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Background
The disease is an abnormal life activity process that occurs due to the disorder of home-
ostasis after the body is damaged by the cause of the disease under certain conditions. 
Currently, many studies have confirmed that there is a complex cross-regulation rela-
tionship among diseases, genes, lncRNAs, and miRNAs [1–4].
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Many researches have shown that although the proportion of encoded proteins in the 
human genome is less than 2%, under certain conditions, most of all nucleotides are 
detectably transcribed [5]. Among the various types of non-protein-coding transcripts, 
long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) has attracted more and 
more attention. Among them, lncRNAs are defined as non-coding RNA with a length 
greater than 200 nucleotides [6]; miRNAs are an RNA molecule with a length of about 
19–25 nucleotides that exists widely in eukaryotes [7].

The lncRNAs play an important role in a variety of biological mechanisms, such as 
epigenetic regulation, chromatin remodeling, gene transcription, protein transport, cell 
transportation [8]. The function of lncRNAs can be divided into the following categories: 
Transcription interference; Inducing chromatin remodeling and nucleosome modifica-
tion; Regulating alternative splicing mode; Generating endogenous siRNAs; Regulating 
protein activity; Structure or Tissue function; Change the location of protein; Precursor 
of small RNA [5, 9, 10], et al.

Many researchers found that the expression or functional abnormalities of lncRNAs 
are closely related to the occurrence of human diseases, including cancers and degen-
erative neurological diseases, which seriously endanger human health. For example: The 
lncRNA HOTAIR overexpression increases breast cancer cell proliferation [11, 12]. The 
lncRNA AFAP1-AS1 has abnormal expression in cholangiocarcinoma, gallbladdercan-
cer, hepatocellular carcinoma, gastric cancer, colorectal cancer, esophageal cancer [13]. 
The lncRNA HOXA-AS2 may be a biomarker for the treatment of gastric cancer, et al. 
[14]. There is a close correlation between lncRNA PCGEM1 and osteoarthritis [15]. 
Therefore, lncRNAs can be used as an important biomarker for the diagnosis of diseases.

The identification of lncRNA-diseases association includes biological experimental 
verification methods and computational model predictions. For example, based on the 
biological experiments, Faghihi et al. [16] found that the expression of BACE1-AS can 
promote the rapid feed forward regulation of β-secretase in Alzheimer’s disease. Apply-
ing the RT-PCR technology and Northern blot analysis, Hu et  al. [17] confirmed and 
verified that H19 may become a new target for colon cancer anti-tumor therapy. The 
results of biological experimental are reliable, however, they are time-consuming and 
costly.

Recently, the computational model attracted more and more attention, in which vari-
ous data resources can be integrated, to identify the lncRNA-disease association. For 
instance, based on a semi-supervised learning framework, the Laplacian regularized 
least squares for lncRNA-disease association calculation model (LRLSLDA) was sug-
gested to predict potential disease-related lncRNA models [18]. Integrating genome, 
regulome and transcriptome data, the naive Bayesian classifier was proposed to identify 
cancer-related lncRNAs [19]. Similarly, based on disease-gene cluster association scores, 
a machine learning method was suggested to predict potential lncRNA-disease associa-
tions [20]. Combining the incremental principal component analysis (IPCA) and ran-
dom forest (RF) algorithm, a machine learning model, called as IPCARF, was applied to 
predict the lncRNA-disease associations [21].

In the process of finding lncRNA-disease associations, the method of matrix factoriza-
tion has also been widely used. For instance, the dual-network integrated logistic matrix 
factorization and Bayesian optimization model has been used for lncRNA-disease 
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associations (DNILMF-LDA) [22]. In addition, the weighted graph regularized collabo-
rative matrix factorization (WGRCMF), dual sparse collaborative matrix factorization 
(DSCMF) and the multi-label fusion collaborative matrix factorization (MLFCMF) were 
applied to construct model for prediction of lncRNA-disease associations [23–25].

Based on the hypothesis that lncRNAs with similar functions may be related to dis-
eases with similar phenotypes, some researchers have proposed several calculation 
methods based on biological networks to predict disease-related lncRNAs.

In addition, integrating the lncRNA and the disease similarity network, and the 
lncRNA-disease association network. BPLLDA model based on paths of fixed lengths in 
a heterogeneous lncRNA-disease association network was proposed to predict lncRNA-
disease associations [26]. Furthermore, some random walk models on these heterogene-
ous networks were suggested to predict the relationship between lncRNA and disease 
[27–29]. For example, Sun et  al. [27] proposed the random walk with restart method 
on a lncRNA functional similarity network (RWRlncD). Gu et al. [28] proposed a global 
network-based random walk with restart algorithm on lncRNA seed nodes and disease 
seed nodes to predict the relationship between lncRNA and disease (GrWLDA). Based 
on the heterogeneous network through the lncRNA, disease, and gene similarity net-
work, MHRWR model was proposed based on random walk with restart algorithm on 
the global network [29].

Following the random walk with restart model, in the paper, a new computational 
model based on Laplacian normalized random walk with restart algorithm in a hetero-
geneous network was proposed to predict the association between lncRNA and disease. 
Firstly, the disease semantic similarity (lncRNA function similarity, gene function simi-
larity, miRNA function similarity) is calculated. And then, based on the association of 
lncRNA and disease (miRNA and gene), the Gaussian interaction profile kernel simi-
larity of lncRNA and disease (miRNA and gene) are calculated. The lncRNA function 
similarity (disease semantic similarity, miRNA function similarity, gene function simi-
larity) is integrated with the Gaussian interaction profile kernel similarity for lncRNAs 
(diseases, miRNAs, genes) to construct the isomorphic networks. Furthermore, the 
Laplace normalized random walk with restart algorithm on heterogeneous networks 
is developed to predict potential lncRNA-disease association. As a result, our method 
obtains reliable AUCs of 0.98402 in the ten-fold cross validation. The performance of 
our method is superior to other similar methods. Moreover, case studies on colorectal 
cancer, lung adenocarcinoma, stomach cancer and breast cancer also demonstrate the 
reliability of our model.

Methods
Experimental data sources

In the paper, the databases involved in lncRNA-disease associations mainly include LncR-
NADisease database [30, 31], EVLncRNAs database [32], Lnc2Cancer database [33], 
MNDR v3.1 database [34], et  al. Similarly, the lncRNA-miRNA association comes from 
the integrated data of DIANA-LncBase database [35], LncAcTdb 2.0 database [36], MiR-
code database [37], and StarBase database [38]. The lncRNA-gene association comes from 
the integrated data of LncRNADisease database [30, 31], LncAcTdb 2.0 database [36] 
and LncRNA2Target v2.0 database [39]. The miRNA-disease association comes from the 
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integrated data of MNDR v3.1 database [34], HMDD database [40] and MiR2Disease data-
base [41]. The miRNA-gene association comes from the data of MiRTarBase database [42]. 
The gene-disease association comes from the integrated data of DisGeNET database [43], 
CREEDS database [44], and DISEASES database [45].

Due to the different databases may have different names for the same biomolecule, so we 
need to perform data error correction and data cleaning on the data sets obtained from the 
database (mainly includes deleting duplicates, mistake, vacant data). In addition, the names 
of biomolecules of the same type from different databases are unified. In order to improve 
the comprehensiveness of the data and further improve the accuracy and scope of the pre-
diction, the union of the related data of the above database was considered.

For lncRNA, the intersection of three database, lncRNA-disease, lncRNA-gene and 
lncRNA-miRNA association set obtained from all databases, were considered to construct 
the lncRNA similarity network. There are 814 lncRNA in the work (Fig. 1). Finally, 2476 
miRNAs, 7986 genes, and 217 diseases were remained to research. At the same time, we 
also summarize some basic characteristics of the X–Y association dataset (e.g., the aver-
age degree) of the dataset in Table 1. And X and Y both stand for lncRNA, disease, gene, 
miRNA.

Calculate the similarity matrix

LncRNA functional similarity matrix

Similar to the method of Sun et al. [27], the functional similarity of two lncRNAs was com-
puted as following:

Supposing lncRNA l1 is associated with the disease group D1 ( D1 = {d1i|1 ≤ i ≤ a} ), and 
lncRNA l2 is associated with the disease group D2 ( D2 = {d2j|1 ≤ j ≤ b} ), the similarity 
between disease d11 and a disease group D2 is defined as follows:

(1)S(d11,D2) = max
d2∈D2

(Sim(d11, d2)),

Fig. 1  Ultimately retained the number of lncRNA, disease, miRNA, gene node. A lncRNA. B Disease. C miRNA. 
D Gene
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where Sim(d11, d2) is the disease semantic similarity of diseases d11 and d2. Then, the 
functional similarity between lncRNA l1 and l2 is defined as:

Disease semantic similarity matrix

The Disease Ontology (DO) provides open-source ontology for the integration of bio-
medical data that is associated with human disease [46]. The terms in DO are dis-
eases or ideas of disease-related that are organized in a directed acyclic graph (DAG). 
Applying the method of Wang et  al. [47, 48], the semantic similarity of diseases is 
calculated as following:

Given disease d, its DAG graph can be expressed as DAG(d) = (Ans(d), E(d)), where 
Ans(d) represents the set of the node, including node and its ancestor nodes, E(d) 
represents the edge set of the corresponding direct link from the parent node d to the 
child node. That is the E(d) denotes the relationship between different diseases. Based 
on DAG graph, the contribution of disease term d to the semantic value of disease T 
and the semantic value of disease T itself can be computed by the following two steps:

where � is the semantic contribution attenuation factor and its value ranged from 0 
to 1. As the direct distance between disease d and its ancestor diseases increases, the 
contribution of these ancestral diseases to the semantic value of disease d will gradually 
decrease. The semantic similarity between diseased d1 and diseased d2 is calculated by 
Eq. (5):

(2)LS(l1, l2) =

∑

1≤i≤a

S(d1i,D2)+
∑

1≤j≤b

S(d2j ,D1)

a+ b
.

(3)

{

DT (d) = 1 if d = T ,

DT (d) = max{� ∗ DT (d
′)|d′ ∈ chidren of d} if d �= T ,

(4)DV (T ) =
∑

d∈Ans(d)

DT (d),

Table 1  The basic characteristics of the X–Y association dataset

X Y Total Total of 
associations

Average 
degree 
of X

Average 
degree 
of Y

Max degree of X Max degree of Y

lncRNA 814

Disease 217 3434 4.2 15.8 90 418

miRNA 2476 38,010 46.7 15.4 2284 98

Gene 7986 14,987 18.4 1.9 2178 35

miRNA 2476

Disease 217 27,174 11.0 125.2 81 2453

Gene 7986 216,934 87.6 27.2 1374 355

Gene 7986

Disease 217 37,277 4.7 171.8 74 6066
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MiRNA functional similarity matrix

Similar to the Wang et al. [47] method, the functional similarity of two miRNAs can be 
defined as following:

Assuming that miRNA m1 is associated with the disease group D3 ( D3 = {d3k |1 ≤ k ≤ c} ) 
and miRNA m2 is associated with the disease group D4 ( D4 = {d4z|1 ≤ z ≤ e} ). The simi-
larity of a disease d31 and a disease group D4 is defined as follows:

and the functional similarity between miRNA m1 and m2 is computed by Eq. (7):

Gene function similarity matrix

The Gene Ontology (GO) database is the world’s largest informatics resource on the 
functions of genes [49]. For a GO node A, DAG = (Ans(A), E (A)) is its directed acyclic 
graph, where Ans(A) represents the set of all ancestors of node A (including node A); E 
(A) represents the set of edges connecting each node in DAG. For any GO node, assum-
ing t is the ancestor of A, or t = A, SA(t) of t’s contribution to A is defined by Eq. (8):

where � is the semantic contribution attenuation factor and its value ranged from 0 to 
1. As the direct distance between gene A and its ancestor genes increases, the contribu-
tion of these ancestral genes to the semantic value of gene A will gradually decrease. The 
semantic contribution SV (A) of node A is defined as follows:

Then the semantic similarity of nodes A and B is calculated by Eq. (10):

The similarity of a go node g and a GO node set G =
{

go1, go2, . . . , gof
}

 is defined as:

Assuming that the GO term set annotations of genes G1 and G2 are 
GO1 =

{

go11, go12, . . . , go1m
}

 and GO2 =
{

go21, go22, . . . , go2n
}

 , respectively, the simi-
larity of the two genes G1 and G2 is calculated by Eq. (12) [50]:

(5)DS(d1, d2) =

∑

d∈(Ans(d1)∩Ans(d2))

(Dd1(d)+ Dd2(d))

DV (d1)+ DV (d2)
.

(6)S(d31,D4) = max
d4∈D4

(Sim(d31, d4)),

(7)MS(m1,m2) =

∑

1≤k≤c

S(d3k ,D4)+
∑

1≤z≤e

S(d4z ,D3)

c + e
.

(8)

{

SA(t) = 1 if t = A,

SA(t) = max{� ∗ SA(t
′)|t ′ ∈ chidren of t} if t �= A,

(9)SV (A) =
∑

t∈Ans(A)SA(t).

(10)SGO(A,B) =

∑

t∈(Ans(A)∩t∈Ans(B)) (SA(t)+ SB(t))

SV (A)+ SV (B)
.

(11)S(g ,G) = max
1≤i≤f

(SGO(g , goi)).



Page 7 of 20Wang et al. BMC Bioinformatics            (2022) 23:5 	

Gaussian interaction profile kernel similarity for lncRNAs and diseases

Because there are many zeros in the matrix LS, DS, MS and GS, this will cause the spar-
sity of the matrix, which may lead to the inaccuracy of the prediction results. To avoid 
such scenario, we introduce the Gaussian interaction profile kernel similarity [51, 52].

Firstly, the m × n matrix LD represents the association matrix of lncRNA and disease, 
the elements are only 0 and 1. For example, if lncRNA li is related to disease dj, LD (i, 
j) = 1, otherwise LD (i, j) = 0.

In the same way, we can define the lncRNA-miRNA association matrix LM, lncRNA-
gene association matrix LG, disease-gene association matrix DG, miRNA-gene associa-
tion matrix MG, miRNA-disease association matrix MD, respectively.

The Gaussian interaction profile kernel similarity of lncRNA li and lj is defined as 
following:

where IP (li) is a binary vector, which represents the ith row of the lncRNA-disease asso-
ciation matrix LD, and m represents the number of lncRNAs. r ′l is a regulation parameter 
of the kernel bandwidth parameter of rl . According to the previous research, it is set to 1.

Similarly, the Gaussian interaction profile kernel similarity of disease di and dj is 
defined as:

where IP (di) is a binary vector, which represents the ith column of the lncRNA-disease 
association matrix LD and n is the number of diseases. r′d = 1 , it is a regulation param-
eter of the kernel bandwidth parameter of rd.

Gaussian interaction profile kernel similarity for MiRNAs and genes

The Gaussian interaction profile kernel similarity calculation method of miRNA and 
gene is similar to that of lncRNA and disease, but the correlation matrix MG is used 
here. Therefore, we similarly define as follows: IP (mi)is a binary vector, which represents 
the i-th row of the matrix MG and h is the number of miRNAs. r′m = 1, it is a regula-
tion parameter of the kernel bandwidth parameter of rm . IP (gi) is a binary vector, which 
represents the ith column of the matrix MG and k is the number of genes. r′g = 1, it is a 
regulation parameter of the kernel bandwidth parameter of rg.

(12)GS(G1,G2) =

∑

1≤i≤m

S(go1i,GO2)+
∑

1≤j≤n

S(go2j ,GO1)

m+ n
.

(13)GaL(li, lj) = exp(−rl ||IP(li)− IP(lj)||
2),

(14)rl = r′l/(
1

m

m
∑

i=1

||IP(li)||).

(15)GaD(di, dj) = exp(−rd ||IP(di)− IP(dj)||
2),

(16)rd = r′d/(
1

n

n
∑

i=1

||IP(di)||).
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Integration of similarities between lncRNAs, miRNAs, genes, and diseases

We integrate the lncRNA functional similarity (disease semantic similarity, miRNA 
functional similarity, gene functional similarity) with the Gaussian interaction profile 
kernel similarity for lncRNAs (diseases, miRNAs, genes) as follows:

where NL is the set of lncRNAs with no functional similarity with any other lncRNAs, 
ND is the set of diseases with no sematic similarity with any other disease, NM is the set 
of miRNAs with no functional similarity with any other miRNAs, and NG is the set of 
genes with no functional similarity with any other genes. By definition, LL, DD, MM and 
GG are symmetric.

The heterogeneous network

Based on the novel lncRNA similarity matrix LL, diseases similarity matrix DD, miRNA 
similarity matrix MM, and gene similarity matrix GG, four isomorphic networks include 
lncRNA similarity network, disease similarity network gene similarity network and 
miRNA similarity network were constructed, as shown in Fig. 2. In addition, a heteroge-
neous network through these four similarity networks and their interrelation ships were 
built based on six association matrix LD, LM, LG, MD, MG, DG, as shown in Fig. 3.

The random walk with restart

Based on the heterogeneous network, the random walk with restart (RWR) on the het-
erogeneous network to predict lncRNA-disease association was defined as follows [53]:

where P0 is the initial probability vector, Pt is the probability vector in which the ith ele-
ment is the probability of detecting the random walk at node i at step t. λ is the restart 
probability, and its value ranged from 0 to 1. W is the probability transition matrix and 
Wij denotes the transition probability from node i to j, when the L1 norm of Pt+1 and Pt 
is less than 10−6, it can be considered that reaches a stable state, meanwhile, the stable 
probability P∞ can be obtained.

The probability transition matrix W is constructed in this paper as follows:

(17)LL =

{

GaL(li, lj) if li or lj ∈ NL,

LS(li, lj) else.

(18)DD =

{

GaD(di, dj) if di or dj ∈ ND,

DS(di, dj) else.

(19)MM =

{

GaM(mi,mj) if mi or mj ∈ NM,

MS(mi,mj) else.

(20)GG =

{

GaG(gi, gj) if gi or gj ∈ NG,

GS(gi, gj) else.

(21)Pt+1 = (1− �)WPt + �P0,
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Among them, the matrix W includes four intra-transition matrices and twelve inter-
transition matrices. WLL is the intra-transition matrix of lncRNA similarity network. 
WDD, WMM and WGG are similar to WLL and represent the intra-transition matrix of 
disease similarity network, miRNA similarity network, and gene similarity network, 

(22)W =







WLL WLM WLG WLD

WML WMM WMG WMD

WGL WGM WGG WGD

WDL WDM WDG WDD






.

Fig. 2  Construction of similarity network of lncRNAs, diseases, miRNAs and genes

Fig. 3  Construction of heterogeneous network, and rank of lncRNA according to the stable probability of 
lncRNA by LRWRHLDA
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respectively. WLM is defined as the transition matrix from lncRNA network to miRNA 
network. WLG, WLD, WML, WMG, WMD, WGL, WGM, WGD, WDL, WDM and WDG are defined 
similar to WLM.

Laplacian normalization

Given the matrix A = A (i, j), the diagonal matrix D is defined as follows, if i = j, then D 
(i, j) is equal to the sum of the ith row of matrix A, otherwise D (i, j) = 0, then the Laplace 
normalization of matrix A is defined as [54, 55]:

Therefore, WLM and WLL can be obtained by the following two steps:
The probability of transition from li to mj is as follows:

The probability of transition from li to lj is as follows:

(23)
−→
A (i, j) =

A(i, j)
√

D(i, i)D(j, j)
.

(24)
−→
LM(i, j) =















LM(i, j)
�

�

i

LM(i, j)
�

j

LM(i, j)
if

�

i

LM(i, j)
�

j

LM(i, j) �= 0,

0 else.

(25)WLM(i, j) =



















PLM ∗

−→
LM(i, j)

�

j

−→
LM(i, j)

if
�

j

→

LM(i, j) �= 0,

0 else.

(26)
−→
LL(i, j) =








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



LL(i, j)
�

�

i

LL(i, j)
�

j

LL(i, j)
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�

i

LL(i, j)
�

j

LL(i, j) �= 0,

0 else.

(27)
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where PLM (PLG, PLD) is the parameter which represents the transition probability from 
lncRNA similarity network to miRNA (gene, disease) similarity network and its value 
ranged from 0 to 1. Besides, PLM  = PML, PLG  = PGL, PLD = PDL, PMG = PGM, PMD = PDM, 
PGD = PDG. Similarly, other intra-transition matrix and inter-transition matrix can be 
defined.Applying the Laplacian normalization, all elements of probability transition 
matrix W can be obtained.The calculation formula of P0 is as follows:

Among them, the parameters PL, PM, PG, 1 − PL − PM − PG represent the importance 
of lncRNA similarity network, miRNA similarity network, gene similarity network and 
disease similarity network, respectively. Their values ranged from 0 to 1. UL0 represents 
the initial probability of the lncRNA similarity network, which is equal probabilities and 
is assigned to all seed nodes in the lncRNA similarity network. The sum of UL0 is 1. The 
initial probability UM0 and UG0 are similar to UL0. UD0 represents the initial probability of 
the disease similarity network, for disease d, the initial transition probability of disease d 
is 1, and the transition probability of other diseases is 0.

Finally, the Laplace normalized random walk with restart algorithm is used to predict 
related lncRNAs scores (see Fig. 3). The method was called as LRWRHLDA (the Laplace 
normalized random walk with restart algorithm in heterogeneous networks to predict 
the lncRNA-disease association).

Results
Performance evaluation

In this paper, ten-fold cross validation is used to evaluate the performance of our model. 
In the ten-fold cross validation, all known lncRNA-disease interactions are randomly 
divided into ten folds. For each experiment, nine subsets are regarded as training sam-
ples and the remaining one subset is treated as test samples. After completing the test, 
predicted scores are generated. Then, we rank test samples and unknown lncRNA-dis-
ease interactions. The corresponding predicted result of test samples is considered as 
true positive (TP) when the predicted relevance score is greater than the threshold. Oth-
erwise, considered as false negative (FN). Similarly, for the unknown lncRNA-disease 
interactions, the corresponding predicted result consider as false positive (FP) when the 
predicted relevance score is greater than the threshold. Otherwise, considered as true 
negative (TN). Then, the true positive rates (TPR), the false positive rates (FPR), recall 
and precision are calculated as follow:

(28)P0 =







PL ∗ UL0

PM ∗ UM0

PG ∗ UG0

(1− PL − PM − PG) ∗ UD0






.

(29)TPR = recall =
TP

TP + FN
,

(30)FPR =
FP

FP + TN
,
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Finally, the receiver operating characteristic (ROC) curve and precision-recall curve 
(PR) curve are drawn as shown in Fig. 4. The area under the ROC curve (AUC) and the 
area under the PR curve (AUPR) are used to evaluate the performance of our method. 
The range of AUC, AUPR are all from 0 to 1. When the parameters are set to PLM = P

LG = PLD = PMG = PMD = PGD = 0.2, PL = 0.4, PM = 0.1, PG = 0.1, λ = 0.7, the results of ten 
experiments are shown in Table 2.

Comparison with different predicted methods using ten‑fold cross validation

In order to compare with other models, the data in this paper is applied to the BPLLDA 
model [26], the RWRlncD model [27], GrwLDA model [28] and the MHRWR model 
[29].

As a result, the ROC curves under ten-fold cross validation of LRWRHLDA, RWRl-
ncD, GrwLDA, BPLLDA and MHRWR were plotted in Fig. 5.

(31)precision =
TP

TP + FP
.

Fig. 4  The performance of LRWRHLDA by ten-fold cross validation. A The average ROC curve. B The average 
PR curve

Table 2  The AUC (AUPR) value for each experiment and mean AUC (AUPR) value

Test AUC​ AUPR

Test 1 0.98284 0.85944

Test 2 0.98326 0.86120

Test 3 0.98416 0.86039

Test 4 0.98531 0.85861

Test 5 0.98435 0.86283

Test 6 0.98309 0.86184

Test 7 0.98497 0.86178

Test 8 0.98337 0.86041

Test 9 0.98374 0.86227

Test 10 0.98510 0.86240

Mean 0.98402 0.86112
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As can be seen, LRWRHLDA has an AUC of 0.98402 and outperformed RWRlncD 
(0.53625), GrwLDA (0.83276), BPLLDA (0.87148) and MHRWR (0.97169). In summary, 
LRWRHLDA is better than other model in lncRNA-disease association prediction.

The area under PR curve (AUPR) is also used to evaluate the performance of 
LRWRHLDA model, BPLLDA model [26], the RWRlncD model [27], GrwLDA model 
[28] and MHRWR model [29] to avoid overestimates the performance of these methods 
(see Fig. 6).

Fig. 5  The ROC curve and AUC of LRWRHLDA, RWRlncD, GrWLDA, BPLLDA and MHRWR in predicting 
lncRNA-disease associations by the ten-fold cross validation

Fig. 6  The PR curve and AUPR of LRWRHLDA, RWRlncD, GrWLDA, BPLLDA and MHRWR in predicting 
lncRNA-disease associations by ten-fold cross validation

Table 3  The AUC and AUPR values when λ taking different values from 0.1 to 0.9, in which other 
parameters were fixed

PLM, PLG, PLD, PMG, PMD, PGD are all 0.2, PM = 0.1, PG = 0.1 and PL = 0.4

λ AUC​ AUPR

0.1 0.95693 0.45169

0.2 0.96973 0.57582

0.3 0.97582 0.66525

0.4 0.97947 0.73139

0.5 0.98184 0.78217

0.6 0.98338 0.82477

0.7 0.98402 0.86112

0.8 0.98346 0.89130

0.9 0.98058 0.91417
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It can be seen from Fig.  6 that the AUPR value of LRWRHLDA is also higher than 
other models.

Effects of parameters

There are ten parameters in our model, including the transition probability PLM, PLG, 
PLD, PMG, PMD, PGD between networks; the weight of the subnet PL, PM, PG; and the 
restart probability λ. Due to too many parameters and our limited computing resources, 
we arbitrarily fixed nine of these parameters in the paper and only discussed the impact 
of restart probability λ with the ten-fold cross validation in our model. The results are 
shown in Table 3. As can be seen, based on the AUC index, the parameter λ has less 
influence on the performance of LRWRHLDA, when λ = 0.7. Based on the AUPR index, 
when λ is equal to 0.9, the AUPR value reaches the maximum. And observing Table 3, 
the results showed that the restart probability λ has powerful effects on our model.

Case study
Case studies on predicted lncRNA‑disease associations

It is known that lncRNAs play critical roles in the development of many diseases. To 
evaluate the ability of LRWRHLDA in inferring potential lncRNA-disease associations, 
we use all known lncRNA-disease associations in LD as training data to assess the poten-
tial of predicted associations by our model.

The stable probability P∞ can be used as a measure of proximity to the seed lncR-
NAs. If P∞ (lncRNA i) > P∞ (lncRNA j), then lncRNA i will be in closer proximity to 

Table 4  The predicted top10 potential lncRNAs for four cancers by LRWRHLDA

Rank LncRNA Evidence LncRNA Evidence

Colorectal cancer Lung adenocarcinoma

1 CASC19 MNDR v3.1 ZNF295-AS1 MNDR v3.1

2 ENST00000535511 PMID: 28177879 LINC01969 MNDR v3.1

3 RP4 PMID: 29531464 PRKCZ-AS1 MNDR v3.1

4 CTNNAP1 PMID: 27487124 PIK3CD-AS2 MNDR v3.1

5 LINC01021 PMID: 29262524 GMDS-AS1 PMID: 31860169

6 UCOO2KMD.1 MNDR v3.1 FAM83A-AS1 MNDR v3.1

7 UICLM MNDR v3.1 ACTA2-AS1 MNDR v3.1

8 UCC​ MNDR v3.1 LINC00635 MNDR v3.1

9 N-BLR MNDR v3.1 LINC01207 PMID: 26693067

10 RP11-317J10.2 MNDR v3.1 LINC00941 MNDR v3.1

Stomach cancer Breast cancer

1 M59227 MNDR v3.1 LNC015192 MNDR v3.1

2 LOC150622 MNDR v3.1 LINC00993 MNDR v3.1

3 MUC2 MNDR v3.1 LINC00894-002 MNDR v3.1

4 AKR7L MNDR v3.1 AC008268.1 MNDR v3.1

5 AC110615.1 MNDR v3.1 MIR2052HG MNDR v3.1

6 AC079089.1 MNDR v3.1 ST8SIA6-AS1 MNDR v3.1

7 PWRN1 MNDR v3.1 PAX8-AS1-N MNDR v3.1

8 SUCLG2-AS1 MNDR v3.1 PRLB MNDR v3.1

9 AL162586.1 MNDR v3.1 PDCD4-AS1 MNDR v3.1

10 LINC01856 MNDR v3.1 ADARB2-AS1 MNDR v3.1
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the seed lncRNAs than lncRNA j in the lncRNA similarity network. As a result, all can-
didate lncRNAs can be ranked according to the P∞ , and the top ranked lncRNAs can 
be expected to have a high probability of being associated with the disease of interest. 
The novel lncRNA-disease associations are ranked according to the stable probability of 
LRWRHLDA. To validate the predictions, we use literature or the following those data-
bases: LncRNADisease [30], LncRNADisease v2.0 [31], MNDR v3.1 [34], lnCAR [56]. 
Specifically, we list the top 10 lncRNAs associated with four diseases, including colo-
rectal cancer, lung adenocarcinoma, stomach cancer and breast cancer. According to 
P∞ , the top 10 results were shown in Table 4 (the detailed results see Additional file 1: 
Table-S1).

Colorectal cancer is the third most common cancer diagnosed in the US. While the 
incidence and the mortality rate of colorectal cancer has decreased due to effective 
cancer screening measures, there has been an increase in number of young patients 
diagnosed in colon cancer due to unclear reasons at this point of time [57]. Lung adeno-
carcinoma is one of the main types of lung cancer, which belongs to non-small cell car-
cinoma. The incidence of lung adenocarcinoma is mainly female and non-smokers [58]. 
Stomach cancer is the fifth most common cancer and the third most common cause of 
cancer death globally [59]. The most majority of stomach cancers are adenocarcinomas, 
with no obvious symptoms in the early stage. They are often similar to the symptoms of 
chronic gastric diseases such as gastritis and gastric ulcers, and easily ignore. Moreover, 
the current early diagnosis rate of stomach cancer is still low. Breast cancer is a malig-
nant tumor that occurs in the epithelial tissue of the breast. At present, breast cancer 
has become a major public health problem in the current society, and its cause is not yet 
fully understood. In the world, breast cancer is an important cause of human suffering 
and premature mortality among women [60].

In Table 4, the six potential lncRNA-disease associations were confirmed in the litera-
ture except the existing lncRNA-disease associations in the database, in which included 
ENST00000535511-colorectal cancer, RP4-colorectal cancer, CTNNAP1-colorectal can-
cer, LINC01021-colorectal cancer, GMDS-AS1-lung adenocarcinoma, LINC01207-lung 
adenocarcinoma. These results demonstrated that the predictive performance of the 
proposed method.

Case studies on predicted novel diseases and novel lncRNAs

For each disease, it is deemed as a novel disease and all its related lncRNAs are removed 
to predict potential lncRNAs related the disease. All the candidate lncRNAs were ranked 
according to P∞ and lncRNAs with high scores were expected to be potentially related 
with investigated disease d. Depend on P∞ , the top 10 results were listed in Table 5 (the 
detailed results see Additional file 2: Table-S2).

Analogously, the stable probability P∞ can be also used as a measure of proximity to 
the seed diseases. All the candidate diseases were ranked according to P∞ and diseases 
with high scores were expected to be potentially related with investigated lncRNA. To 
evaluate the ability of our model to predict new lncRNAs, we analyzed two lncRNAs 
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including H19 and HOTAIR. For each lncRNA, it is removed all its related diseases 
in predicting potential diseases. According to P∞ , the top 10 results were showed in 
Table 6 (the detailed results see Additional file 3: Table-S3).

Table 5  The predicted top 10 novel lncRNAs-related for four cancers by LRWRHLDA

Rank LncRNA Evidence LncRNA Evidence

Colorectal cancer Lung adenocarcinoma

1 CARL Unconfirmed FOXP4-AS1 lnCAR​

2 CASC19 MNDR v3.1 NEXN-AS1 lnCAR​

3 MCM3AP-AS1 PMID: 32982409 VPS9D1-AS1 lnCAR​

4 AL358334.2 lnCAR​ TERC lnCAR​

5 AL157400.4 lnCAR​ AC018413.1 unconfirmed

6 LAMA5-AS1 lnCAR​ AL157838.1 lnCAR​

7 HNF1A-AS1 MNDR v3.1 TUBB2A unconfirmed

8 RGMB-AS1 lnCAR​ AC019197.1 lnCAR​

9 C21ORF62-AS1 lnCAR​ Z93930.2 lnCAR​

10 CASC8 MNDR v3.1 SATB2-AS1 PMID: 34249715

Stomach cancer Breast cancer

1 SSBP3-AS1 lnCAR​ LINC00652 lnCAR​

2 AC103740.1 lnCAR​ TAPT1-AS1 lnCAR​

3 AF117829.1 Unconfirmed AC007823.1 lnCAR​

4 AC092910.3 lnCAR​ LHX1-DT PMID: 33194577

5 RAB30-AS1 lnCAR​ KLF3-AS1 MNDR v3.1

6 AC093157.1 lnCAR​ FGF14-AS2 MNDR v3.1

7 GATA2-AS1 lnCAR​ KCNK15-AS1 MNDR v3.1

8 PCA3 lnCAR​ AC107959.2 lncRNADisease 
v2.0 (predicted)

9 TERC MNDR v3.1 AP003486.1 Unconfirmed

10 AC087164.1 lnCAR​ LINC00993 MNDR v3.1

Table 6  The predicted top 10 novel diseases-related for H19 and HOTAIR by LRWRHLDA

H19 HOTAIR

Rank Disease Evidence Disease Evidence

1 Carcinoma lncRNADisease v2.0 Parkinson’s disease MNDR v3.1

2 Parkinson’s disease MNDR v3.1 Carcinoma lncRNADisease v2.0

3 Colon cancer MNDR v3.1 Colon cancer MNDR v3.1

4 Stomach cancer MNDR v3.1 Liver cancer MNDR v3.1

5 Liver cancer MNDR v3.1 Stomach cancer MNDR v3.1

6 Pancreatic cancer MNDR v3.1 Pancreatic cancer MNDR v3.1

7 Kidney cancer MNDR v3.1 Colorectal cancer MNDR v3.1

8 Schizophrenia lncRNADisease v2.0 (predicted) Kidney cancer MNDR v3.1

9 Colorectal cancer MNDR v3.1 Colorectal carcinoma MNDR v3.1

10 Glioblastoma lncRNADisease Melanoma lncRNADisease
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Observing Table  5, we can find that thirty-five of the top ten lncRNAs associations 
with four cancers were validated by the database or literature. However, other five can-
cer-lncRNA associations, colorectal cancer-CARL, stomach cancer-AF117829.1, breast 
cancer-AP003486.1, lung adenocarcinoma-AC018413.1 and lung adenocarcinoma-
TUBB2A have not been confirmed by the database or literature. It implies our method 
can predict more additional lncRNA-disease associations.

From Table 6, in both cases, all top ten associated diseases were validated by the data-
base. In summary, LRWRHLDA achieves favorable performances in predicting novel 
disease-associated lncRNAs and novel lncRNA-associated diseases.

Discussion
At present, many studies have shown that lncRNA has an important influence on the 
physiological process of diseases. Because traditional biological experiments are time-
consuming and costly, it is necessary to develop a computational model to predict the 
association between lncRNA and disease.

In this paper, a new model-LRWRHLDA based on the Laplace normalized random 
walk with restart algorithm in heterogeneous network was constructed to predict poten-
tial lncRNA-disease associations. The ten-fold cross validation test is applied to evaluate 
the prediction performance of our method. In comparison with the state-of-the-art pre-
diction methods, our method can achieve better performance in terms of AUC values. 
Moreover, case studies of colorectal cancer, lung adenocarcinoma, stomach cancer and 
breast cancer are implemented to further demonstrate that it could be a useful method 
for predicting potential relationships between lncRNAs and diseases as well.

However, our method has some limitations. Firstly, since we have 10 parameters, the 
selection and adjustment of parameters still face some difficulties. Secondly, because of 
our model is based on four networks, there are too many nodes in the network. In the 
random walk process, the more nodes there are, the longer the random walk time will 
be. In the future, we will continue to improve the model.

Conclusion
In this study, we proposed an effective method, LRWRHLDA, which is based on the 
Laplace normalized random walk with restart algorithm in heterogeneous network to 
predict the potential lncRNA and disease association. First, a heterogeneous network 
based on lncRNA, disease, miRNA, gene similarity network and their correlation net-
works were constructed. Then, we calculate the probability transition matrix by Laplace 
normalization. Finally, the potential lncRNA-disease associations were predicted by the 
random walk with restart over heterogeneous networks. Furthermore, LRWRHLDA can 
predict isolated disease-related lnRNA (isolated lnRNA-related disease). Our method is 
evaluated comprehensively by ten-fold cross validation and case studies in comparison 
with other methods. The results show that our method has higher prediction accuracy.

Abbreviations
lncRNAs: Long non-coding RNAs; miRNA: MicroRNA; LRWRHLDA: Prediction the potential lncRNA-disease associations 
based on Laplace normalized random walk with restart algorithm in heterogeneous networks; ROC: Receiver operating 
characteristic; TPR: True positive rates; FPR: False positive rates; AUC​: Areas under ROC curve; PR: Precision-recall; AUPR: 
The area under the precision-recall curve.
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