
An efficient scRNA‑seq dropout imputation
method using graph attention network
Chenyang Xu, Lei Cai and Jingyang Gao*   

Background
With the development of single-cell RNA sequencing (scRNA-seq) technology, it pro-
vides an easy way to process tens of thousands of single cells in parallel while provid-
ing gene expression data with single-cell-level resolution [1–3]. The traditional RNA-seq
technology cannot address complex tissues or organs at the cellular level because it
measures the average expression of thousands of cells at the same time. Different from
the traditional RNA-seq technology, scRNA-seq is widely used to study cell analysis,

Abstract 

Background:  Single-cell sequencing technology can address the amount of single-
cell library data at the same time and display the heterogeneity of different cells.
However, analyzing single-cell data is a computationally challenging problem. Because
there are low counts in the gene expression region, it has a high chance of recognizing
the non-zero entity as zero, which are called dropout events. At present, the main-
stream dropout imputation methods cannot effectively recover the true expression of
cells from dropout noise such as DCA, MAGIC, scVI, scImpute and SAVER.

Results:  In this paper, we propose an autoencoder structure network, named GNNIm-
pute. GNNImpute uses graph attention convolution to aggregate multi-level similar
cell information and implements convolution operations on non-Euclidean space on
scRNA-seq data. Distinct from current imputation tools, GNNImpute can accurately and
effectively impute the dropout and reduce dropout noise. We use mean square error
(MSE), mean absolute error (MAE), Pearson correlation coefficient (PCC) and Cosine
similarity (CS) to measure the performance of different methods with GNNImpute. We
analyze four real datasets, and our results show that the GNNImpute achieves 3.0130
MSE, 0.6781 MAE, 0.9073 PCC and 0.9134 CS. Furthermore, we use Adjusted rand index
(ARI) and Normalized mutual information (NMI) to measure the clustering effect. The
GNNImpute achieves 0.8199 (ARI) and 0.8368 (NMI), respectively.

Conclusions:  In this investigation, we propose a single-cell dropout imputation
method (GNNImpute), which effectively utilizes shared information for imputing the
dropout of scRNA-seq data. We test it with different real datasets and evaluate its effec-
tiveness in MSE, MAE, PCC and CS. The results show that graph attention convolution
and autoencoder structure have great potential in single-cell dropout imputation.

Keywords:  scRNA-seq, Dropout imputation, Graph attention convolution

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Xu et al. BMC Bioinformatics (2021) 22:582
https://doi.org/10.1186/s12859-021-04493-x BMC Bioinformatics

*Correspondence:
gaojy@mail.buct.edu.cn
College of Information
Science and Technology,
Beijing University of Chemical
Technology, Beijing, People’s
Republic of China

http://orcid.org/0000-0003-1270-6257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04493-x&domain=pdf

Page 2 of 18Xu et al. BMC Bioinformatics (2021) 22:582

including cell heterogeneity [4], cell subgroups clustering [5, 6] and cell development
trajectories [7]. Meanwhile, scRNA-seq technology can enhance the clinical diagnosis of
the patient’s disease, and help doctors further customize treatment plans [5, 6, 8].

The scRNA-seq technology can produce single-cell-level resolution data. As a result of
defects such as low capture rate and low sequencing depth, the sequencing library data
contains a lot of noise [9, 10].

Compared with the next-generation sequencing data, scRNA-seq data usually contains
a lot of zero expressions. These zero expressions can arise in two ways: One is that the
genes are not expressed in the corresponding cells and the other is that some genes with
low expression cannot be detected due to technical limitations. These events are called
dropout events [11]. There are some reasons for dropout, including nonlinear amplifica-
tion of mRNA, transcription efficiency when reverse transcription of mRNA to cDNA
and low sequencing read depth [11–13].

In the downstream analysis of scRNA-seq data, the dimensional reduction and unsu-
pervised clustering are always be used to infer cell development trajectories and identify
rare cell clusters [14, 15]. However, dropout events will seriously affect the calculation of
the distance between expression profiles, which leads to downstream results [16].

Recently, many methods have been developed to impute dropout in scRNA-seq data.
For example, MAGIC [17] is based on Markov affinity-based graph, which uses simi-
lar cells and genes information to impute missing values. However, this method lacks
robustness and cannot adapt to the nonlinear relationship with genes. Furthermore,
DCA [18] is a neural network-based method that uses deep autoencoding networks for
unsupervised learning. It performs zero-inflated negative binomial modeling on scRNA-
seq data to solve the problem of noise and gene distribution. In addition, there are some
imputation methods based on deep learning or statistical methods such as scVI [19],
scImpute [20], and SAVER [21]. These methods can only apply to Euclidean space by
using Euclidean spatial data, such as the expression matrix. But they cannot directly deal
with Non-Euclidean spatial data like cell graphs [22–25].

Therefore, we propose a novel structure neural network named GNNImpute, which
is an autoencoder structure network that uses graph attention convolution. By build-
ing a graph from the scRNA-seq data, GNNImpute uses graph attention convolutional
layer to make a targeted selection of similar neighboring nodes. Then, it aggregates these
similar neighboring nodes. The nodes in the graph can continuously transmit messages
along the edge direction until stability is reached. In this way, GNNImpute enables
the expression of the cells in the same tissue area to be embedded in low-dimensional
vectors through the autoencoder structure. GNNImpute can not only capture the co-
expression patterns between similar cells but also remove sequencing technical noise
from imputing dropout, which improves the downstream analysis of scRNA-seq data.

Methods
The high‑level approach

In scRNA-seq data, each cell has its own expression profile, and the expression profile of
each cell is different and unique. But cells from the same tissue or with the same func-
tion usually have similar features. Therefore, when a dropout event occurs in any cell, it
can be recovered by the gene expression profile of similar cells.

Page 3 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

GNNImpute is a deep learning method based on a graph attention neural network.
Different from MAGIC, GNNImpute introduces the attention mechanism that can
assign weights to different similar cells according to attention coefficients. It can estab-
lish nonlinear relationships between genes by learning low-dimensional embedding
of expressions through the autoencoder structure network. Compared with DCA,
GNNImpute can learn the gene co-expression patterns of similar cells by aggregating
information from multi-level neighbors. The co-expression patterns can help recover
low-expressed genes. GNNImpute reduces the dropout noise and improves the gene
expression profile of cells.

The overall structure of GNNImpute is shown in Fig. 1a. It is composed of an encoder
and a decoder. Figure 1b shows that the encoder of GNNImpute has two graph atten-
tion convolutional layers, which are used to transmit the information of neighbor nodes.
And the decoder consists of two linear layers. GNNImpute uses the masked expression
matrix as the model input. The output of the model is used to calculate the loss value.
And the parameters of the model are optimized by this value.

Data preprocessing

GNNImpute uses the expression matrix of scRNA-seq data as input. As shown in
Table 1, the expression matrix is an nCells ∗ nGenes scale. The rows represent different
cells number, and the columns represent different gene sites. Each value in the matrix
indicates the expression intensity of a gene in a cell. Due to the sparseness of scRNA-seq

Fig. 1  The structure of GNNImpute. a Shows the overall framework of the GNNImpute uses the network
structure of the encoder and decoder. b Shows the encoder composed of two layers of graph attention
convolutional layers

Page 4 of 18Xu et al. BMC Bioinformatics (2021) 22:582

Ta
bl

e 
1 

Ex
pr

es
si

on
 m

at
rix

 o
f P

BM
C

 d
at

as
et

 (i
nt

er
ce

pt
ed

)

M
CL

1
EN

SA
G

O
LP

H
3L

H
O

RM
A

D
1

CT
SS

CT
SK

A
RN

T
SE

TD
B1

CE
RS

2
RP

11
-

31
6M

1.
12

RP
11

-
31

6M
1.

3
A

N
XA

9
FA

M
63

A
PR

U
N

E
BN

IP
L

A
A

A
​C

AT
​TG

C
​A

C
T​A

G
-1

0
2

0
0

1
0

0
0

0
0

0
0

0
0

0

A
A

A
​C

AT
​TG

G
​C

TA
​A

C
-1

1
0

0
0

2
0

0
0

0
0

0
0

0
0

0

Page 5 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

data, the expression matrix contains a very large number of zeros. When the expression
values in row or column are all zero, it means that those cells or genes are no expres-
sion at all. We filtered these no expression values from the matrix, because these values
may cause impurity interference and invalid information. Similarly, we filtered cells with
overexpression in the matrix, which may be caused by incorrect counting or cell rupture
after death.

In the data preprocessing, we use SCANPY [26] to filter the original matrix. We
address the data in four steps. In the first step, cells with expression values less than 200
and genes with expression values less than 3 are filtered. Second, we filter the cells with
overexpression of mitochondrial genes [27], as shown in Fig. 2a. Third, the cells with a
high total expression count in the Fig. 2b should also be filtered. Finally, we normalize
the filtered expression matrix, the purpose is to make each row (cell) in the expression
matrix have the same value of expressions, and this value is the median of the values of
expressions of all cells before normalization.

Build connection graph

GNNImpute is a dropout imputation method based on a graph attention network. It is
used to obtain gene expression from similar cells to recover the dropout event. In order
to aggregate the cells with similar expressions, it is necessary to define a connection
graph between the cells. In this graph, we use nodes to represent cells and we use edges
to represent the similarity between cells. In this graph, cells can transmit information to
adjacent cells. As shown in Fig. 3, the construction of such a graph is divided into three

Fig. 2  a shows the mitochondrial gene counts and total expression counts of the PBMC dataset. b shows the
gene counts and total expression counts of the PBMC dataset. And the red boxs indicate outliers

Fig. 3  There are three steps to construct a connection graph. First, a shows the result of visualization after
dimensionality reduction by PCA. Second, b is the distance matrix represented by a heat map. Third, c
represents the K-nearest neighbor graph after selecting K neighbors

Page 6 of 18Xu et al. BMC Bioinformatics (2021) 22:582

steps. The first step is to reduce the dimensionality of the expression matrix. Figure 3a
shows the result of scRNA-seq data dimensionality reduction by Principal Component
Analysis (PCA). After PCA, we can see that the cells are clustered according to similar
expressions (Fig. 3a). We select the first 50 principal components as the GNNImpute
input. The second step is to calculate the Euclidean distance between every two cells in
the expression matrix. As shown in Fig. 3b, we get a heat map of nCells ∗ nCells scale.
Heat map rows and columns represent different cells and the heat map color represent
different cell distance. The color is deeper, the distance is closer. In the third step, we
select K closest cells to construct graph edges. The K edges display a similar relation of
cells. Through the above steps, we construct a cell-to-cell connection graph (K-nearest
neighbor graph). We set the K = 5 (The K number can be customized).

After constructing the graph, all graph cells have K cells with the most similar expres-
sion. We call these K cells the “first-level” neighbors. These K cells are adjacent to the
origin cells. Similarly, there are also K cells in the “first-level” neighbors. We named the
“second-level” cells. It doesn’t exist edges between origin cells and “second-level” cells,
but the transferability of intermediate nodes can still indicate similarity. Figure 3c shows
the origin cell and its neighbors. We use a two-layer graph convolution structure to
transfer information within the range of “second-level” neighbors. This structure can not
only maximize the aggregation of similar node information but also avoid over smooth
node features.

Multi‑head graph attention convolutional layer

In order to aggregate the information of cells, we need a connection graph and graph
attention convolutional layers. The essence of the graph convolutional layer is not to
aggregate information around the original nodes, but aggregate nodes connected by
edges. The calculation process of graph convolutional layers is as follows:

where k is the number of layers of graph convolution. W is the trainable weight.
Â = D̃− 1

2 ÃD̃− 1
2 , Where Ã and D̃ are the adjacency matrix and degree matrix of the cell-

to-cell connection graph, respectively. The adjacency matrix Ã = A+ I , I is the identity
matrix, which means add self-connections to the adjacency matrix. The degree matrix
D̃ii =

∑

jÃij . σ is the activation function. ReLU is used as the activation function. H (k)
is the input matrix of the k-th graph convolutional layer. When k = 0 , H (k) = X . In the
GNNImpute, it is the expression matrix of scRNA-seq data.

Through the superposition of multiple graph convolutional layers, the information
aggregation of multi-order neighbors can be achieved. We use two-layer graph convolu-
tion in the encoder, and the output of the encoder is as follows:

To aggregate the information of neighbors more efficiently, we propose an attention
model for neighbor nodes. By adding attention to neighbor nodes in the form of weights,
this attention model achieves targeted aggregation of neighbor nodes. Specifically, the
more similar the neighbor node is to the target node, the greater the attention coefficient

(1)H (k+1) = f (H (k)
,A) = σ(ÂH (k)W (k))

(2)H (2) = f (f (X ,A),A) = ReLU(ÂReLU(ÂXW (0))W (1)).

Page 7 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

obtained by the neighbor node. In this way, different weights are applied to different
neighbors. The calculation of the attention coefficient is as follows:

where
−→
hi and

−→
hj represent the features of node i and node j, which is the gene expression

profile of the cells. And eij represents the attention coefficient of cell j to cell i. a() is the
attention calculation formula. It is used to calculate the similarity of every two nodes. we
use the dot product as the attention calculation formula to calculate the similarity. W is
a shared weight matrix. It transforms the input features into more advanced features, so
that each node can obtain sufficient expressive ability. We only calculate the attention
coefficient of cell i and cell j, where j ∈ Ni , and Ni is the first-order neighbors of cell i in
the cell-to-cell connection graph. Further calculation of multiple independent attention
coefficients can be extended to the multi-head attention mechanism. In this attention
mechanism, the attention coefficients are combined by calculate the average values to
stabilize the learning process. The formula is as follows:

In order to compare attention coefficients between different nodes, it is necessary to add
the softmax function to standardize it:

Combining the above (1), (2), (3), (4), (5) formula, the final attention weight displays as
follows:

Architecture and training

GNNImpute builds the model with an autoencoder (encoder and decoder). The input
layer and output layer of the model have the same number of nodes. In the hidden layer,
the nodes are much lower than encoder and decoder nodes. Different from the tradi-
tional autoencoder structure, we make an improvement on the GNNImpute encode
layer. We use graph attention networks in the GNNImpute encode layer instead of linear
networks. As shown in Fig. 4a, there is the autoencoder structure used by GNNImpute.
In the encoder, the input size of the first layer is the number of gene features of the cell,
and the first layer output is 512. The second input size is equal to the first layer output
(512). GNNImpute decoder is composed of three parts: linear layer, batch normalization
layer and ReLU.

Further, GNNImpute adds dropout layers to combat the over-fitting problem of the
model. GNNImpute introduces a multi-head attention mechanism to achieve targeted

(3)eij = a(
−→
hi ,

−→
hj) = W

−→
hi ·W

−→
hj

(4)
−→
hi

′
= σ





1

K

K
�

K=1

�

K∈Ni

akijW
k−→hi



.

(5)aij = softmaxj(eij) =
exp(eij)

∑

k∈Ni
exp(eij)

.

(6)a(i,j) =
exp(LeakyReLU(a(

−→
hi ,

−→
hj)))

∑

k∈Ni
exp(LeakyReLU(a(

−→
hi ,

−→
hj)))

.

Page 8 of 18Xu et al. BMC Bioinformatics (2021) 22:582

selection when aggregating neighbor nodes. This multi-head attention mechanism
can stabilize the learning process and provide robustness for the model. It is noted
that GNNImpute uses a semi-supervised learning method to recover from dropout
events. The advantage of semi-supervised learning is that some labeled cells can pro-
vide soft labels for many other unlabeled cells, and it can help the model recover from
dropout events more accurately.

The model can learn the potential features by minimizing the error between the
reconstructed expression matrix and the original expression matrix. Meanwhile, the
hidden layer can capture the distribution of the matrix and ignore invalid changes in
the low-dimensional environment.

Because the dropout event is random, there are few dropout benchmarks. There-
fore, we used a fair measurement method [28, 29]. This is a method of constructing
a dropout benchmark by randomly masking the expression matrix. Using this fair
measurement method can make various methods calculate the corresponding met-
rics. First, we process the expression matrix of the real scRNA-seq data to obtain the
filtered matrix as the ground truth. Then, we randomly masked non-zeros based on a
predetermined dropout rate. After two of the above steps, we can obtain the masked
expression matrix and unmasked expression matrix. We can use the matrix data to
train the GNNImpute model and validate the imputation effectiveness.

In the model training phase, we divide the PBMC dataset according to the ratio of
6:2:2. There are 1706 cells in the training set, 569 cells in the validation set, and 568
cells in the test set. Training set used to train the model, the validation set would be
used to test the trained model, and the test set would evaluate the final model. The
total parameters of GNNImpute will be adjusted according to the size of the dataset.
When using the PBMC dataset, the total parameters of the model are 26.75 M. The
loss function of the model is set to the mean square error loss function. The optimizer

Fig. 4  a is the model structure of GNNImpute. b is the loss curve of GNNImpute training and validation. c
is the PCC curve of GNNImpute training and validation. And d is the CS curve of GNNImpute training and
validation

Page 9 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

is Adam, and the learning rate is 0.0001. The maximum number of iterations is set to
3000. If the loss value of the validation set does not decrease in 200 consecutive itera-
tions, it will interrupt training early. The training processes of the model are shown in
Fig. 4b–d.

Evaluation metrics

In the experiment, we use four metrics to measure the imputation ability of GNNIm-
pute with the other four methods. The four metrics are mean square error (MSE), mean
absolute error (MSE), Pearson correlation coefficient (PCC) and Cosine similarity (CS),
respectively. MSE and MAE are used to show whether the imputed gene expression val-
ues are the same as the labels. PCC and CS are used to measure whether the express
trend of the imputed matrix is consistent with the raw matrix. In downstream data
analysis, we employ the Adjusted rand index (ARI) and Normalized mutual information
(NMI) to measure the clustering results.

MSE:

where xi represents the imputed gene expression value, and yi represents the real gene
expression value.

MAE:

where xi represents the imputed gene expression value, and yi represents the real gene
expression value.

PCC:

where xi represents the imputed gene expression value, x represents the average gene
expression after imputation, yi represents the real gene expression value, and y repre-
sents the real average gene expression.

CS:

where A and B represent the gene expression profile of the cell after imputation and the
real gene expression profile of the cell respectively. And they are represented in the form
of vectors. Ai represents the expression value of the ith gene of the cell after imputation,
and Bi represents the real expression value of the ith gene of the cell.

(7)MSE =
1

N

N
∑

i=1

(xi − yi)
2

(8)MAE =
1

N

N
∑

i=1

∣

∣xi − yi
∣

∣

(9)r =

∑N
i=1(xi − x)(yi − y)

√

∑N
i=1(x − x)2

∑N
i=1(y− y)2

(10)cos(θ) =
A · B

�A��B�
=

∑n
i=1Ai × Bi

√

∑n
i=1(Ai)

2 ×
√
∑n

i=1(Bi)
2

Page 10 of 18Xu et al. BMC Bioinformatics (2021) 22:582

Datasets

We use four different real datasets in experiments. The real datasets list as following:

(1)	 Human Frozen Peripheral Blood Mononuclear Cells (PBMCs), which from 10X
GENOMICS. It contains 2900 cells and 32738 genes.

(2)	 Mouse Brain cells published by Campbell (GSE93374). It uses Drop-seq technology
to perform single-cell analysis on brain cells of adult mice, which contains 21,086
cells and 26,774 genes.

(3)	 Mouse Brain cells published by Chen (GSE87544). It is the diversity analysis of
mouse hypothalamic cells, which contains 14,437 cells and 23,284 genes.

(4)	 Mouse embryo cell analysis published by Klein (GSE65525). It contains 2717 cells
and 24,021 genes.

Result
In order to validate the dropout imputation performance of different methods, we
compare GNNImpute results with other five methods, including DCA, MAGIC, scVI,
scImpute and SAVER. DCA uses a zero-inflated negative binomial distribution model
to denoise the autoencoder network. This denoising network can solve the problem of
count distribution, over-dispersion and sparsity. MAGIC is an imputation method based
on Markov affinity-based graph, which imputes dropout values by sharing information
among similar cells. scVI can capture the basic low-dimensional structure in the scRNA-
seq data by introducing a robust latent variable model, which can eliminate the noise
in the data. scImpute is a statistical method that can automatically identify possible
dropout events and recover them. It can also exclude outliers without introducing new
bias. SAVER uses regularized regression prediction and empirical Bayesian methods to
recover the gene expression profile in noisy and sparse data. We conduct experiments
on four single-cell sequencing datasets of humans and mice. To illustrate the imputa-
tion performance of methods, we use dropout recovery index, clustering, robustness to
evaluate the results.

Imputation evaluation

By randomly masking the expression matrix on the four real datasets, we can obtain pos-
itive and negative training data. We compare the imputation performance of GNNIm-
pute with the other five imputation methods using four real datasets. Figure 5 shows the
performance of GNNImpute with the other five methods.

Overall, In the Fig. 5a, b, we can see the average MSE and MAE of GNNImpute can
achieve 3.0130 and 0.6781. The results are better than DCA (3.0130 vs. 5.1888, and
0.6781 vs. 0.9036). The reason is that GNNImpute uses semi-supervised learning, which
can learn from the labeled data to recover the dropout event. Since scVI is also a neural
network method based on autoencoders, its performance is second only to DCA. For the
scImpute, the MSE and MAE in the four datasets are the worst, because scImpute has an
overall bias in the imputation. As shown in Fig. 5c, d, there are PCC and CS of GNNIm-
pute and the other five methods in the four datasets. In PCC and CS, GNNImpute

Page 11 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

reaches the best result of 0.9073 and 0.9134 among all six methods. The performance is
8.69% and 8.71% better than the second place DCA (0.9073 vs. 0.8347, 0.9134 vs. 0.8402).
It is because GNNImpute uses graph attention convolutional layer to aggregate informa-
tion of similar cells. The performance of MAGIC, scImpute and SAVER in the four data-
sets are not stable. The average PCC and CS of MAGIC and SAVER on small datasets
(PBMC, Klein) are 0.8226 and 0.5715 respectively. However, there are only 0.3146 and
0.2188 on the larger dataset (Chen, Campbell), which indicates that they cannot perform
effective imputation on the large dataset. Another reason why scImpute may have an
overall bias in imputation is that it has the worst performance in MSE and MAE but the
PCC and CS are better than MAGIC and SAVER.

Heat map and clustering evaluation

The purpose of imputation is to improve the downstream analysis of scRNA-seq data.
Therefore, we use clustering results to evaluate the downstream analysis. We use two
metrics (ARI, NMI) to measure the performance of cell clustering after imputation.

In the clustering analysis, we used the data published by Klein. They analyzed
mouse embryonic stem cells, revealing in detail the population structure and the
heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) with-
drawal. The cluster labels are determined by the intervals of LIF withdrawal (0, 2, 4,
7 days). The t-distributed stochastic neighbor embedding (t-SNE) algorithm is used
to reduce the dimension of the expression matrix. And it can realize the visual analy-
sis of clustering. In Fig. 6a–c, we show the figures of the raw matrix, noised matrix
and the denoised matrix after GNNImpute imputation. The dimensions of these
matrices are all reduced by t-SNE for visualization. The visual analysis of the noised
expression matrix in Fig. 6b shows that four cell clusters have different degrees of
mixing, and there is no obvious dividing line. But the expression matrix imputed by
GNNImpute can separate different clusters, as shown in Fig. 6c. After imputing the
matrices with different methods, we use k-means algorithm to measure the perfor-
mance of matrix clustering. Then, we use ARI and NMI to measure the clustering

Fig. 5  a shows the MSE between the gene expression value after imputation and the real gene expression
value. b shows the MAE between the gene expression value after imputation and the real gene expression
value. c represents the PCC between the gene expression value after imputation and the real gene
expression value. d represents the CS between the gene expression value after imputation and the real gene
expression value

Page 12 of 18Xu et al. BMC Bioinformatics (2021) 22:582

results obtained by the k-means algorithm. GNNImpute reaches 0.8368 (ARI) and
0.8199 (NMI), which are at least 1.82% and 1.21% better than other methods (shown
in Fig. 6d, e).

By calculating the gene heat map of all cells in the imputed expression matrix, the
results can also be visualized to determine which methods can improve the down-
stream analysis of scRNA-seq data. Because the PBMC dataset does not have real
cluster labels, we use Leiden algorithm to calculate pseudo labels. Then we find highly
differentiated marker genes in each cluster by t-test based on the pseudo-labels.
Finally, we select 50 marker genes most relevant to cluster classification in the PBMC
dataset to measure the performance of GNNImpute and other five methods. Figure 6f,
g shows the heat maps of the raw matrix and noised matrix. GNNImpute can recover
the dropout events that occurred in different clusters, especially rare cell clusters (No.
7, No. 8 and No. 9 clusters, shown in Fig. 6h). The expression matrix after imputa-
tion by MAGIC shows that the large cell clusters are almost the same. The recovery
of the dropout event is too smooth (such as LTB, RPS5 and CD74, shown in Fig. 6j).
As a result, it lost the unique heterogeneity of scRNA-seq data. For scVI, it can only
impute limited dropout values. The reason may be that low-expressed genes are mis-
taken for noise and ignored, such as RPL31 and RPS6 shown in Fig. 6k. scImpute
can impute the dropout genes. But it changes the expression intensity of most genes,
which further illustrates that scImpute imputes dropout values with a certain overall
bias. The genes marked in Fig. 6l show that the expression intensity of these genes has
been changed. SAVER does not perform obvious imputation. It may be that it cannot
handle data with a high dropout rate.

Fig. 6  a–c show the visualizations of the raw matrix, noised matrix and denoised matrix after GNNImpute.
d, e show the ARI and NMI of different methods. f, g show the heat maps of the raw expression matrix and
noised matrix. h– m show the heat maps of the expression matrix imputed by GNNImpute and the other five
methods

Page 13 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

Robustness analysis under different dropout rates

Next, we evaluate the ability of the imputation method for scRNA-seq data under dif-
ferent dropout rates. The dropout rates are 10%, 20%, 30%, 40%, 50%, and 60%, using
PBMC dataset with random mask expression matrix.

Figure 7a–d shows the performance of the six scRNA-seq dropout imputation meth-
ods under different dropout rates. From Fig. 7 we can see that GNNImpute is not sen-
sitive to the dropout rate. It can recover the most dropout events at a high dropout
rate (60%). The MSE and MAE are 3.4783 and 0.8141. The PCC and CS are 0.9353 and
0.9438, respectively. After GNNImpute is DCA and MAGIC. Under different dropout
rates, the MSE and MAE of DCA are hardly decrease. But the PCC and CS decrease by
1.7% and 1.4%. The MSE and MAE of MAGIC increased by 27.3% and 5.3%. And the
PCC and CS decreased by 8.1% and 5.7%. The performance of scImpute and SAVER is in
the middle. With the increase in the dropout rate, MSE and MAE show a clear increas-
ing trend, while PCC and CS show a slowly decreasing trend. scVI is the most sensitive
method for the dropout rate. MSE and MAE increased significantly (6.9536 to 17.0714
and 1.3264 to 1.8961). And both PCC and CS are decreased (0.8767 to 0.6332 and 0.8979
to 0.7017).

Analysis of different training sets for semi‑supervised learning

GNNImpute uses a semi-supervised learning method to train the model and learn
the dropout knowledge. The advantage of semi-supervised is that it can use only
a small amount of labeled data and a large amount of unlabeled data for train-
ing, which greatly reduces the requirements for manually labeling data. In this

Fig. 7  a shows the MSE of six methods at different dropout rates. b shows the MAE of six methods at
different dropout rates. c shows the PCC of six methods at different dropout rates. d shows the CS of six
methods at different dropout rates

Page 14 of 18Xu et al. BMC Bioinformatics (2021) 22:582

experiment, we use 80 ~10% data with labels for model training. Even if only 10%
labeled data is used, the model still shows great imputation performance, as shown
in Fig. 8. The MSE and MAE are 3.4685 and 0.8147, and the PCC and CS are 0.9351
and 0.9436, respectively.

Imputation performance in simulated data

To further evaluate the performance of GNNImpute, we evaluate the performance
in simulated data. Following the previous work, we used the Splatter package [30]
to generate two simulation datasets. The first dataset has 2 groups, and the second
dataset has 6 groups. Both simulation datasets contain expression matrices of 4000
cells and 20,000 genes. Table 2 shows the MSE, MAE, PCC and CS of GNNImpute
and the other five methods in simulated dataset (2 groups). GNNImpute is better
than other methods on MAE, PCC and CS. Only on MSE, our method is slightly
inferior to DCA (21.2961 vs. 19.9282), but compared with the other four remaining
methods, our method still has a significant improvement. When we evaluate in the
simulated dataset (6 groups), we can get similar results, as shown in Table 3. The
reason for this phenomenon may be that the simulated data generated by the Splat-
ter package is quite different from the real data. After calculation, we can confirm

Fig. 8  a shows the MSE and MAE of GNNImpute in different scales of training set. b shows the PCC and CS of
GNNImpute in different scales of training set

Table 2  Imputation performance in simulated data (2 groups)

The bold values indicate the best or better scores that can be obtained through different methods under different indicators

MSE MAE PCC CS

GNNImpute 21.2961 1.8432 0.9259 0.9344
DCA 19.9282 1.8981 0.9092 0.9135

MAGIC 42.1510 4.1618 0.9022 0.9068

scVI 149.9295 2.7659 0.6282 0.6465

scImpute 99.0206 3.1611 0.7140 0.7088

SAVER 102.1126 3.3974 0.7962 0.8152

Page 15 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

that the sparsity of the simulated data is much lower than the real data (simulated
data: 0.47, PBMC: 0.94, Campbell: 0.89, Chen: 0.92, Klein: 0.66).

Analysis of attention mechanism of GNNImpute

In order to verify the effectiveness of the attention mechanism, we specially added
experiments to evaluate our method and GCN architecture model (without attention).
As shown in Tables 4 and 5, we evaluated the performance of five models on the PBMC
dataset and Klein dataset. They are GNNImpute (GCN architecture without attention),
GNNImpute (with 1 attention head), GNNImpute (with 3 attention heads), GNNIm-
pute (with 5 attention heads) and GNNImpute (with 8 attention heads). The experi-
ment method uses five independent repeated experiments to take the average value.
The results of PBMC dataset in Table 4 show that the performance of the model using
the attention mechanism is all better than the GCN model (without attention). In the
evaluation of MSE and MAE, the model using the attention mechanism is at least better
than GCN model (without attention) by 12.9% (3.3047 vs. 2.8800) and 3.6% (0.8022 vs.
0.7736). And they are also better than GCN (without attention) on PCC and CS (0.9436

Table 3  Imputation performance in simulated data (6 groups)

The bold values indicate the best or better scores that can be obtained through different methods under different indicators

MSE MAE PCC CS

GNNImpute 25.7855 1.9330 0.9202 0.9295
DCA 21.5326 1.9313 0.9072 0.9113

MAGIC 45.0551 4.2573 0.8999 0.9050

scVI 147.4127 2.758 0.6272 0.6460

scImpute 99.4479 3.1622 0.7134 0.7085

SAVER 101.7722 3.3927 0.7951 0.8143

Table 4  Imputation performance of GNNImpute and GCN architecture model (PBMC dataset)

The bold values indicate the best or better scores that can be obtained through different methods under different indicators

MSE MAE PCC CS

GCN (without attention) 3.3047 0.8022 0.9436 0.9510

GNNImpute (1 attention head) 2.8800 0.7736 0.9478 0.9547

GNNImpute (3 attention heads) 2.7767 0.7684 0.9494 0.9561
GNNImpute (5 attention heads) 2.8748 0.7730 0.9480 0.9550

GNNImpute (8 attention heads) 2.8494 0.7699 0.9482 0.9551

Table 5  Imputation performance of GNNImpute and GCN architecture model (Klein dataset)

The bold values indicate the best or better scores that can be obtained through different methods under different indicators

MSE MAE PCC CS ARI NMI

GCN (without attention) 6.7994 0.8841 0.8805 0.8882 0.7998 0.8049

GNNImpute (1 attention head) 5.7850 0.9059 0.8779 0.8867 0.6945 0.7232

GNNImpute (3 attention heads) 6.1119 0.8725 0.8867 0.8942 0.8183 0.8204

GNNImpute (5 attention heads) 4.9420 0.8629 0.8950 0.9024 0.8155 0.8311

GNNImpute (8 attention heads) 6.4669 0.8592 0.8921 0.8988 0.8202 0.8366

Page 16 of 18Xu et al. BMC Bioinformatics (2021) 22:582

vs. 0.9478, 0.9510 vs. 0.9547). Table 5 shows the improvement of the clustering effect of
the attention mechanism on the Klein dataset. In the evaluation of ARI, the attention
mechanism provided about 2% (0.7998 vs. 0.8155). For the evaluation of NMI, it is also
better than GCN (without attention) by 1.6% (0.8204 vs. 0.8049). We also observed that
the performance of GNNImpute (with 1 attention head) is not stable, so we recommend
using the multi-head attention mechanism to stabilize the performance of the model.

Discussion
On the high level, imputing the dropout of scRNA-seq data is a process of denoising the
expression matrix data of the raw scRNA-seq library. Many existing approaches show
that deep learning methods, especially autoencoders, can effectively denoise data.

Our GNNImpute method extends this high-level approach to the case of Non-Euclid-
ean spatial data like cell graphs. By reconstructing the expression matrix of scRNA-seq
data, GNNImpute can establish a learning mechanism between the input and output of
the model. It allows our model to capture non-linear relationships between genes and
make better utilization of data.

Usually, the dropout imputation performance is affected by the sparseness of scRNA-seq
data. For noise data, it is usually more difficult to impute dropout values. However, GNNIm-
pute shows excellent performance compared with other methods. GNNImpute compensates
for the lack of low expression intensity of some genes by aggregating the features information
of similar cells. Meanwhile, it can recover the dropout events in the scRNA-seq data and
remain the specificity between cells to avoid excessive smoothing of expression.

Compared with other dropout imputation methods, GNNImpute has great adaptabil-
ity for addressing the different sizes of datasets (especially large datasets). The difficulty
in processing large datasets is that there are many cell types, and each cell contains a
lot of gene information. Since GNNImpute uses a neural network model, it can capture
important features from all information, and then reduce the dimensionality to ignore
unimportant features.

Moreover, GNNImpute is a semi-supervised learning model, which does not require
manually labeled data. It can be trained with few labeled data. This model only uses 10%
of the dataset for training can still achieve great results.

Conclusions
In this paper, a novel imputation method based on graph attention convolution is pro-
posed, which is a semi-supervised learning method using an autoencoding structure net-
work. GNNImpute focuses on determining the similarity between cells and constructs a
connection graph to capture the features of similar cells. This method also introduces an
attention mechanism of weighted neighbor nodes to select the cell node with the most
useful features information. In the experiments of four datasets, the performance of
GNNImpute is better than other existing methods for four metrics of MSE, MAE, PCC
and CS. When we explore the limits of GNNImpute, we find that it cannot provide the
interpretability of cell clusters. Future investigations will focus on how to make GNNIm-
pute more explainable.

Page 17 of 18Xu et al. BMC Bioinformatics (2021) 22:582 	

Appendix

Implementation
GNNImpute is implemented in Python 3 using deep learning framework PyTorch Geomet-
ric [30]. Training on CPU or GPU is supported using PyTorch and PyTorch Geometric.

Simulated scRNA‑seq data
We used the Splatter [31] package to generate simulation datasets. The parameters used in
the generated two sets of simulation data are as follows. For two group simulation: nGroup
= 2, dropout.mid = 5, dropout.shape = − 1, dropout.type = “experiment”, de.facScale =
0.25, nGenes = 20000, batchCells = 4000. For six group simulation: nGroup = 6, dropout.
mid = 5, dropout.shape = − 1, dropout.type = “experiment”, de.facScale = 0.25, nGenes =
20000, batchCells = 4000.

Abbreviations
scRNA-seq: Single-cell RNA sequencing; RNA-seq: RNA sequencing; PCA: Principal component analysis; RuLU: Rectified
linear unit; MSE: Mean square error; MAE: Mean absolute error; ARI: Adjusted rand index; NMI: Normalized mutual infor-
mation; t-SNE: t-distributed stochastic neighbor embedding.

Acknowledgements
Not applicable.

Author contributions
Conceived and designed the experiments: CX, JG, Performed the experiments: CX, LC, Analyzed the data: CX, LC. All
authors read and approved the final manuscript.

Funding
Project supported by Beijing Natural Science Foundation (5182018).

Availability of data and materials
The datasets used in this study are publicly available. Single-cell library data and raw count expression matrices of PBMCs
are downloaded from 10X GENOMICS (https://​www.​10xge​nomics.​com/​resou​rces/​datas​ets/​frozen-​pbm-​cs-​donor-a-​1-​
stand​ard-1-​1-0). The mouse brain cell data released by Campbell is available at Gene Expression Omnibus (GEO) under
accession code GSE93374. The single-cell data and expression matrix data of mouse brain cells published by Chen are
available in GEO under accession code GSE87544. The mouse embryo single-cell data published by Klein was down-
loaded from GEO, and the accession code is GSE65525. The source code in this paper is available at https://​github.​com/​
Lav-i/​GNNIm​pute.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 May 2021 Accepted: 25 November 2021

References
	1.	 Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He

L, Betsholtz C, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science.
2015;347(6226):1138–42.

https://www.10xgenomics.com/resources/datasets/frozen-pbm-cs-donor-a-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/frozen-pbm-cs-donor-a-1-standard-1-1-0
https://github.com/Lav-i/GNNImpute
https://github.com/Lav-i/GNNImpute

Page 18 of 18Xu et al. BMC Bioinformatics (2021) 22:582

	2.	 Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, et al.
Single-cell RNA-Seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science.
2017;356(6335).

	3.	 Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet.
2019;10:317.

	4.	 Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, et al. Comprehen-
sive single-cell transcriptional profiling of a multicellular organism. Science. 2017;357(6352):661–7.

	5.	 Stephenson W, Donlin LT, Butler A, Rozo C, Bracken B, Rashidfarrokhi A, Goodman SM, Ivashkiv LB, Bykerk VP, Orange
DE, et al. Single-cell rna-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat
Commun. 2018;9(1):1–10.

	6.	 Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-
Astaiso D, Toth B, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell.
2017;169(7):1276–90.

	7.	 Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti
E, et al. Decoding the regulatory network of early blood development from single-cell gene expression measure-
ments. Nat Biotechnol. 2015;33(3):269–76.

	8.	 Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol.
2018;14(8):479–92.

	9.	 Li G, Yang Y, Van Buren E, Li Y. Dropout imputation and batch effect correction for single-cell RNA sequencing data. J
Bio-X Res. 2019;2(4):169–77.

	10.	 Luecken MD, Theis FJ. Current best practices in single-cell rna-seq analysis: a tutorial. Mol Syst Biol. 2019;15(6):8746.
	11.	 Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat

Methods. 2014;11(7):740–2.
	12.	 Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell rna sequencing data with many zero counts.

Genome Biol. 2016;17(1):1–14.
	13.	 Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell rna sequencing data: challenges and

opportunities. Nat Methods. 2017;14(6):565.
	14.	 Sun S, Zhu J, Ma Y, Zhou X. Accuracy, robustness and scalability of dimensionality reduction methods for single-cell

rna-seq analysis. Genome Biol. 2019;20(1):1–21.
	15.	 Long, J., Xia, Y.: Cluster analysis of high-dimensional SCRNA sequencing data (2019). arXiv preprint arXiv:​1912.​08400.
	16.	 Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell rna-sequencing experi-

ments. Biostatistics. 2018;19(4):562–78.
	17.	 Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, et al. Recov-

ering gene interactions from single-cell data using data diffusion. Cell. 2018;174(3):716–29.
	18.	 Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell rna-seq denoising using a deep count autoencoder.

Nat Commun. 2019;10(1):1–14.
	19.	 Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep

generative models. Nat Commun. 2018;9(1):1–13.
	20.	 Li WV, Li JJ. An accurate and robust imputation method scimpute for single-cell rna-seq data. Nat Commun.

2018;9(1):1–9.
	21.	 Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR. Saver: gene expression

recovery for single-cell rna sequencing. Nat Methods. 2018;15(7):539–42.
	22.	 Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arXiv preprint arXiv:​

1609.​02907
	23.	 Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2017). arXiv preprint

arXiv:​1710.​10903
	24.	 Ravindra N, Sehanobish A, Pappalardo JL, Hafler DA, van Dijk D. Disease state prediction from single-cell data using

graph attention networks. In: Proceedings of the ACM conference on health, inference, and learning, p. 121–30
(2020).

	25.	 Shao X, Yang H, Zhuang X, Liao J, Yang Y, Yang P, Cheng J, Lu X, Chen H, Fan X. Reference-free cell-type annotation
for single-cell transcriptomics using deep learning with a weighted graph neural network. bioRxiv (2020)

	26.	 Wolf FA, Angerer P, Theis FJ. Scanpy: large-scale single-cell gene expression data analysis. Genome Biol.
2018;19(1):1–5.

	27.	 Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell rna-seq data with
bioconductor. F1000Research. 2016;5.

	28.	 Leote AC, Wu X, Beyer A. Network-based imputation of dropouts in single-cell rna sequencing data. bioRxiv: 611517
(2019).

	29.	 Arisdakessian C, Poirion O, Yunits B, Zhu X, Garmire LX. Deepimpute: an accurate, fast, and scalable deep neural
network method to impute single-cell rna-seq data. Genome Biol. 2019;20(1):1–14.

	30.	 Fey M, Lenssen JE. Fast graph representation learning with PyTorch geometric. In: ICLR workshop on representation
learning on graphs and manifolds (2019)

	31.	 Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell rna sequencing data. Genome Biol.
2017;18(1):1–15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1912.08400
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903

	An efficient scRNA-seq dropout imputation method using graph attention network
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	The high-level approach
	Data preprocessing
	Build connection graph
	Multi-head graph attention convolutional layer
	Architecture and training
	Evaluation metrics
	Datasets

	Result
	Imputation evaluation
	Heat map and clustering evaluation
	Robustness analysis under different dropout rates
	Analysis of different training sets for semi-supervised learning
	Imputation performance in simulated data
	Analysis of attention mechanism of GNNImpute

	Discussion
	Conclusions
	Acknowledgements
	References

