to disease 
di be A and the gene set related to disease dj be B, the mean shortest distance SAB between 
gene sets A and B is calculated as follows:

where dAA is the mean shortest distance of distances among all gene–gene pairs in gene 
set A, dBB is the mean shortest distance of distances among all gene–gene pairs in gene 
set B, and dAB is the mean shortest one of distances between gene sets A and B.

(3) The larger the SAB, the greater separation between the two gene sets A and B associ-
ated with disease di and disease dj respectively, which means the higher similarity between 
diseases di and dj . On the other hand, the smaller the SAB, the larger overlap between the 
two gene sets A and B associated with disease di and disease dj respectively, which means 
the lower similarity between diseases di and dj . The similarity Sdis

(

di, dj
)

 between diseases 
di and dj based on gene–gene interaction network is calculated as follows:

(3)βl =
1

L

L
∑

i=1

�IP(li)�
2)

(4)SAB = dAB −
(dAA + dBB)

2

(5)Sdis
(

di, dj
)

= 1−
SAB −min(SAB)

max(SAB)

https://www.disgenet.org/
https://science.sciencemag.org/content/suppl/2015/02/18/347.6224.1257601.DC1
https://science.sciencemag.org/content/suppl/2015/02/18/347.6224.1257601.DC1
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Methods
In this paper, we propose a new lncRNA-disease association prediction method based 
on graph-level graph attention network called gGATLDA. As illustrated in Fig.  7, 
the gGATLDA consists of the following three major steps. Firstly, the enclosing sub-
graphs of lncRNA-disease pairs are extracted according to lncRNA-disease bipartite 
graph. Secondly, feature vectors of lncRNA-disease pairs are constructed according to 
Gaussian interaction profile kernel lncRNA similarities and gene interaction network-
based disease similarities. Finally, the subgraphs and feature vectors of the lncRNA-
disease pairs are used as the inputs to train the graph attention network model, a 
probability score of each lncRNA-disease pair is obtained, and the potential LDAs are 
predicted by ranking these probability scores.

Extracting the enclosing subgraphs

For the known LDAs matrix A, its corresponding bipartite graph G can be con-
structed. If there is an association between lncRNA l and disease d, there is an edge 
between nodes l and d in G, otherwise there is no an edge between nodes l and d. The 
h-hop enclosing subgraph G1(V1,E1) of each lncRNA-disease pair (l,d) is defined as 

Fig. 7  Procedure of the method gGATLDA
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the following: V1 is node set including nodes l and d, as well as their h-hop neighbor 
nodes, E1 is edge set, ∀(u, v) ∈ E1 , there must be u, v ∈ V1.

The previous LDAs prediction method based on GNN used node embedding as input 
to GNN. Considering that local subgraphs can contain richer graph patterns, we extract 
the h-hop enclosing subgraphs of each lncRNA-disease node pair, and use them as the 
input to train GAT-based model for improving prediction performance.

Node labeling

Each node in the subgraph can be labeled to distinguish its role [71]. We use 0 and 1 to 
label the target lncRNA node and target disease node respectively. For other nodes in 
subgraph, if it is an lncRNA-type node, we will label it as 2i; if it is a disease-type node, 
we will label it as 2i + 1, where i is a number in the i-th hop neighbor of the target node.

Constructing feature vectors for lncRNAs/diseases

The feature vector for each lncRNA node is constructed based on lncRNA similarity, 
and the feature vector for each disease node is constructed based on disease similar-
ity. The feature vectors are used as node attribute of subgraph. Let lncRNA similarity 
matrix be Slnc ∈ R

L×L and disease similarity matrix be Sdis ∈ R
D×D , where L and D is the 

number of lncRNAs and diseases respectively, we construct the lncRNA feature matrix 
Flnc ∈ R

L×(L+D+K ) and the disease feature matrix Fdis ∈ R
D×(L+D+K ) . In order to make 

the feature vector dimension of lncRNA the same as that of disease, the feature vector 
of lncRNA l is fl = {fl1, fl2, fl3, . . . , flm , 0, 0, . . . , 0, b1, b2, . . . , bK } , and the feature vec-
tor of disease d is fd = {0, 0, . . . , 0, fd1, fd2, fd3, . . . , fdn , b1, b2, . . . , bK } , where 1 ≤ m ≤ L , 
1 ≤ n ≤ D , bj is the k-bit one-hot code of the node label, j = 1,2,…,K.

The model based on graph neural network

We employ a stacked graph neural network layers as the classifier for predicting LDAs. 
The h-hop enclosing subgraph G1 for lncRNA l and disease d and feature vectors of each 
node in G1 are fed into prediction model. The model is trained to obtain prediction score 
between lncRNA l and disease d.

As shown in Fig. 7, our model includes a single graph convolutional network  (GCN) 
layer and multilayer graph attention network (GAT) layer. Here, we first leverage GCN 
to learn graph patterns by aggregating representations of their neighborhood nodes to 
obtain lncRNA/disease latent features. The first layer, i.e., the GCN layer, is formulated 
as follows:

where x0j  denotes the feature vector of node j in layer 0 (input layer), N (i) denotes the set 
of all neighbor nodes of node i, deg(i) denotes the degree of node i, and W 1 denotes the 
parameter matrix to be learned of the GCN layer.

Most of the GNNs use a messaging-passing scheme in which the embedding of a node 
is iteratively updated by aggregating the information from its neighbors [72]. To assign 
learnable weights in the aggregation, GNNs incorporate the attention mechanism. When 

(6)x1i =

∑

j∈N (i)∪{i}

1
√

deg(i) •
√

deg
(

j
)

(W 1x0j )
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aggregating neighbor embedding, the characteristics of neighbor nodes are weighted by 
attention coefficients between current node and its neighbors, such that GNNs can pay 
more attention to important nodes to reduce the impact of edge noise. Therefore, after 
the first GCN layer, we stack multi-layer graph attention layer. The output feature h(l+1)

i  
of the l + 1th layer is calculated as follows:

where a is a function for calculating the correlation between two nodes, elij is the origi-
nal attention coefficient between node i and node j in the l-th layer, αl

ij is the attention 
weight by softmax function, h(l+1)

i  is the representation of node i in the l + 1-th layer, σ 
denotes the non-liner activation function. Here we choose ELU as activation function.

For the output of the Lth GAT layer, we concatenate the final representations of the 
target lncRNA and disease as graph representation gi:

Finally, for the graph representation gi , we use Softmax function to obtain the predic-
tion likelihood y′i:

The weights W (l) are trained to minimize the loss function:

where yi represents the real value, y′i is the predicted value.
Based on the above work, we presented a graph-level graph attention network based 

LDA prediction algorithm called gGATLDA.

(7)elij = a(Wh
(l)
i ,Wh

(l)
j )

(8)αl
ij = softmaxi(e

l
ij)

(9)h
(l+1)
i = σ(

∑

j∈N (i)

αijW
(l)h

(l)
j )

(10)gi = concat(hlnc, hdis)

(11)y
′

i = softmax
(

gi
)

=
egi

∑n
j=1e

gi
, i = 1, 2, . . . , n

(12)L = −

N
∑

k=1

(yi ∗ logy
′

i)
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