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Introduction
As antibiotic resistance poses a substantial worldwide health threat [1], leading academ-
ics have recently declared that we stand at the precipice of the “post-antibiotic era” [2]. 
To circumvent resistence, we need to limit inappropriate prescribing of existing drugs 
and also accelerate the development of novel antibiotics. Moreover, there is also a clear 
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need to develop better treatment strategies using existing drugs to improve their efficacy 
and prevent the selection of further resistance.

Even though antibiotics have been used since 1944, we are not yet able to predict how 
antibiotic concentration affects bacteria. That leads to our inability to design rational 
treatment strategies using existing drugs. That is illustrated by the fact that substantial 
treatment improvements have been made solely based on expert opinion even after dec-
ades of clinical practice [3–7].

Currently, most dosing recommendations are based on the selection of the best regi-
ments during a series of trial-and-error experiments. Many candidate drug regimens fail 
during this testing process, and for those candidates that do succeed, the best regimen 
may be missed. This costly and long trial-and-error approach may also slow down the 
development of new antibiotics and limits the opportunities for dosing improvement of 
existing drugs [8]. The design of rationale dosing of new combination regimens using 
multiple drugs is even more complex. The nature of the drug-drug interaction may 
change depending on drug concentration and therefore, antibiotic synergy and antago-
nism cannot usually be predicted [9]. Furthermore, differences in the pharmacokinetic 
and pharmacodynamic profiles of drugs used in combination regimens can promote the 
selection of resistance during multi-drug treatment [10, 11].

We require new tools to rationally design dosing regimens that maximize the efficacy 
of existing antibiotics and to shorten the development process for new antibiotics [12]. 
The development of models that can guide the selection of optimal dosing strategies 
from data collected in early phases of antibiotic development (e.g. drug-target binding 
and transmembrane permeability, bacteriostatic and bactericidal action of living bac-
teria) could accelerate the drug development process and dosing design process [13]. 
Computational models and tools that predict relapse from pre-clinical and early clinical 
data would be immensely demanded [14, 15].

Mathematical models such as mechanistic pharmacodynamic drug-target binding 
[16] explain mechanistic details of how the given drug concentration affects its targeted 
bacteria. In the mechanistic models, each living bacterium has n target molecules. The 
models classify living bacteria into different compartments based on the number of 
bound target molecules [17]. They also incorporate both bacteriostatic and bactericidal 
action of living bacteria into their simulations. While such models have gained traction 
in the last years, there are no available tools to implement those models for scientists 
who are not experts in mathematical modelling. Developing these computational mod-
els to simulate the mechanism of drug-target binding requires both complex modeling 
and programming process. For healthcare providers and scientists with a non-quanti-
tative background, creating such mathematical models for their considered drugs and 
bacteria is a challenging and time-consuming task.

In this work, we have devised an extension of the mechanistic binding-kinetic model 
that simulates the process of bacterial antibiotic target-binding. The extended model 
allows the incorporation of clinical drug concentration data to the original mechanistic 
model [17] in order to understand the effect of drug-target binding in vivo. Based on the 
extended model, we have developed an interactive web-based tool, namely vCOMBAT, 
to allow non-quantitative scientists to create and visualize their own computational 
models of bacterial antibiotic target-binding. In contrast to our previously developed 
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COMBAT modeling framework [18], this tool allows to incorporate antibiotic time-con-
centration profiles measured in patients. The tool can inform optimal dosing strategies 
based on antibiotic and bacteria data provided by the users. We also demonstrate how 
Rifampicin affects bacterial populations of Tuberculosis (TB) bacteria using our vCOM-
BAT tool.

Method and implementation
Mathematical models of drug binding kinetics

The web-based tool is built as an extension of the classic reaction kinetics model [17], 
where a bacterium has n target molecules binding to the antibiotic molecules. Depend-
ing on the number of bound target molecules x out of n target molecules in a bacterium, 
bacteria are classified into n+ 1 compartments Bx ( where x is from 0 to n). Living bacte-
ria also replicate and die at a rate as functions of the bound targets x. When a bacterium 
duplicates, it results in two bacteria with two times of the number of target molecules 
in two daughter cells. However, the number of bound target molecules x in the mother 
cell remains constant and is distributed into the two daughter cells. The distributions are 
calculated based on a hypergeometric distribution function. The model is implemented 
as a system of ordinary differential equations as Eq. 1:

where Bx is the bacteria population with x bound targets; n is the number of targets per 
bacterium; kf  is the binding rate; kr is the unbinding rate; V = e−15[L/bacterialcell] is 
the average intracellular volume; and nA = 6× e23 is the Avogadro number; C is the car-
rying capacity of total bacterial population; A is the drug concentration; T is the target 
concentration; AT is the bound target concentration; ρx is the total rate with which rep-
lication creates new bacteria with x bound target; rx and dx are the replication and death 
rate of bacteria with x bound targets, respectively; fi,x is the hyper-geometric distribu-
tion function.

We develop vCOMBAT as an extension of the classic reaction kinetics model [17]. 
In our extension of the model, instead of calculating antibiotic concentration A from 
Eq. 1, users can supply their own measured concentration data to the model. The benefit 
of incorporating external drug concentration data into the model is to make the model 
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more flexible so that the user can supply the drug concentration data from their meas-
urements or computation from a pharmacokinetic model. By using the clinical/meas-
ured concentration data, the model can reflect the bacteria population of the in  vivo 
environment. By computing the concentration data from a pharmacokinetic model, it 
allows the users to test the effects of drug concentration data from different pharmacoki-
netic models.

Rifampicin test case

TB is currently the bacterial infection with the highest number of infections in the world. 
Even though antibiotics drugs to treat TB are used for many decades, the treatment suc-
cess rate is low. Understanding how anti-tuberculosis drugs affect the total bacterial 
population in TB patients helps to guide the design of dosing strategies. Rifampicin is 
one of the most effective antibiotics to treat TB due to its safety and tolerability of its 
high-dose treatment and its low production cost [19]. There are currently several clinical 
trials on assessing increasing the doses on rifampicin and, therefore, it is a huge interest 
to model Rifampicin actions on TB [20].

The pharmacokinetic-pharmacodynamic model is intended to capture and simulate 
the decrease in the number of bacteria in the cavity walls in the lungs of the tuberculosis 
patients in response to rifampicin exposure. Table 1 summarizes the parameter values of 
Rifampicin and TB bacteria used in Eq. 1.

Webtool implementations

In order to make the vCOMBAT tool accessible to on-line users, it is important to have a 
response time (i.e., computation runtime of the model to produce results) as fast as possi-
ble. Choosing a high-performance math library for numerical computation to solve our ODE 
system is one of the solutions to enhance its time performance. The original model was built 

Table 1  Model-parameter values when using Rifampicin in TB patients. These values are identified 
from the literature

Parameter Description Unit Value References

A Antibiotic concentration mg/L e.g., 5 mg/L Measured/external source

B0 Starting population Number of bacteria 1e6 Assumption

n Target molecules Molecules 100 Assumption

D0 Maximum death rate s
−1

1.6e−5 [28]

R0 Maximum replication rate s
−1

9.25833e−6 [28]

kT Killing threshold 99 From fc of Eq (3) [29]

MIC =
KDfc
1−fc

rT Replication threshold 98 From fc of Eq (3) [29]

MIC =
KDfc
1−fc

kf Binding rate M
−1

s
−1

1.2e6 [30]

kr Unbinding rate s
−1 0.001284 [30]

W Drug molecular weight g/mol 822.94 [31]

C Carrying capacity Bacteria/ml 1e9 [29]

V Intracellular volume L/bacterial cell 1e−15 [29]

MIC Minimum inhibitory concentration mg/L 0.4 [28]
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in R environment because R provides a vast amount of supported statistical tools and pack-
ages which makes it straightforward to program mathematical models [21]. However, R is 
also known for its low performance compared to other programming languages [22].

To provide high performance and short computational time, GNU Scientific Library 
(GSL) [23] is chosen as a numeric software package to solve our large ODE system 
described in Section Mathematical models of drug binding kinetics. The model has 
ODE system with 104 equations for 104 variables: 101 bacteria compartments Bx ( where 
x varies from 0 to 100), the drug concentration A, the target concentration T and the 
bound target concentration AT as in Eq. 1 where the drug concentration A can be sup-
plied by the user with their own measured concentration data.

To solve the ODE system, we use the driver gsl_odeiv2_driver_alloc_y_new from GSL 
library [23] that wraps the evolution, control and stepper objects. The chosen step func-
tion is the explicit embedded Runge-Kutta method gsl_odeiv2_step_rk2. The desired 
absolute and relative error limits for the driver are set as e−5.

Antibiotic concentrations A are measured/supplied in different time points separated 
by a time interval (e.g., every hour or every day). In order to incorporate the external 
concentration data into the original model, the concentration values A(t) at time t are 
calculated by a linear function of the two measured concentration data points A(t1) and 
A(t2) , where t1 < t < t2.

Results
In this section, we demonstrate how our vCOMBAT model estimates bacteria popu-
lation when using Rifampicin to treat TB patients. Then, we evaluate the results by 
comparing the simulated outputs of vCOMBAT model with the traditional pharmaco-
dynamic model [24]. We also conduct experiments to analyze the correctness and time 
performance of the extended model.

Model estimation of Rifampicin

In this section, we demonstrate the use of the vCOMBAT tool for antibiotic Rifampicin 
treatment in TB patients. We have the vCOMBAT model parameters from Table 1 and 
the antibiotic concentration over time from the published compartmental pharmacoki-
netic model from Strydom et al.  [25]. The compartmental pharmacokinetic model can 
be used to simulate antibiotic levels in different kinds of infected tissue in the lungs of 
TB patients. Open cavities in the lungs are considered to be the source of the sputum 
which is often measured in tuberculosis clinical trials [13, 26]. Therefore, we have cho-
sen to model the antibiotic concentrations in the tissue of cavity walls. We simplify the 
compartmental model to our requirement by using only absorption, plasma, and tissue 
compartments without using a compartment chain for the absorption as Eq. 2:
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The parameters of Eq. 2 are published by Strydom et al. [6], where input(t) is the input 
function, to be able to implement daily doses of drugs into the absorption compart-
ment; Aabs , Atissue , and Aplasma are antibiotic concentrations in the absorption, plasma 
and tissue compartments, respectively; ka = 1.55[h−1] is the absorption rate of the drug 
from absorption compartment; CL = 5.72[L/h] is the clearance rate of the drug from the 
plasma compartment; Vs = 52.3[L] is the volume of distribution in liters; R = 0.614 is 
the penetration coefficient into the tissue (cavity wall); kpl−tissue = 1.98[h−1] rate of drug 
moving from plasma to tissue. For the estimates, we simulated doses of Rifampicin as 
10 mg/kg bodyweight (standard dose) for a 60 kg person [27].

We use the antibiotic concentration over time generated from the compartmental 
pharmacokinetic model as concentration input for the vCOMBAT model. The simu-
lated bacteria population over time by the vCOMBAT model is presented in Fig.  1. 
The results show that the bacteria population reduces but then relapses approximately 
after day two when a patient is treated with only a single dose of Rifampicin (600 mg). 
The results also show that with repeated doses of Rifampicin daily (i.e., 600 mg every 
day in 4 days), the bacteria population keeps being reduced through 4 days until 0.6% 
of the original population.

Comparison of vCOMBAT to a traditional pharmacodynamic model

In this section, we compare the output of our vCOMBAT model - a mechanistic phar-
macodynamic model with the traditional pharmacodynamic model by Aljayyoussi 
et al. [24]. Mechanistic models provide a deep understanding of drug action and cap-
ture various pharmacodynamic effects [16]. Traditional models, on the other hand, 
are simpler but limited due to several assumptions that are likely invalid in reality. 
e.g., There is no cellular growth or death meaning that the total number of target mol-
ecules is constant. Traditional models are, therefore, not able to capture the pharma-
codynamic effects such as post-antibiotic and inoculum effect [16].

The traditional model by Aljayyoussi et  al.  [24] develops the relationships of the 
antibiotic concentration and the net growth (elimination) rate of Mycobacterium 
tuberculosis bacteria exposure to Rifampicin as in Eq.  3, where A is the antibiotic 
concentration in [mg/ml], B(t) represents of bacterial density over time in [ml−1 ], r is 
growth rate of bacteria in [day−1 ], ECmax is the maximum elimination rate in [day−1 ], 
and EC50 is the half-maximal effective concentration in [mg/L]. Aljayyoussi et al. [24] 
found the values of ECmax = 1.82 , EC50 = 0.51 , and r = 0.8 by fitting their clinical 
data into their model. With concentration A provided by the compartmental phar-
macokinetic model [25] described in Section Model estimation of Rifampicin and the 
known parameters, the bacteria population over time B(t) by the traditional model 
[24] is computed as Eq. 3.

(3)
δ(A) = −r +

ECmaxA

EC50 + A

dB(t)

dt
= −δ(A)B(t)
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Figure 2 displays the bacteria population after treating TB patients with Rifampicin over 
4 days by our mechanistic vCOMBAT model and the traditional model [24]. We notice 
that for a single-dose treatment (600 mg of Rifampicin) with the vCOMBAT model, the 
total bacteria population reduces for 2 days before bacteria regrow while with the tra-
ditional model, the population decreases and then increases after approximately 18 h. 
This can be explained by the post-antibiotic effect [16] which the mechanistic models 
can capture. The post-antibiotic effect is the delay of the bacterial regrowth after bacteria 
are exposed to antibiotics. The bound drug-target molecules require a certain time to 
unbind and free the targets, as well as the drug molecules need time to leave the cell. 

Fig. 1  Bacterial population predicted by the extended vCOMBAT model over time. The three diagrams 
display the bacterial population with different simulated treatment length and dosing strategies when using 
Rifampicin in TB patients. The model-parameter values are taken from Table 1. The resulting graphs show 
that (a) with a single dose of Rifampicin (600 mg), the bacteria population decreases and then regrows 
approximately after day two and (b) with repeated doses of Rifampicin daily, the bacterial population keeps 
being decreased through 4 days and (c) the bacterial population over the first 30 min of the simulated 
treatment for both dosing strategies in (a) and (b). The x-axis shows the simulated treatment length in hours 
or minutes. The y-axis shows the resulting bacterial population over the treatment time. The percent.bound 
legends representing the sub-populations which have from 0 to 100% of bound targets are depicted by 
different colors displayed in (d)
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Therefore, the vCOMBAT model in Fig. 2 has the bacteria regrown later than the bacte-
ria in the traditional model.

Model computational correctness

In this section, we analyze the performance of the original and extended vCOMBAT 
models. We design the three test cases for three scenarios with model parameters from 
Table 2. Test case 1 has no bacterial growth and death; test case 2 is a normal scenario 
where there is bacterial growth and death while test case 3 has a high initial antibiotic 
concentration which shows the effect on the bacteria subpopulations from different per-
centages of bound targets. To validate the results from the extended model, we com-
pare the output of the original and the extended model for the three designed test cases. 
The antibiotic concentration input for the extended model is generated by the original 
model. In this way, we expect that the outputs of the two models are similar. Figure 3 
demonstrates the effect of model parameters on the total bacteria population and bacte-
rial population with different percentages of bound targets. The results from Fig. 3 show 
that both the original model and the extended model provide similar results in terms of 
the bacterial population and percentage bound target for all three test cases.

Model performance analysis

We also analyze the performance of our extended model together with the original 
model in two environments: R and C. We conduct the experiments to measure compu-
tation runtime of the original model and the extended model in different environments. 
The original model is implemented in both R programming language and C program-
ming language. The extended model is implemented in C environment.

Fig. 2  The comparison of vCOMBAT model and the traditional model regarding the bacterial population 
after treating TB patients with Rifampicin over 4 days. Both the vCOMBAT model and the traditional model 
[24] use the supplied drug concentration data from the compartmental pharmacokinetic model [25]. In 
this diagram, the x-axis shows the simulated treatment length (days). The y-axis depicts the total bacterial 
population throughout the treatment duration. The green and blue lines are the total bacterial population 
simulated by the vCOMBAT model with repeated doses and a single dose, respectively. The orange and 
yellow lines are the total bacterial population simulated by the traditional pharmacodynamic model [24] with 
repeated doses and a single dose, respectively. The bacterial population by the vCOMBAT model has a relapse 
that occurred later than the population by the traditional model due to the post-antibiotic effect
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Table 2  Model-parameter values of the three test cases used for model validation and performance 
analysis

Parameter Testcase 1 Testcase 2 Testcase 3

Starting population 1e6 1e6 1e6

Initial antibiotic level (mol/cell) 1e3 1e3 1e6

Simulated treatment length (s) 86400 86400 86400

Target molecules 100 100 100

Maximum kill rate 0 0.001 0.001

Killing threshold 50 60 60

Replication threshold 50 50 50

Maximum replication rate 0 0.00025 0.00025

Binding rate 1 1 1

Unbinding rate 0.01 0.01 0.01

Drug Molecular Weight 555.5 555.5 555.5

Carrying capacity 1e9 1e9 1e9

Intracellular volume 1e−15
1e−15

1e−15

Fig. 3  Model validation by comparing the result from the original model implemented in R and the 
extended model implemented in C. The three test cases were designed with different model-parameter 
values from Table 2 and scenarios. Test case 1 has no growth and death of bacteria. Test case 2 has the growth 
and death of bacteria. In test case 3, the initial dose of antibiotic is kept as the one in test case 2, but the 
initial number of bacteria is 1e6 instead of 1e4 as in test case 2. In (a), the x-axis shows the simulated treatment 
length in 60 min. The y-axis shows the bacteria population over the treatment length. There are 101 stacked 
areas representing the bacterial population which has 0 to 100% of bound targets. The percent bound 
legends are depicted by a range of different colors. Since the external concentration input for the extended 
model is from the output of the original model, we expect that the two models provide similar outputs. The 
results show that for all three test cases, model behaviors of the original model and the extended model are 
similar in terms of the bacterial population and percentage bound target. In both models, the results also 
demonstrate the effect of model parameters such as death/growth rate, initial antibiotic level, and initial 
population on the final population. In test case 3, the extended model predicts an initial peak for some 
subpopulations due to the difference of drug-concentration profiles. I.e., the extended model is supplied 
with concrete values of drug concentration while the original model calculated the continuous drug 
concentration values at every time step. The plot (b) shows the killing curve assumed for the models, where 
R0 , rT  are the maximum replication rate and replication threshold, respectively; D0 , kT  are the death rate and 
killing threshold, respectively. In (b), the y-axis is the replication/death rate while the x-axis is the percentage 
of bound target. The more targets in the bacteria are bound, the slower rate that bacteria replicates with until 
replication threshold kT  . When the percentage of bound target reaches killing threshold kT  , the death rate 
becomes D0
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Environmental set-up In R environment, we used library deSolve to solve our ODE sys-
tem and tictoc to measure the runtime of simulations. In C environment, we used GNU 
Scientific Library GSL 2.5 to solve ODE systems. The parameters of the experiments are 
from Test case 2 of Table 2. Test case 2 was chosen as a typical scenario where there are 
growth and death of bacteria. Each experiment was run at least three times to measure 
the mean runtime and its variability. All experiments were conducted on an Intel plat-
form with one Intel Core i7 processor (4 cores, 2GHz speed, and 8 GB DDR3).

Time performance The performance of the original model and the extended model 
are illustrated in Fig.  4. The experimental results show that the computational model 
requires significant processing time in R environment as compared to C environment. 
e.g., to simulate 24-h treatment length, the computation time needs a maximum of 
4252 s in R and a maximum 150 s in C. Since the computation time (runtime) is pro-
portional to the simulated treatment length, the longer the simulated treatment length 
is, the longer computational time is required. The performance of the extended model 
in C environment is approximately 28 times faster the conducted experiments for the 
original model in R environment. By improving the performance, the model results are 
accessible to users in a shorter time. Moreover, the timely model is also beneficial in the 
scenario where processing algorithms require running the model with several iterations.

vCOMBAT model as a scientific web‑based tool

We develop a web-based tool to provide a user-friendly, scientific platform to cre-
ate pharmacodynamic models and simulate them using our simulation software. This 
online tool also provides data visualization of the simulation results based on input 
parameter-values of the chosen drug compounds, bacteria type, and treatment length. 
The tool illustrates critical information such as bacteria population, drug concentration 
and complex bound target over treatment length to assist the design of dosing regimens. 

Fig. 4  Performance comparison of the original model implemented in programming language R, the 
original model in C, and the extended model implemented in C. The x-axis shows the simulated treatment 
length in hours. The y-axis shows the runtime in seconds to complete the simulation. Each experiment 
(i.e., test case 2 with different simulated treatment lengths (i.e., 15 min, 1 h, 12 h, and 24 h)) is run at least 
three times and their error bars represent runtime variability. The model-parameter values of experiments 
are from Table 2. The resulting graph shows that the computational performance of the model is improved 
significantly in the C environment. The extended model in C environment has the shortest computation time
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Figures 5 and 6 are the sample pages visualizing the effect of a single dose of Rifampicin 
on a typical Tuberculosis patient over 4 days.

The web tool can be accessed at https://​combat-​bacte​ria.​org/. The tutorial providing 
step-by-step instructions for using the features of the interactive vCOMBAT web-based 
tool is in the supplementary document (Additional file 1).

Discussion
In the real scenario using Rifampicin to treat TB, the output of the vCOMBAT model 
and tool are compared with the output of the traditional pharmacodynamic model 
[24]. Both models can predict the relapse from a single-dose Rifampicin at different 
time points. The difference is accounted for by the post-antibiotic effect. The vCOM-
BAT model is a mechanistic pharmacodynamic model that can capture the post-
antibiotic effect where bacterial regrowth is delayed. The result from the vCOMBAT 
tool can aid the selection of an optimal drug dosing by informing which dosing regi-
mens can terminate the bacterial population and clear an infection. It can also predict 

Fig. 5  Interactive web-based tool vCOMBAT for visualizing bacterial population, antibiotic concentration, 
and complex bound target over simulated treatment length. This figure shows a result page of vCOMBAT 
displaying the bacterial population when using Rifampicin to treat TB with a single dose. The input 
parameters are from Table 1. The results (the graph in the right) are displayed in the logarithm scale based on 
model-parameter values provided by users (the panel in the left). Users can provide the desired parameter 
values by entering their data to the panel on the left. Users also provide measured/external antibiotic 
concentrations by entering data to the field “Drug Concentration over Time”. In the resulting graph, the x-axis 
shows the simulated treatment length in hours. The y-axis shows the resulting bacterial population in the 
logarithm scale over the treatment time. There are 101 stacked area in this graph representing the bacterial 
population Lx (x represents the percentage of bound targets varies from 0 to 100). The darker color depicts 
the higher value of x. The web-based tool also provides the output data ( Lx values for each hour during the 
simulated treatment length)

https://combat-bacteria.org/
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relapse from pre-clinical and early clinical data and therefore, shorten the develop-
ment process for new antibiotics.

The vCOMBAT tool run time varies by the values of the model parameters. For the 
model of using Rifampicin to treat TB patients, the runtime is longer (e.g., 15 min of 
simulation for 4 days of simulated treatment length) than the sample test cases due to 
the values of killing and replication threshold. The combination of Rifampicin drug 
and TB has extreme values of killing and replication threshold (i.e., TB bacterium are 
killed when 99 of its 100 free target molecules are bound). That means at every time 
step, the ODE solver has to compute 99 sub-populations of compartments Bx and 
assure their precision at the same time. However, the tool runtime (i.e., 15 min) is still 
considerably quick given the long simulated treatment length (i.e., 4 days).

The vCOMBAT tool provides a user-friendly and scientific platform for non-quan-
titative scientists and healthcare providers to create and visualize their own binding 
kinetic models for their considered drugs and bacteria. Moreover, with a timely and 
interactive tool, it also opens a wide range of opportunities to further use the vCOM-
BAT model in practices. The model can predict the drug efficacy for a large selection 
of dosing regimens and guide the choice of optimal doses. It can also be integrated 
with machine learning techniques to automatize the process of selecting optimal 
dosing.

Fig. 6  Visualizing antibiotic concentration (An) and complex bound target (AT) and the total bacterial 
population (BP) over simulated treatment length using the vCOMBAT web-tool. The figure shows a page of 
the web-based tool displaying antibiotic concentration and complex bound target when using Rifampicin 
to treat TB with repeated doses daily over 4 days. The results (the graph on the right) are displayed based 
on model-parameter values provided by users (the panel on the left). In the graph, the x-axis shows the 
simulated treatment length in hours. The y-axis shows the resulting complex bound target AT (the red area), 
the total bacterial population BP (the white area), and antibiotic concentration An (the black area, in this case, 
is covered by AT and BP area) over the treatment time. The user can also choose to display solely AT, BP, or An 
by adjusting the “Series” link in the upper-left corner of the graph
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Conclusion
This work developed an extension of the mechanistic binding-kinetic model that sim-
ulates the process of bacterial antibiotic target-binding and presents the effect of drug 
actions on bacterial population over time. Based on the vCOMBAT model, we devel-
oped an interactive online tool that allows scientists and healthcare providers to create 
and visualize their own binding-kinetic models in a quick response time. We also dem-
onstrated how the vCOMBAT tool simulates and visualizes the effect by different dosing 
strategies of Rifampicin on TB bacterial populations.

In the future, this work will be developed further to devise a framework to assist the 
process of chosing the optimal dosings. In the case where there is a wide range of pos-
sible dosings to be considered, modeling and selecting the optimal dosing from all the 
dosing possibilities are significantly more complex. Our ultimate aim is to make the 
process of selecting optimal dosing less time-consuming which is critical in improving 
patient well-being.

Availability and requirements
Project name: vCOMBAT.
Project home page: https://​combat-​bacte​ria.​org/.
Operating system(s): Platform independent.
Programming language: C.
Other requirements: GNU version 8 or higher.
License: GNU GPL.
Any restrictions to use by non-academics: vCOMBAT is publicly available for non-com-
mercial users.
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vCOMBAT: Visualize computational model of bacterial antibiotic target-binding; ODE: Ordinary differential equation; GNU: 
GNU’s not unix; TB: Tuberculosis.
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