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Background
Next-generation sequencing technology has transformed the study of the cancer 
genome, enabling us to sequence whole-genome or whole-exome and measure somatic 
mutations in millions of cancer genomes. The Cancer Genome Atlas (TCGA), a pub-
licly-funded genomics project, houses a collection of mutation profiles from thousands 
of patients and more than 30 different types of cancers [1]. Today’s comprehensive muta-
tion landscape affirms the importance of identifying genes and their associated networks 
in the hunt for cancer driver genes. By detecting highly recurrent mutations, called 
“significantly mutated genes”, we can more reliably predict the development and trajec-
tory of cancer. Finding these cancer-driver genes is difficult, and many simply escape 
identification using existing data sets and methods. For example, in breast cancer, only 
three genes (TP53, PIK3CA and GATA3) occur at > 10% incidence; for most tumor types, 
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the current sample size is too small to reliably detect genes mutated at 5% or less above 
background mutation intensity [2]. Thus, we are not able to capture a complete repre-
sentation of all genes and subsets of genes that drive the development and progression of 
cancers. Cancer genes tend to be altered in a finite number of pathways, typically related 
to differentiation, cell division, survival, and genomic maintenance [3]. Therefore, it is 
critical to identify pathway-level implications of genes, even those mutated at very low 
frequencies.

One approach to finding these drivers is to search for mutual exclusivity of altered 
genes since mutually exclusive pairs of genes often share the same pathways. For exam-
ple, we know that a set of mutated genes rarely co-occurs in the same tumor and driver 
mutations are typically observed in exactly one gene in the pathway per patient [4]. The 
phenomenon could arise from functional redundancy or synthetic lethality in cancer 
pathways [5]. Classical examples of mutually exclusive driver mutations include EGFR 
and KRAS mutations in lung cancer [6] and TP53 and MDM2 mutations in glioblastoma 
[7]. Based on this rationale, MEMo (Mutual Exclusivity Modules in Cancer) draws on 
correlation analysis and statistical tests to identify network modules exhibiting patterns 
of mutually exclusive genetic alterations across multiple patients [8]. A more recent 
method Mutex uses a large, aggregated pathway model of human signaling processes to 
search groups of mutually exclusively altered genes, all of which share a common down-
stream event [9].

The drawback with the current methods is that they require extensive filtering of 
mutation data, which are limited to the most significantly mutated genes, focus on pre-
defined network modules, and do not readily scale to reasonably sized datasets [10]. The 
mutual exclusivity signal can be biased toward identifying gene sets where the majority 
of the coverage comes from highly mutated genes [11, 12]. Although cancer genes have 
been shown to participate in multiple pathways, few existing methods identify polymor-
phic gene sets where a gene has different mutual exclusivity to other genes in different 
pathways at various mutation frequencies. To detect the mutually exclusive mutation 
pattern more broadly and capture the full range of mutations more comprehensively, we 
developed a novel graph-based unsupervised clustering approach to identify gene sets 
with mutually exclusive mutations. The Graph Clustering of Mutual Exclusivity of Can-
cer Mutations (gcMECM) is able to detect modules of different sizes with varying cutoffs 
and significance. The gene sets in a module can be mapped onto one or more canonical 
pathways to uncover functional subnetworks that can be associated with clinical features 
such as survival and tumor subtypes. The algorithm uses both high and low frequency 
mutations and is able to analyze a large set of genes.

Implementation
Mutation and pathway data

The mutation and clinical outcome datasets for TCGA-LUAD (Lung Adenocarcinoma) 
and TCGA-BRCA (Breast Invasive Carcinoma) in The Cancer Genome Atlas (TCGA) 
were downloaded from The NCI Genomic Data Commons (https://​portal.​gdc.​cancer.​
gov, version 6). The missense, start_lost, stop_gained, and stop_lost mutations were 
included in the analysis due to the fact that single-nucleotide variants (SNVs) are the 
most reliable somatic mutation calls [13]. RAS pathway v2.0 is obtained from NCI Ras 
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Initiative (ras-pathway-v2). The pathway structure and gene coordinates were created 
manually for visualization. KEGG pathway images and gene relationships were from 
KEGG database (https://​www.​genome.​jp/​kegg).

Detection of modules with mutually exclusive mutations

gcMECM was implemented in R (http://​www.R-​proje​ct.​org) and available on GitHub at 
https://​github.​com/​CBIIT-​CGBB/​gcMECM. Its workflow consists of three steps (Fig. 1). 
First, it generates the association matrix or gene–gene adjacency distance matrix using 
Fisher’s exact test and generalized linear models (GLM), which are performed for every 
pair of genes in the mutation matrix across all tumor samples. As shown in the sche-
matic diagram (Fig. 1A), genes A-B-C and genes D-E-F have strong negative associations 
while the association between genes A and D is weak.

Secondly, gcMECM constructs network graphs from a set of negatively correlated 
genes selected from those with both negative correlations in the GLM and Fisher’s exact 
test p value < 0.001 (Fig. 1B). This p-value is used as a distance between genes and can be 
set with a less stringent value to build an inclusive graph. As long as the p-value in this 
step is relaxed enough to retain those potential mutually exclusive mutation gene pairs, 
slightly different p-value selection will not affect the downstream analysis. The graph 
is subsequently clustered into modules by Louvain algorithm in the R package igraph 
(https://​igraph.​org). The Louvain algorithm can quickly detect modules in a large graph 
based on the modularity measure and a heuristic approach [14] and is one of the most 
popular algorithms in the biological network analysis [15]. By applying the stringent 
cutoff of edge values less than 1.00E−08 and 1.00E−12 in TCGA-BRCA and TCGA-
LUAD respectively, genes in each module are closely related to each other with nega-
tive relationships due to the mutually exclusive mutations. The edge cutoff p-values were 
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Fig. 1  Schematic diagram of gcMECM. A The mutation matrix, displaying a landscape of mutation status 
across genes at vertical axis and samples at horizontal axis, is used to calculate gene–gene association 
of mutations with Fisher’s exact test and generalized linear models (GLM). Arches are used to highlight 
subnetworks. B Identification of modules with graph-based clustering of negatively correlated genes. C 
Overlay of mutually exclusive subnetworks in the context of canonical pathways using the graph-matching 
algorithm
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chosen to generate 5–10 moderate size modules, which are computationally efficient 
while maintain the biological function integrity. The number of genes in a moderate size 
module is expected to be around hundreds, similar to that in RAS and KEGG pathways. 
Modules with less than three genes were removed from further analysis.

Finally, each module is compared to canonical pathways from NCI Ras or KEGG data-
base to identify subnetworks via a graph matching algorithm in the R package igraph 
[16]: 1) determine subnetworks in a module consisting of the common genes between 
a module and a canonical pathway; 2) genes in a subnetwork must have a minimum of 
three genes with direct connections in the canonical pathway. This is to ensure the sub-
network from a module is localized and does not spread across the pathway. A com-
bined p-value for a subnetwork is calculated from gene-pair Fisher’s exact test p-values 
using combine.test function in the R package survcomp. All subnetworks in the con-
text of pathways are visualized with the R package igraph and further examined for the 
enrichment with g:profiler (https://​biit.​cs.​ut.​ee/​gprof​iler/​gost) and OmicPath (https://​
github.​com/​CBIIT-​CGBB/​OmicP​ath) against Gene Ontology and KEGG. The survival 
analysis is carried out with the R survival package.

Results
To demonstrate the utility and performance of gcMECM, we analyzed the missense, 
start_lost, stop_gained, and stop_lost mutations from TCGA breast invasive carcinoma 
(TCGA-BRCA) and lung adenocarcinoma (TCGA-LUAD) to identify modules with 
mutually exclusive mutation patterns [17, 18]. Using TCGA-BRCA data, we identified 
9451 genes mutated in 985 samples. Of these, 3784 genes have negative correlations 
(Fisher’s exact test p value < 0.001). A total of 6 modules were detected with the minimal 
module size of 155 genes and the maximal module size of 1106 genes. Similarly, using 
TCGA-LUAD data, we found 12,683 genes mutated in 565 samples, with 4440 genes 
having negative correlation (Fisher’s exact test p value < 0.001). A total of 7 modules were 
identified with the minimal module size of 85 genes and the maximal module size of 
1114 genes.

We next mapped modules from TCGA-LUAD and TCGA-BRCA onto the Ras path-
way to identify subnetworks, which reduced the complexity and could be used for the 
detection of biologically relevant patterns. This pathway is critical in carcinogenesis and 
includes genes involved in oncogenic signaling, cell cycle, DNA replication, and DNA 
repair. Those genes are frequently altered in different cancers, including AKT1, EGFR, 
KRAS, and STK11 in lung cancer and AKT1, BRCA2, ERBB2, and PIK3CA in Breast 
cancer [19].

Two subnetworks in TCGA-LUAD, KRAS-SHC3 and BRCA2-FANCA, have been 
shown to have mutually exclusive mutations and more than half of those genes are 
present in COSMIC cancer census genes [20] (Fig. 2A). Most genes have a low muta-
tion rate; only KRAS and PDGFRA have a mutation frequency greater than 5%. The 
KRAS-SHC3 subnetwork captures the upstream signaling component in the RAS path-
way, which involves the ERBB signaling pathway, VEGF-PDGFR signaling pathway, 
and MAPK signaling pathway, as demonstrated using the Gene Ontology and KEGG 
analyses with g:Profiler [21]. The BRCA2-FANCA subnetwork is related to meiotic 
cell cycle process, cell signal transduction by p53 class mediator, DNA replication, and 
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homologous recombination. These two subnetworks with distinct biological functions 
suggest that the mutual exclusivity in genes with related functionality could be used to 
identify cancer-relevant genes, especially when the subnetworks also include well-estab-
lished cancer genes.

Three subnetworks, ERBB2-FGFR2, BRAF-SCRIB, and BRCA2-FANCA, are identified 
in TCGA-BRCA after mapping to RAS pathway (Fig.  2B). The ERBB2-FGFR2 subnet-
work is related to ERBB signaling pathway and BRCA2-FANCA subnetwork is linked 
to DNA repair and meiotic cell cycle process, which are similar to KRAS-SHC3 and 
BRCA2-FANCA subnetworks in TCGA-LUAD respectively. The BRAF-SCRIB sub-
network is found to regulate MAP kinase activity and ErbB signaling pathways that 

A. TCGA-LUAD (TCGA Lung Adenocarcinoma) 
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ERRB2,CBLB,
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Fig. 2  Biological implication of subnetworks in the context of pathway. A Subnetworks from TCGA-LUAD 
(TCGA Lung Adenocarcinoma) are mapped to the RAS pathway. Genes colored in red are present in 
the COSMIC Cancer Gene Census. Blue oval: genes in KRAS-SHC3; Red oval: genes in BRCA2-FANCA. B 
Subnetworks from TCGA-BRCA (TCGA Breast Invasive Carcinoma) are mapped to the RAS pathway and 
associated with survival. Red oval: genes in ERBB2-FGFR2; Blue oval: genes in BRAF-SCRIB; Yellow oval: 
genes in BRCA2-FANCA. P-values are combined p-values from gene-pair fisher’s tests. The KM-plot of 
survival analysis is obtained from the comparison of mutated vs. non-mutated samples for four genes in the 
subnetwork ERBB2-FGFR2. Coxph p-values adjusted by sex and age for both single gene and a group by 
subnetwork genes are shown in the table
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are linked to many cancers such as melanoma, lung, ovarian, breast, and prostate [22]. 
The mutation rate of genes in these three subnetworks is all less than 5%. Each subnet-
work consists of genes with similar functions, which can be used to group samples into 
mutated and non-mutated categories for survival analysis. As seen in ERBB2-FGFR2 
subnetwork, the survival difference is not statistically significant between two groups at 
the individual gene level. However, if samples are divided into two groups based on the 
mutation status of all genes in ERBB2-FGFR2 subnetwork, the mutation group exhibits a 
significantly lower survival (FDR < 0.05). These results demonstrate that integrating sub-
networks of mutually exclusive mutations with pathways and clinical features can aid in 
interpreting the subnetwork’s resulting biological functions.

Conclusions
gcMECM expands the current mutual exclusivity software capability into studying genes 
with low frequency mutation and data with large sample sizes through the integration of 
graph modules, canonical pathways, and clinical information. It uses a computationally 
efficient Louvain algorithm, which is readily scalable to handle a large number of genes, 
samples, and networks. The edge cutoff p values as parameters are subject to tuning 
since mutation types and mutation rates have an impact on the module and subnetwork 
structure. For example, the current use case consists of functional SNVs. If frameshift 
mutations were included, subnetwork structures would be partially altered due to the 
change of mutation frequency. As shown here, the mapped subnetworks are suitable 
for gene set enrichment analysis to identify functionally coherent gene groups which 
are particularly important in exploring functional redundancy or synthetic lethality in 
cancer pathways [5]. Depending on the canonical pathway, a single gene may be instru-
mental in multiple subnetworks in cancer, with very distinct biological functions. Thus, 
examining the subnetwork, and not just the impact of a single gene, should significantly 
increase the statistical power of clinical analysis.

Availability and requirements
Project name: gcMECM; Project home page: https://​github.​com/​CBIIT-​CGBB/​
gcMECM; Operating system(s): Platform independent; Programming language: R; Other 
requirements: R (> = 3.5), igraph, Rtsne; License: GNU GPL v2.0; Any restrictions to use 
by non-academics: No.
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