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Background
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associ-
ated protein 9 (Cas9) systems are preferred over other biological research and human 
medicine technologies now, because of their efficiency, robustness, and program-
mability. Cas9 nucleases can be directed by sgRNA to introduce site-specific DNA 
double-stranded breaks in target, so to enable editing site-specific regions within the 
genome [1–3]. CRISPR/Cas9, to a large extent, have developed genetic therapies at 
the cellular level, albeit there are still severe medical disadvantages which have greatly 
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hindered the further clinical application of the CRISPR/Cas9 systems. One of these 
disadvantages is due to unexpected insertion and deletion caused by the off-target 
effect [4–7]. To overcome this disadvantage, one solution is to engineer CRISPR/Cas9 
with higher specificity. That’s why more and higher specificity Cas9 variants, such 
as enhanced SpCas9 (eSpCas9(1.1)), Cas9-High Fidelity (SpCas9-HF1) [6, 8], hyper-
accurate Cas9 (HypaCas9) [9], have been developed and bring a significant volume 
of experimental data, which means that researchers have to face the challenging of 
analyzing such huge and heterogeneous data. The activity of chosen sgRNA sequence 
determines the efficiency of genome editing, this fact indicates that it is meaning-
ful to develop an efficient approach to predict sgRNA activity and even guide sgRNA 
design.

In practice, there have been several applications and toolkits applied in this task. In 
the earlier studies, the methods in silico are categorized into three types: (1) alignment-
based, (2) hypothesis-driven, and (3) learning-based [10]. Recently, we noticed that the 
last type of method seems to be getting more attention because of huger and huger 
datasets [11]. The learning-based method is essentially a computational model built by 
machine learning algorithms, not only conventional machine learning but also deep 
learning. Some studies on HT_ABE and HT_CBE (two gene editing tools that grew out 
of CRISPR) have shown that deep learning-based models often outperformed conven-
tional machine learning methods, when the number of sgRNA in the dataset reached a 
certain level [12–14]. Nevertheless, conventional machine learning algorithms, such as 
linear regression, logistic regression, and the decision tree, are often more interpretable 
due to the fewer parameters and clearer mathematical assumptions. In short, what was 
needed for the developers is to trade-off accuracy and interpretability. Some researchers 
consider the deep-learning models as a black box and believe they lack interpretability, 
motivated by the empirical assertion, they turn to build a model based on conventional 
machine learning to compete with state-of-the-art deep learning models [15]. On the 
other hand, input perturbation-based feature importance analysis becomes a preferred 
component to reveal the importance of features in deep learning models. Some use a 
sliding window of length 2 to extract dimeric as input and rank the position of dimeric 
by contribution to final output [16]. One regret is that their analysis cannot be on the 
independent nucleotide class exactly because of the processing of the input sgRNA 
sequence. Further, SHAP, one of the most prominent model explanation techniques, has 
been widely used to understand the decision made by the model. DeepHF, a deep learn-
ing-based model, uses Deep SHAP to reveal nucleotide contributions [17]. In our under-
standing, the method based on input perturbation often requires better generalization 
ability of the model (even for artificial ridiculous noise data).

In addition, the interpretability of existing models is all at the global level, and the 
result is a general pattern in the dataset that lacks analysis at the local level. They can 
explain which position has a great impact on the final decision of the model and which 
position-dependent nucleotide has a positive impact on the activity but not which struc-
ture causes the low activity of a certain nucleotide sequence and how to improve its 
activity with a few modifications. In light of the above, we believe it is critical to develop 
an effective model which can not only have good performance but also with good 
interpretability.
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The deep neural network has shown its power in the study of CRISPR/Cas9 and its 
improved systems [11]. Most of the deep neural networks existing are the combination 
of recurrent neural network (RNN), convolutional neural network (CNN), fully con-
nected neural network (FNN), and their variants. As shown in Fig. 1, we found that the 
deep learning models used in sgRNA on-target activity (even for off-target effect) pre-
diction tasks in recent years can be divided into the following two categories according 
to the encoding approach of the sgRNA sequence (sgRNA-DNA sequence pair, for off-
target effect prediction):

(1)	 Methods in the spatial domain. Some previous studies have used the methods 
CNN-based to predict sgRNA on-target activity or off-target effect [10, 12, 18]. 
They process sgRNA base sequence inputs with the help of one-hot encoding idea. 
In other words, they regard it as two-dimensional image data, and use convolu-
tion layer to extract potential features in the spatial domain, it is worth noting that 
the bidirectional gated recurrent unit (BGRU, in short), an RNN variant, has been 
used after pooling layer of classic CNN network [19]. We explain that BGRU assists 
CNN to extract spatial features in one dimension, under this belief it belongs to this 
category.

(2)	 Methods in the temporal domain. These methods are not used for an on-target 
activity or off-target effect prediction, until recently [16, 17, 20]. They consider the 

Fig. 1  Two categories of deep learning models are used in sgRNA related tasks. a Model work in the spatial 
domain. In the spatial domain, the base sequence is encoded into a binary matrix (or a binary image). Since 
convolution has great advantages in extracting spatial features, CNN is an excellent tool in the spatial domain. 
b Model work in the temporal domain. In the temporal domain, the base sequence (represented by the 
binary matrix) is embedded into a sequence of high-dimensional vectors, in which the RNN performs better. 
In addition, we note that the last layers of these neural networks are usually full connection structures (not 
necessarily), which greatly increases the difficulty of understanding the decisions of these models
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nucleotide (can also dimer or polymer) in the sgRNA sequence as a word, then a 
trainable matrix (could be either supervised or unsupervised) is used to project the 
word to the dense real-valued space. This technology is called embedding, which 
generates the base embedding. However, base embedding is not spatially interpret-
able (different from one-hot encode). Almost all of the methods in the temporal 
domain used in sgRNA on-target activity or off-target effect flatten the hidden state 
vector into a one-dimensional vector as the input of the fully connected layer. It is 
a pity that the temporal sequential dependency of the hidden state vector is rarely 
noticed.

Attention mechanism has demonstrated its power in NLP, Statistical Learning, Speech 
and Computer Vision. It makes the model tend to focus selectively on parts of the input, 
which helps perform the task effectively. Strictly speaking, we are not the first to bring 
attention mechanisms into this field. The most similar approach to ours is the work 
based on the transformer, a component based on the attention mechanism. They use it 
instead of RNN to improve the ability of temporal feature extraction, hence, enhance the 
performance of their model [16, 21]. In our work, the interpretability benefit from the 
attention mechanism is more focused. Our main contributions are as follows:

(1)	 Present a novel deep-learning model, which can extract potential feature represen-
tation of sgRNA sequence in both spatial and temporal domain parallelly. Finally, 
the ensemble learning method is used to combine the two to achieve better perfor-
mance than current state-of-the-art models.

(2)	 Introduce the attention mechanism into our model. As a result, it does not need 
post hoc explanations techniques based on input perturbation to explain itself. It 
is intrinsically interpretable in both temporal and spatial domains. In the spatial 
domain, it’s at the global level, while at the local level is in the temporal domain.

(3)	 Through ablation analysis and testing a series of possible network structures, we 
find multiple components and strategies can improve the performance of Att-
CRISPR, which could outperform current state-of-the-art tools on the DeepHF 
dataset.

Materials and methods
Dataset

The dataset we used for training, validation and testing is the DeepHF dataset [17]. We 
extracted 55604, 58617, 56888 sgRNAs with activity (represented by insertion/deletion 
(indel)) for WT-SpCas9, eSpCas9(1.1) and SpCas9-HF1, respectively, from its source 
data, and use the same partition method to divide train set and test set.

Sequence encoding and embedding

For encoding process, we use the complementary base to represent the original base in 
sgRNA. Further, we use one-hot encode strategy, that is to say, we encode each base in 
sgRNA into a four-dimensional vector (encode A,T,G,C into [1,0,0,0], [0,1,0,0], [0,0,1,0], 
[0,0,0,1], respectively), called one-hot vector. Then a sgRNA can be considered as a 
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matrix Xoh ∈ Rl×4 , named one-hot matrix (a little sparse, since a one-hot vector is zero 
in all but one dimension). We believe it is meaningful to regard Xoh as a binary image, 
therefore, it is used as an input of CNN, which performs well in the image field. Mean-
while, as mentioned above, the one-hot matrix is a little sparse.

To facilitate the training process, we can map each one-hot vector into a dense real-
valued high-dimensional space, which is called embedding. In summary, at the matrix 
level, the formula is as follows:

where Xe named embedding matrix, Em ∈ R4×m is a trainable transformational matrix, 
m refers to the dimension of embedding space. We believe it is also meaningful to regard 
nucleotides in the sgRNA sequence as words, and the sgRNA sequence itself as a sen-
tence, guided by this belief Em is the word embedding matrix and Xe is the sentence 
embedding in NLP. Therefore, Xe is used as an input of RNN (or its variant), which per-
forms well in the NLP field.

As each element of Xoh is interpretable (representing whether there is a correspond-
ing nucleotide type at the corresponding location), we call Xoh the spatial input, and the 
CNN that works on Xoh is the method in the spatial domain. On the other hand, different 
from Xoh, Xe can only be explained in the first dimension (representing the embedding 
vector of corresponding nucleotide type), and embedding vector is difficult for humans 
to understand. That’s why we call Xe the temporal input, and the RNN (or its variant) 
that works on Xe belongs to the method in the temporal domain.

Neural network architecture

Based on the categorization above, we assume that the method in the spatial domain 
and the temporal domain are heterogeneous, which can satisfy the diversity premise of 
ensemble learning. Based on the assumption above and ensemble learning, we follow 
the stacking strategy to develop AttCRISPR which can extract potential feature repre-
sentation of sgRNA sequence in both spatial and temporal domain parallelly. Further, 
we apply attention mechanisms in both spatial and temporal domains to enhance the 
interpretability of AttCRISPR.

First‑order preference and second‑order preference

To introduce the neural network architecture of AttCRISPR, Let’s define first-order pref-
erence and second-order preference for convenience. Taking a simple linear regression 
model as an example, for input X ∈ Rl , where l refers to the length of base sequences, 
predicted activity y is as follows:

where A ∈ Rd . The total differential of y in Eq. (2) is as following:

(1)Xe = XohEm

(2)y = AX

(3)dy =

d
∑

i

AidXi
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where Ai and Xi denotes the i-th dimension of the vector X and A, Ai indicates how dra-
matically the function changes as Xi changes in a neighborhood of X, in other words, the 
importance of Xi. That’s why we’ll call A first-order preference in our paper. Specifically, 
we use a vector Ai to build the first-order original preference at position i within sgRNA 
sequence, and Xi is an embeddedness of the i-th feature, then A and X are two matri-
ces. Further, the final result can be weighted by a trainable non-negative weight vector 
W ∈ Rl , as follow:

then we define Ã as the first-order combine preference matrix (or just first-order prefer-
ence), which means Ã can be expressed linearly by A as follow:

where the weight matrix B ∈ Rl×l is learned through attention mechanism, which we 
will call the second-order preference matrix in our paper as its calculation is based on 
first-order preference, it can explain how a particular pattern containing two nucleotides 
affects the base sequence. Then the predicted value can be expressed as:

The method in spatial domain

As demonstrated in Fig. 2, the method in the spatial domain relies on CNN. As previ-
ously mentioned, the sgRNA sequence has been encoded into a 21 × 4 one-hot matrix 
Xoh, and we regard Xoh as a binary image. Then, convolution kernels with different sizes 
are used to extract potential spatial features just like other works have done in computer 
vision. According to the foregoing, the spatial attention module can be applied in our 
method [22], which has been used to improve the performance of CNN in vision tasks.

(4)y = W · AXT

(5)Ã = BA

(6)y = W · ÃXT
e

Fig. 2  The architecture of spatial domain method in AttCRISPR. The input of the method is an encoded 
sgRNA sequence Xoh, a 21 × 4 one-hot matrix. Then refine it through a spatial attention module, which could 
tell us the importance of a specific matrix element (or just say, pixel). A simple CNN followed is applied to 
extract potential feature representation of sgRNA sequence. In the last step, we flatten the output of the CNN 
into a one-dimensional vector and use a multilayer perceptron with a sigmoid activation function to achieve 
the spatial output ys
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As shown in Additional file  1:  Supplementary Figures  Fig. S1, for a given one-hot 
matrix Xoh, the spatial attention module generates a spatial attention matrix As ∈ Rl×4 
with the same shape as Xoh. Each element of As is constrained to a range of zero to one, 
implemented by a sigmoid function, which reflects the importance of the corresponding 
elements of Xoh. The overall spatial attention process can be summarized as:

where f p×q represents a convolution operation with the filter size of p × q, p, q ∈ RZ+ , 
Xmc is a multi-channel map generated by Xoh, σ(·) denotes the sigmoid function, 
AvgPool(·) denotes the average-pooling operation, MaxPool(·) denotes the max-pooling 
operation, ⊗ denotes element-wise multiplication. The spatial attention matrix As for-
mally conforms to our proposed definition of first-order preference (each element of 
Xoh is multiplied by the corresponding element of As), in other words, elements of As 
reveal how important the corresponding elements in Xoh are. We think it can reveal the 
preference of the scoring function at each position. For instance, following the encod-
ing rules above, we train the spatial domain part of AttCRISPR with the WT-SpCas9 
dataset. Then take the average of all spatial attention matrices, and the element in the 
first row and third column are closer to 1, which means when calculating the final score, 
G typically may have an important contribution at the first position within the sgRNA 
sequence. In fact, this corresponds to some early studies concerning the Human (hU6) 
promoter, which is believed to require G as the first nucleotide of its transcript [1–3].

The method in the temporal domain

As shown in Fig. 3, the temporal domain part of AttCRISPR relies on the RNN (or its 
variant). As previously mentioned, we map each one-hot vector into a dense real-val-
ued high-dimensional space following Eq. 1, which generates the embedded matrix Xe. 
And we regard Xe as sequential data or temporal data. RNN (or its variant) has shown 
outstanding performance in the tasks with temporal data (for instance, NLP, sequential 
recommendation). That’s why we prefer to use it to extract potential temporal features. 
To be precise, we prefer the architecture of encoder-decoder which has been proven to 
be effective in the Seq2Seq task. Two main differences we have to face are that sgRNA is 
not a natural language in the traditional sense, and we don’t have to translate it to other 
sequences. To accommodate them, the embedded matrix Xe is used as input of both 
the encoder and decoder, and the output sequence of the decoder is used to build the 
first-order preference of sgRNA sequence Ã . As mentioned above, the predicted value y 
should satisfy Eq. 6.

On this basis, we apply the idea of attention mechanism which has been widely used 
in NLP tasks to AttCRISPR in the method of the temporal domain, and name it the tem-
poral attention module. The temporal attention module satisfies the following equation

where Q, K, V are queries, keys, and values matrix [21, 23].

(7)











Xmc = f 3×4(Xoh)

As = σ(f 3×2([AvgPool(Xmc);MaxPool(Xmc)]))

Xrf = As ⊗ Xoh

(8)Attention(Q,K ,V ) = align(Q,K )V
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As    Additional file 1: Supplementary Figures Fig. S2 shows, in our attention module they 
are calculated by the following equation:

where vector Ki, Qi denotes the i-th row of the matrix K and Q accordingly, Encoder(·) 
and Decoder(·) are independent GRU units, θE and θD denote all the related parameters 
of GRU networks accordingly. In the actual implementation, we apply the bidirectional 
GRU networks for better performance, and for the sake of conciseness, we show a con-
ventional GRU network here. The function align(·)is as follows:

(9)







Ki = Encoder(Xei, θE ,Ki−1)

Qi = Decoder(Xei, θD,Qi−1)

V = K

(10)B = align(Q,K )

(11)Bi = softmax(QiK
T )⊗ Gi

Fig. 3  The architecture of temporal domain method in AttCRISPR. The input of the method is 
embedding the sgRNA sequence Xe. Then Keys K, Values V and Queries Q are generated through a classic 
encoder-decoder structure which is needed by the temporal attention module. Next, the temporal attention 
module generates the first-order preference Ã . Each of the row vectors in matrix Ã represents the base 
preference of sgRNA at the corresponding position, we use their dot product with the corresponding row 
vector in embedded Xe to build the score of the corresponding position. Hence, a full connection layer is 
used to weighted average them and achieve the temporal output yt
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where matrix B ∈ Rl×l is the second-order preference we need, and vector Bi denotes the 
i-th row of the matrix B. G ∈ Rl×l is the damping matrix base on the Gaussian function. 
Since a simple belief that the closer the base is to the i-th position, the more influence it 
has on the i-th position, we use the damping matrix G to constrain the network learning. 
σ represents a threshold of length, any base over this length from the position i is not 
considered to be affected. Further, if we think of the values matrix as a vector form of the 
first-order preference A in Eq. 5, we can reach the following equation:

according to the above mentioned, the values matrix V comes from the hidden states 
of a bidirectional GRU network, which is usually hard to understand. While B is the sec-
ond-order preference matrix obtained by the attention mechanism. We believe that the 
j-th dimension of Bi, denoted as Bij, can reveal the effect of the base at position j on posi-
tion i in the biological sense.

Ensemble model following stacking strategy

Some indirect sgRNA features, which can’t be obtained directly by deep learning, 
including position accessibilities of secondary structure, stem-loop of secondary struc-
ture, melting temperature, and GC content are strongly associated with sgRNA activity. 
It’s worth noting that the hand-crafted biological features are not standardized in the 
work of others[17, 24]. Since the wide range of data distribution, we standardize it based 
on Z-Score.

Then we use a simple fully connected network to extract the indirect features, and 
call the output of the fully connected network ybio. As mentioned above, we assume that 
the method in the spatial domain and in the temporal domain can satisfy the diversity 
premise of ensemble learning. That’s why we follow the stacking strategy, to integrate the 
methods in the spatial domain and the temporal domain. Specifically, the ybio, the spatial 
output ys and the temporal output yt we got earlier are concatenated, and then weighted 
averaging is performed through a full connection layer as follow:

where y is the final prediction value of AttCRISPR, W is the weight learned by the full 
connection network. In the actual implementation, we freeze the network in the spatial 
domain and temporal domain firstly, in order to make our network focused on learning 
the weight W. Then the parameters of the entire network are adjusted in the fine tuning 
of AttCRISPR.

Experiment design
Two different experiments are carried out in our work, which follow the same strat-
egy as DeepHF. To be more specific, each set is shuffled and divided into three 
parts, 76.5%, 15%, and 8.5% of the relevant data were used as the training, test, and 

(12)Gij =

{

exp
(

(i−j)2

−2σ

)

,
∣

∣i − j
∣

∣ ≤ σ

0,
∣

∣i − j
∣

∣ > σ

(13)Ã = BV

(14)y = W [ybio; ys; yt ]
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validation set respectively in a single experiment. The experiment is repeated ten 
times with the results recorded and averaged finally.

The first one is designed for the ablation analysis of AttCRISPR. We compare the 
performance of end2end methods (without any hand-crafted biological features) in 
both spatial and temporal domains. Furthermore, we test the ensemble method based 
on the same strategy to prove that the ensemble method in both spatial and temporal 
domains can significantly improve the performance.

The second experiment is designed to compare the performance of AttCRISPR with 
other current prediction methods. In order to make the comparison apples to apples, 
we reduce the dimensionality of the same hand-crafted biological features as Deep-
HF’s, which has been shown to enhance the predictability of a deep-learning model 
greatly, with a multilayer perceptron. Then follow Eq. (14) to achieve the final predic-
tion value. AttCRISPR (with the hand-crafted biological features) performs better on 
all three datasets than DeepHF.

Our baselines have comprehensive coverage of the methods tested in these datasets. 
In Table 1, we annotate some properties of these baselines (is/isn’t neural models, is/
isn’t end2end models). All of the experiments were carried out in Python 3.6 using 
Keras 2.2.4 and one GeForce RTX 2080Ti Super was used for training and testing if 
needed.

We design experiments to address the following questions:

1)	 In the absence of hand-crafted biological features, whether the stacking of methods 
in the spatial domain and temporal domain can get better performance than using 
these methods alone?

2)	 How does AttCRISPR perform compared to current state-of-the-art methods, cover-
ing both conventional machine learning and deep-learning models?

3)	 How can researchers understand the decisions made by AttCRISPR locally and glob-
ally, based on attention mechanisms?

Table 1  The main ideas of ANMDA and 6 published methods

The method with superscript of * and # have been reported respectively [15, 17]. Especially, CRISPRpred takes another set of 
hand-crafted sequence-based features to improve performance

Method Neural End2end Description

CNN* Yes Yes Naive CNN

RNN* Yes Yes Bidirectional long short-term memory neural network

XGBoost* No Yes Extreme Gradient Boosting regression tree

MLP* Yes Yes Multilayer perceptron

DeepHF* Yes No Bidirectional long short-term memory neural network (with 
hand-crafted biological features)

CRISPRpred# No No A conventional machine learning pipeline

SpAC Yes Yes Spatial AttCRISPR

TAC​ Yes Yes Temporal AttCRISPR

EnAC Yes Yes Ensemble AttCRISPR (without hand-crafted biological features)

StAC Yes No Standard AttCRISPR
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Model building and stacking
In Table 2, we list the performance of methods in the spatial or temporal domain and the 
stacking of methods. Temporal AttCRISPR, TAC for short, achieved Spearman correla-
tion coefficients of 0.857, 0.844, 0.851 respectively in the above three datasets. Spatial 
AttCRISPR, SpAC for short, corresponds to 0.862, 0.854, 0.857. In the absence of hand-
crafted biological features. Ensemble AttCRISPR achieves the best performance of our 
knowledge, corresponding to 0.868, 0.859, 0.862.

In addition, in Table 2, the performance of other methods without using hand-crafted 
biological features, are also recorded. Regardless of the method we developed, RNN, 
which can be categorized as the method in the temporal domain, is the most predic-
tive with Spearman correlation coefficients of 0.856, 0.849, 0.851 [17]. It’s obvious that 
the ensemble AttCRISPR is better at prediction (Additional file 1: Supplementary Fig-
ures Fig. S3(a–c)). Furthermore, the prediction ability of models could be boosted by the 
addition of other hand-crafted biological features, which can’t be obtained directly by 
sequence information.

A further experiment is designed to compare the performance of standard AttCRISPR 
(hand-crafted biological features are used to improve the performance of ensemble Att-
CRISPR) and DeepHF, which is a current state-of-the-art method.

Performance comparison
To validate the conclusion that integrating with hand-crafted biological features can 
improve the predictive performance of methods, we follow Eq.  (14) to modify the 
ensemble method and design the control experiment using the same strategy. What’s 
more, we compare the standard AttCRISPR and DeepHF (Table 3).

As shown in Table  3, in the absence of hand-crafted biological features, AttCRISPR 
has significant advantages over DeepHF in predictability. Further, integration with the 
hand-crafted biological features can also improve the performance of AttCRISPR, and 
achieve Spearman correlation coefficients of 0.872, 0.867 and 0.867 for WT-SpCas9, 
eSpCas9(1.1) and SpCas9-HF1, respectively. Meanwhile, DeepHF achieves 0.867, 0.862 
and 0.860, respectively. After integrating with biological features, the performance 
gap between AttCRISPR and DeepHF is shortened, while AttCRISPR still has better 

Table 2  Performance comparisons for different methods in the absence of hand-crafted biological 
features (take Spearman rank correlation coefficient and mean squared error as evaluation index)

Method WT-SpCas9 eSpCas9(1.1) SpCas9-HF1

Spearman MSE (× 10–3) Spearman MSE (× 10–3) Spearman MSE (× 10–3)

XGBoost* 0.845 11.7 0.831 11.5 0.818 13.5

MLP* 0.842 11.7 0.846 10.5 0.844 11.2

CNN* 0.846 11.3 0.831 11.3 0.834 12.0

RNN* 0.856 10.4 0.849 10.2 0.851 10.6

TAC​ 0.857 10.3 0.844 10.5 0.851 10.7

SpAC 0.862 10.1 0.854 9.93 0.857 10.2

EnAC 0.868 9.51 0.859 9.64 0.862 9.81
CRISPRpred# 0.838 – 0.830 – 0.821 –
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performance (Additional file  1: Supplementary Figures Fig. S4). In addition, we also 
compare the standard deviation of data obtained in ten tests, which are also shown in 
Table 3. It reveals that AttCRISPR is more stable than DeepHF.

Interpretability of the AttCRISPR
In the following sections, we will analyze the insight into the activity of sgRNA brought 
through the attention mechanism at both global and local levels to validate the attention 
module in the AttCRISPR can help us to understand the decisions.

Global interpretability

At the global level, an important question we expect AttCRISPR to answer is which 
nucleotide it prefers at each position on the sequence. In fact, this question has already 
been answered in detail with the DeepSHAP method [17]. While our method is not 
based on the post hoc explanations techniques and input perturbations, the only work 
we need to do is to get the first-order preference A generated by the attention module. 
Specifically, we use the first-order preference As generated by the spatial attention mod-
ule instead of  Ã generated by the temporal attention module. The latter is in a higher 
dimensional dense space which makes it difficult to understand. In practice, we input 
every sgRNA into the spatial AttCRISPR, to obtain the As from the spatial attention 
module and take its mean value. Then we rescale it through Z-score to obtain a stand-
ardization value and the final result is shown in Fig. 4 and Additional file 2: Data S3.

As shown in Fig. 4, we captured the preference for each position-dependent nucleo-
tide on the sgRNA sequence. The result revealed that A and G typically have a positive 
contribution to the activity of sgRNA, while T typically has a negative contribution. This 
agrees with the previous conclusion that when Cas9 is binding sgRNA, it prefers the one 
containing purines to pyrimidines [25]. In addition, global interpretability also pointed 
out that distinct from other nucleotides, G is strongly favored at position 20. This is con-
sistent with the conclusions of several other reports [26, 27].

Furthermore, the preference of the nucleotide at the same position doesn’t change dra-
matically with the Cas9 nucleases, while we still notice that compared with the other 
two datasets, C makes a more positive contribution to the activity of sgRNA with the 
SpCas9-HF1 especially in the position 5, which is evident in Fig. 4 (d-f ).

Table 3  Performance comparisons for the methods before and after integrating with hand-crafted 
biological features (take Spearman correlation coefficient as evaluation index)

The method with superscript of * and # have been reported respectively [15, 17]. In the tables, we use the results reported in 
the relevant papers as the performance of the method directly

Method WT-SpCas9 eSpCas9(1.1) SpCas9-HF1

Mean SD (× 10–3) Mean SD (× 10–3) Mean SD (× 10–3)

RNN* 0.856 3.33 0.849 5.00 0.851 4.11

EnAC 0.868 2.66 0.859 4.66 0.862 3.19

DeepHF* 0.867 2.37 0.862 4.24 0.860 3.21

StAC 0.872 2.55 0.867 3.71 0.867 2.65
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The above discussion shows that, in the task of sgRNA activity prediction, the atten-
tion mechanism can help us understand the decision made by AttCRISPR and reveal 
insight into the activity of sgRNA.

Local interpretability

At the local level, we analyze a case (consisting of three sgRNAs as  Additional file  1: 
Supplementary Tables Tab. S1 show), then we expect AttCRISPR to answer two impor-
tant questions based on the local interpretability. First, how can we optimize a sgRNA 
to have more on-target activity? Second, what are the reasons for the low activity of the 
sgRNA?

For the first question, we input the least-active sgRNA in  Additional file 1: Supple-
mentary Tables Tab. S1 (with the index of 8493 and the activity of 0.831, call source 
sgRNA for convenience) into the temporal AttCRISPR. The score of each position is 

Fig. 4  Preference for each position-dependent nucleotide on the sgRNA sequence. a–c Bars show the score 
of preference after standardization, and the higher the number, the more positive it is for the activity of 
sgRNA. The numbers below indicated the position of the nucleotides on-target DNA. d–f Preference surfaces 
for each position-dependent nucleotide fitted with Bézier surfaces. Each position-dependent nucleotide is 
a control point. The coordinates of the control points on the vertical axis represent the degree of preference, 
and the higher the position-dependent nucleotide corresponding to the control point is, the more positive 
it is for the activity of sgRNA. The contour plots at the bottom show the area of position-dependent 
nucleotides which have different contributions to the activity of sgRNA.



Page 14 of 17Xiao et al. BMC Bioinformatics          (2021) 22:589 

obtained based on Eq. (6) (the calculated symbol with W is Hadamard product instead of 
the dot product, to achieve the result in vector form), and the results are shown in Fig. 5 
and  Additional file 2: Data S4, in which scores at position 14 and 16 of source sgRNA 
are significantly below the base line (in fact, the scores at position 6 and 11 is also note-
worthy, however, we don’t find sgRNA in the dataset for comparison). If we replaced the 
T at position 14 with C, would generate the same sgRNA as the one with index of 8491, 
which is with an activity value of 0.861. If we replaced the T at position 16 with C, would 
generate the same sgRNA as the one with index of 8492, which is with an activity value 
of 0.869. Therefore, we could conclude that the local interpretability is helpful for us to 
optimize the sgRNA without exhaustive search.

The second question we expect AttCRISPR to answer is why it gave two low scores at 
position 14 and 16. In practice, we will try to answer this question with second-order 
preference. Let AttCRISPR output the second-order preference matrix B corresponding 

Fig. 5  The scores of sgRNA with index of 8493 obtained by the temporal AttCRISPR. The bar plot reveals the 
score at each position, while the line of dashes reveals the average scores which can be used as a base line

Fig. 6  The visualization of the second-order preference matrix B, the elements in the i-th row and the j-th 
column represent the influence of nucleotide at position j when generating the first-order preference Ã at 
position i. The warmer the color, the more important it is. In the red box, a few unusual bright spots appear. 
To be more specific, the nucleotide at position 15 has a great effect on the first-order preference at position 
14 and 16
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to the source sgRNA, and show it in Fig. 6, a few unusual bright spots appear in the red 
box in Fig.  6, which show that the nucleotide at position 15 has a great effect on the 
score of position 14 and 16 (instead of position 13 or 17, which the corresponding posi-
tion are relatively dim in color). As shown in Additional file  1: Supplementary Tables 
Tab. S1, in source sgRNA there are three consecutive Ts at position 14, 15 and 16, and 
this may reveal that multiple consecutive Us on sgRNA would lead to the low on-target 
activity of sgRNA, which is consistent with an earlier report [28].

Discussion
In this article, we have developed a new prediction method, called AttCRISPR for the 
activity of sgRNA. We take the ensemble of both spatial and temporal domains to pre-
dict the on-target activity of sgRNA. Through ablation analysis and testing a series of 
possible network structures, we demonstrate that the ensemble method performs better 
than other methods on this task. In addition, we apply attention modules in both the 
spatial and temporal parts of AttCRISPR, and design two experiments combined with 
some early reports to prove that attention mechanisms can help researchers understand 
the decisions made by the model which makes it easy to optimize low activity sgRNA 
without exhaustive search.

As shown in Fig.  6, we note that the brightness at coordinates (14, 15) and (16, 15) 
exceeds (14, 13) and (16, 17). This could explain that the nucleotide trimer at positions 
14, 15, 16 has a great influence on the decision made by AttCRISPR. We believe that we 
can use a carefully designed 3 × 3 convolution kernel, and move it along the diagonal of 
the second-order preference matrix B, in order to find all kinds of nucleotide trimer that 
have a great influence on the decision made by AttCRISPR. Further experiments may be 
needed for validation.

In addition, based on the attention modules and the given sgRNA activity data, 
researchers can optimize existing sgRNA through global and local nucleotide impor-
tance analysis results, to design highly active sgRNA.

The current architecture of AttCRISPR focuses on predicting the on-target activity of 
conventional sgRNA which have a PAM based on NGG. However, it can be extended to 
other Cas9 species, variants or off-target tasks easily.

Conclusion
In this paper, we develop AttCRISPR, an ensemble of both spatial and temporal methods 
that follow the stacking strategy with strong interpretability. AttCRISPR proves that the 
ensemble methods have a better performance in the dataset of DeepHF and can com-
pete with current state-of-the-art methods. In addition, AttCRISPR applies attention 
mechanisms in both the temporal and spatial parts, and we explain the decisions made 
by AttCRISPR through the attention module which is consistent with earlier reports. 
Further, we also discovered that the output of the attention module can be used to opti-
mize the low-activity sgRNA without exhaustive search, and the optimization results are 
verified with available experimental data.
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