
SpinSPJ: a novel NMR scripting system
to implement artificial intelligence and
advanced applications
Zao Liu1,2, Zhiwei Chen3*  and Kan Song2* 

Abstract 

Background:  Software for nuclear magnetic resonance (NMR) spectrometers offer
general functionality of instrument control and data processing; these applications are
often developed with non-scripting languages. NMR users need to flexibly integrate
rapidly developing NMR applications with emerging technologies. Scripting systems
offer open environments for NMR users to write custom programs. However, exist-
ing scripting systems have limited capabilities for both extending the functionality of
NMR software’s non-script main program and using advanced native script libraries to
support specialized application domains (e.g., biomacromolecules and metabolomics).
Therefore, it is essential to design a novel scripting system to address both of these
needs.

Result:  Here, a novel NMR scripting system named SpinSPJ is proposed. It works as
a plug-in in the Java based NMR spectrometer software SpinStudioJ. In the scripting
system, both Java based NMR methods and original CPython based libraries are sup-
ported. A module has been developed as a bridge to integrate the runtime environ-
ments of Java and CPython. The module works as an extension in the CPython environ-
ment and interacts with Java via the Java Native Interface. Leveraging this bridge, Java
based instrument control and data processing methods of SpinStudioJ can be called
with the CPython style. Compared with traditional scripting systems, SpinSPJ better
supports both extending the non-script main program and implementing advanced
NMR applications with a rich variety of script libraries. NMR researchers can easily call
functions of instrument control and data processing as well as developing complex
functionality (such as multivariate statistical analysis, deep learning, etc.) with CPython
native libraries.

Conclusion:  SpinSPJ offers a user-friendly environment to implement custom func-
tionality leveraging its powerful basic NMR and rich CPython libraries. NMR applica-
tions with emerging technologies can be easily integrated. The scripting system is free
of charge and can be downloaded by visiting http://​www.​spins​tudioj.​net/​spins​pj.

Keywords:  NMR, Software, Script, Java, CPython, Instrument control, Data processing,
Artificial intelligence

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Liu et al. BMC Bioinformatics (2021) 22:581
https://doi.org/10.1186/s12859-021-04492-y BMC Bioinformatics

*Correspondence:
chenzhiwei@xmu.edu.cn;
songkan@qone-inst.com
2 Zhongke-Niujin MR Tech
Co. Ltd, Wuhan 430075,
People’s Republic of China3
Department of Electronic
Science, Fujian Provincial
Key Laboratory of Plasma
and Magnetic Resonance
Research, Xiamen University,
Xiamen 361005, People’s
Republic of China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-6637-8194
http://www.spinstudioj.net/spinspj
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04492-y&domain=pdf

Page 2 of 14Liu et al. BMC Bioinformatics (2021) 22:581

Background
Since its discovery in the 1940s, nuclear magnetic resonance (NMR) has been adopted
in many important fields including chemistry, biology, medicine, etc. NMR software
for spectrometers is an important tool to implement applications in these fields. With
the expansion of NMR applications, a variety of usage scenarios have to be supported
by the software. For example, a developer expects to prototype a spectral reconstruc-
tion method [1]; an NMR facility manager needs to handle data management; and a
user wants to perform the statistical analysis [2] of a completed NMR experiment. To
support above usage scenarios and rapidly developing NMR applications, emerging
technologies have to be quickly integrated in NMR software. For instance, deep learn-
ing [3] has been successfully applied in non-uniform sampling [1], spectrum denois-
ing [4], chemical shift prediction [5–8], etc. Multivariate statistical analysis [2] plays
an important role in metabolomics [9, 10] to reveal the relationships between metab-
olites and significant issues such as diseases and biological processes. However, NMR
users have to wait for software vendors to integrate newly developed functionality
and distribute the new versions. As an alternative solution for NMR users who expect
to freely implement their own customized functionality in NMR software, scripting
systems offer an open environment that allows users to write scripting programs. As
a module in NMR software, the scripting system can both extend the existing func-
tionality of NMR software’s non-script main program and perform native libraries
of scripting languages. In the scripting system, existing non-script functions such
as instrument control and data processing of main program can be called as a script
style. As emerging technologies are expected to play an increasingly important role
to solve complex problems for advanced NMR applications, it is essential to enhance
scripting systems’ capabilities of implementing emerging technologies and advanced
applications.

To enhance the capabilities, existing scripting systems have adopted a variety of solu-
tions. In general, the solutions can be divided into two types. For the first type, the
scripting system runs as an extension of the main program which is compiled with
another computer language. Most commercial NMR software is of this type. For exam-
ple, MAGICAL, is supported in VnmrJ [11]. This software is based on the “shell” script-
ing language which is native in UNIX like operating systems. The macros of MAGICAL
support complex pulse sequence and custom commands. Jython [12], Tcl [13], and the
AU program [14] are supported in TopSpin [15]. Jython and Tcl are standard script-
ing languages; the AU program is based on the C programming language and macros,
and it needs to be compiled in GNU environment. Mnova [16] uses the native script-
ing language of the Qt library [17], named QtScript, to call powerful NMR algorithms
of C++ based programs. ACD/Spectrus Processor [18] supports a collection of stand-
ard scripting languages (e.g., BasicScript, PascalScript, JavaScript, and C++ Script) to
sequentially perform data processing and analysis. For the second type, the entire NMR
software is developed using a scripting language. Examples in this category include Mat-
NMR [19], jsNMR [20], rNMR [21], and nmrglue [22], which respectively use Matlab,
JavaScript, R language [23], and CPython [24–26] as the scripting language for NMR
data post-processing. This approach takes advantage of the powerful scientific comput-
ing libraries and chart display capabilities that are available.

Page 3 of 14Liu et al. BMC Bioinformatics (2021) 22:581 	

However, the existing scripting systems may be difficult to use in the development of
extended functionality for main programs and to support emerging technologies such
as deep learning and multivariate statistics analysis. The main program of NMR soft-
ware for spectrometers is often developed with a mainstream non-scripting language;
these programs are typically compiled to binary code and directly executed by computer
for higher execution efficiency. Scripting languages [27] are dynamically interpreted to
machine instructions by corresponding interpreters in real time. Script programs can
be freely modified and executed without recompiling. For existing scripting systems,
the first type uses standard scripting languages and supports extending the functional-
ity of main programs, but it has a more limited selection of advanced algorithms such
as fast numerical computation and deep learning. The second type is better in advanced
numerical computation, but it has critical disadvantages in execution efficiency [27] and
implementing complex graphical user interfaces. These are important in the data acqui-
sition and real-time curve display for instrument control applications. Existing NMR
software of the second type focuses on data processing; they are not intended for the
instrument control of spectrometers. Therefore, it is necessary to design a new script-
ing system, which has the capabilities to extend the functionality of the main programs
(written in non-scripting languages) and rapidly implement emerging technologies by
using advanced script libraries.

In this paper, a novel NMR scripting system named SpinSPJ (SpinStudioJ’ Scripting
system with Python and Java) is introduced. By integrating the CPython and Java pro-
gramming languages, the system offers the benefits of both languages. CPython has
flexible syntax features and has been widely adopted in various fields such as artificial
intelligence, scientific computation, etc. It has a rich collection of libraries and a power-
ful ecosystem, which is significant for developing NMR advanced applications; The Java
programming language [28] is cross platform and robust enough to implement multi-
threading, complex graphical user interfaces, etc. It is the development language for the
main program of SpinStudioJ [29], which is an NMR software for spectrometers. The
use of Java language is beneficial for the scripting system to interact with the main pro-
gram. Therefore, SpinSPJ can extend the functionality of SpinStudioJ’s main program
such as instrument control, data acquisition and data processing implemented in Java; in
addition, it can rapidly adopt emerging technologies by leveraging CPython’s rich native
libraries.

Implementation
Architecture

The proposed scripting system SpinSPJ offers a flexible scripting environment to imple-
ment custom functionality for NMR users. SpinSPJ works as a plug-in in SpinStudioJ,
which is a plug-in based NMR software. SpinSPJ interacts with other plug-ins with the
mechanism defined by framework OSGi (Open Service Gateway Initiative) [30]. The
relationship between SpinSPJ and SpinStudioJ is illustrated in Fig. 1.

The conventional instrument control and data processing capabilities are implemented
in Java. CPython has advantages in the availability of advanced libraries for numerical
computation and artificial intelligence (e.g., NumPy [31], TensorFlow [32]). The sig-
nificant issue of the proposed scripting system focuses on how to build a bridge that

Page 4 of 14Liu et al. BMC Bioinformatics (2021) 22:581

connects Java and CPython so that both Java-based NMR methods and third-party CPy-
thon libraries are supported. CPython, developed with the C programming language,
supports an extension mechanism to wrap C libraries as customized modules. The Java
virtual machine provides a mechanism called the Java Native Interface (JNI) [33] to
support interactions with the C programming language. Through the JNI, Java can call
functions defined by C, and C also can access resources (e.g., classes, functions, objects)
in the Java environment. Therefore, the C programming language can serve as an ideal
bridge between the Java and CPython languages.

The overall architecture of SpinSPJ is illustrated in Fig. 2. According to the computer
languages adopted, the entire scripting system consists of three components: Java, C,
and CPython.

The Java component is responsible for the graphical user interface and provides the
interfaces for CPython including the basic configuration, scripting editor, instrument
control, and data processing. The basic configuration can set the location of CPython
libraries. The scripting editor offers a script editing window, execution output, menus,
and toolbar. The interfaces for instrument control and data processing are implemented
by the OSGi which separates the abstract interface from the concrete business logic.
The instrument control includes sample control, temperature control, tuning, locking,
shimming, data acquisition, etc. The data processing includes Fourier transform, phase
correction, baseline correction, peak picking, and integration functionality. The NMR
data of a HDF5 [29, 34] based custom format organises parameters, pulse sequence, free
induction decay (FID), spectrum, peak list as a hierarchical style in a single file. It can be
easily read and converted to other data formats by third party analysis tools (e.g., Matlab,
CPython). After processing operations selected by NMR users are performed by CPy-
thon scripts, the processed data can be written back and saved to the disk. The scripts
can be set to both blocking and non-blocking modes to ensure the statements are exe-
cuted in the expected sequence.

The C component is the bridge between the Java and CPython components. Through
the JNI, Java can call functions in C based libraries. If necessary, the C component also

#Import native Cpython libraries
import numpy as np
import temsorflow as tf
#Import SpinSPJ
from command import spinspj
......
#Extend functionalities of main program
spinspj.smartshim() #Gradient shimming
spinspj.go() #Data acquisition
spinspj.fft() #Fast Fourier Transform
spinspj.aph() #Automatic phase correction
spinspj.abs() #Automatic baseline correction
...
#Use artificial intelligence libraries of CPython
tf.train.GradientDescentOptimizer(learning_rate)

Fig. 1  The relationship between SpinSPJ and SpinStudioJ. SpinStudioJ is a NMR software for spectrometers.
It is built with a plugin architecture called Eclipse Rich Client Platform which integrates the functionalities as a
plugin style. SpinSPJ works as a plugin in SpinStudioJ. SpinSPJ can call the Java based functions of instrument
control and data processing, as well as using the native libraries of CPython

Page 5 of 14Liu et al. BMC Bioinformatics (2021) 22:581 	

can create Java objects and call Java functions. Based on the C extension mechanism
of CPython, the C component can define customized modules for the CPython com-
ponent. In the CPython environment, customized modules can be compiled and linked
with basic CPython libraries. Two significant methods used to accomplish these are the
SetPythonHome method (set the location of the CPython libraries) and the PyRun_
String (execute scripted code). A Java object can be wrapped as a PyObject, which is
the foundation of the CPython language. As Java based resources can be accessed by
CPython, the environments of Java and CPython are connected by the C component. In
SpinSPJ, the C component creates a C extension module of CPython and builds the Java-
CPython bridge with the help of an open source library called Jep [35].

The CPython component can define customized initialization and import methods for
packages and modules, as well as offering various native libraries (e.g., NumPy, SciPy,
TensorFlow). The initialization and import are the significant steps which enable the
interactions between CPython and Java. For native libraries, NumPy and SciPy are usu-
ally used for fast numerical operations and scientific calculations. TensorFlow is widely
used for deep learning. Non-uniform sampling and chemical shift prediction methods
developed by deep learning can be easily integrated into the scripting system.

Workflow

The workflow of SpinSPJ explains how the internal components work from the perspec-
tive of a time series. It contains the sequential actions and interactions of the compo-
nents Java, C, and CPython during different stages. The workflow consists of three main
stages: initialization, execution, and exiting.

Numpy/SciPy/Pandas/Tensorflow

Java

C

CPython

Java Virtual Machine

Instrument
Control

Process
WorkSpace

GNU

Include
Python.h

Link
....lib

Configuration Editor Run

SetPython
Home JNI PyRun_String

PyObject Module Exceptions

*.dll
*.so

Java Native Interface

C extension module

OSGi

Fig. 2  Architecture of the proposed SpinSPJ scripting system. The three components play different roles
in the scripting system. Component Java extends the functionality of SpinStudioJ’s main program by the
mechanism of OSGi. Component CPython offers the powerful libraries such as Numpy, SciPy, Pandas,
Tensorflow, etc. Component C works as a bridge to connect Java and CPython to make their resources
accessible to each other

Page 6 of 14Liu et al. BMC Bioinformatics (2021) 22:581

The initialization stage is mainly for the preparation of the scripting environment.
In this stage, the scripting system first configures the location of the CPython librar-
ies. Secondly, CPython installs an importer hook and inserts it into the sys.meta_
path. The importer hook defines the methods find_module and load_module to tell
CPython how to find and load Java packages. Therefore, the resources of Java and
CPython have been connected and the scripting environment has been established in
this stage.

In the execution stage, the scripting system controls the three components to
support grammar features and resource accessibility. The workflow of the stage is
illustrated in Fig. 3. There are two significant issues in this stage: import and inter-
pretation. Different from conventional CPython environments, import statements in
SpinSPJ can be used to import Java packages. When an import statement is called, the
scripting system searches for the expected package from the variable sys.modules. If
the package is found, it indicates that the package has been loaded by CPython; oth-
erwise, the CPython environment finds the importer hook to invoke the find_module
and load_module methods to load the spinspj module. The spinspj module is used to
interact with Java resources. The spinspj module has a method __getattr__ to define
its submodules for packages and classes in Java environment. The methods (wrapped
to PyJMethod) and fields (wrapped to PyJField) of Java objects are wrapped as the
attributes of a CPython object. CPython allows the PyJMethod to implement custom
execution by defining the attribute tp_call of PyTypeObject, and allows PyJField to
implement custom getting and setting styles by defining the attributes tp_getattro and
tp_setattro of the PyTypeObject. An example is illustrated in Fig. 3. When the NMR
command go is executed in scripts, PyJMethod invokes corresponding Java method
by the JNI. Therefore, the CPython interpreter can recognize Java objects as conven-
tional native CPython objects, as well as calling Java methods freely.

In the exiting stage, exception and memory management are the significant issues
to ensure the scripting system is stable and robust. The JNI allows the C component
to throw C based exceptions to the Java component. The Java component catches
exceptions and back traces. For memory management, the Java component can
reclaim memory at runtime by automatically leveraging the garbage collection feature
of the Java virtual machine, so there is no need to release memory manually. However,

Fig. 3  Execution workflow of the proposed SpinSPJ scripting system. The arrows denote the execution flow
of script statements in each components. Firstly, by importing the module spinspj, the scripting system
installs an importer hook, which defines how to find (“find_module()”) and load (“load_module()”) the
module spinspj. Secondly, the fields and methods of module spinspj are wrapped as PyJField and PyJMethod,
which enable the Java based fields and methods being called as a conventional CPython style through the
JNI

Page 7 of 14Liu et al. BMC Bioinformatics (2021) 22:581 	

the C component must release memory manually. Both the JNI and the C extension
mechanism offer corresponding methods to release memory in order to avoid mem-
ory leaks.

Results
The proposed SpinSPJ scripting system provides a familiar graphical user interface
layout for the user, which makes it straightforward to use. A screenshot of the NMR
scripting editor is illustrated in Fig. 4. The menus and tools offer not only conventional
functionality for file access and text editing, but also example scripts and help manuals.
All the function and parameter definitions are described in the help manuals. In addi-
tion, commands for starting and stopping to run the scripts are available both in menus
and toolbar. For script editing area, the key words of CPython can be marked as a high-
lighted style. Code comments and strings can be respectively displayed as green and
blue. When NMR users enter the code spinspj., the available fields and methods of the
spinspj module are displayed as prompts. When there is only one available option, the
statement is automatically completed. The bottom region of the interface can show the
outputs during the execution of scripts. The reported errors, warnings, and exceptions
can prompt users to deal with problems during the execution of script programs. The
script file (e.g., file name is “xxxx.py”) can be executed by entering the file name (e.g.,
“xxxx”) of the script in the command line of NMR software SpinStudioJ.

Fig. 4  A screenshot of the NMR scripting editor. The scripting editor offers an environment to edit and
execute the scripts of SpinSPJ. The script code and output are respectively displayed in the middle and
bottom area of the editor’s interface

Page 8 of 14Liu et al. BMC Bioinformatics (2021) 22:581

The scripts offer general functionality such as instrument control, data process-
ing as well as native CPython libraries. Typical scripting functions are described as
Table 1.

Instrument control is used to control the NMR spectrometer’s physical compo-
nents such as auto sample changer, temperature control, shimming, and locking units.
For data acquisition, scripts are allowed to set the parameters of the workspace, and
then start the acquisition command. Both the blocking and non-blocking modes are
supported. In the blocking mode, the script waits for the completion of the invoked
method until the maximum time is exhausted. In the non-blocking mode, the script
invokes the method and doesn’t wait for the completion of its execution.

For data processing, scripts can call conventional processing methods such as linear
prediction, Fourier transform, phase correction, baseline correction, etc. Scripts can

Table 1  General functions in the proposed SpinSPJ scripting system

Function name Description Example

Instrument control

aij(n) Inject a sample, The sample number
is “n”

aij(2)

alock() Lock the field automatically alock()

stm(nucleus) Automatic tuning and matching stm(’H1’)

smartmapshim() Create a gradient shim map and
perform the shimming

smartmapshim()

smartshim() Perform the gradient shimming
using the existing field map

smartshim()

searchshim(algorithm, evaluation,
channels, iteration)

Searching for better shim values with
an algorithm

searchshim(’simplex’, ’FIDArea’, ’z1-z2’,
50)

vartemp(target, timeout) Vary temperature to “target” celsius
degree within “timeout” seconds

vartemp(35.5, 240)

spin(target, timeout) Rotate the sample with the spin
rate of “target” Hz within “timeout”
seconds

spin(20, 200)

setshimvalue(channel, value) Set the shim value of shim coil in
“channel”

setshimvalue(’z1’, 1000)

go() Start the data acquisition go()

Data processing

setactws(path) Set the active workspace setactws(’D:/1.nmr’)

setparam(name, value) Set the value of parameter of the
active workspace

setparam(’ns’, 4)

getfid(path) Get the FID data of the workspace
whose storage path is “path”

getfid(’D:/1.nmr’)

getspec(path) Get the spectrum data of the work-
space whose storage path is “path”

getspec(’D:/1.nmr’)

setspec(path, data) Set the spectrum data of the work-
space whose storage path is “path”

setspec(’D:/1.nmr’, data)

wft() Perform the data processing with
weighting and Fourier transform

wft()

Original CPython libraries

np.multiply(a, b) Matrix multiplication np.multiply(a, b)

np.median(a) Compute median of an array np.median(a)

plt.plot(x, y) Draw a curve plt.plot(x, y)

scipy.optimize.curve_fit (func, x, y) Compute curve fitting scipy.optimize.curve_fit(func, x, y)

Page 9 of 14Liu et al. BMC Bioinformatics (2021) 22:581 	

access an FID or spectrum from a workspace, as well as updating the spectrum dis-
play after a transformation or analysis.

In order to achieve powerful performance, most native libraries of CPython can be
used in the scripting system, including NumPy, SciPy, matplotlib, and TensorFlow.
NumPy supports a user-friendly and efficient numerical manipulation. Users can read
data (FID or spectrum) from a workspace and convert the data format to an ndarray or
matrix; these are the basic data formats for fast numerical calculations in Numpy. SciPy
is a scientific computation library which can be used in parameter optimization and data
denoising. Matplotlib library is a visualization library for FID or spectrum plotting. Ten-
sorFlow can be used to implement deep learning which is an emerging field in NMR.

To illustrate the performance of the scripting system, three examples of NMR meth-
ods are presented. The first script example for automatic searching for shimming is illus-
trated in Fig. 5. Automatic searching for shimming aims to calibrate output values of
instrumental shim power supply by using a multivariate optimization algorithm, which
can significantly improve the homogeneity of a center magnetic field. It needs real-time
data acquisition and optimization analysis with an alternating style. The proposed Spin-
SPJ scripting system offers Java based instrument control for setting shim values and
real-time data acquisition. The SciPy library provides the optimization algorithm Sim-
plex [36] to generate new shim values with an optimized search path. As illustrated in
Fig. 5, the experiment of searching for shimming has been performed on a Zhongke-
Niujin 500 MHz QOnePlus NMR spectrometer. The test sample is 0.1 mg/ml GdCl3 in
D2O with 1% H2O. The evaluation criterion of field homogeneity is the area of FID, which
can be affected by adjusting the shim values. In each iteration, Simplex can simultane-
ously change all of the Z1-Z4 shim values and seek their best combination by evaluating
the area of the FID. After 40 iterations, the area of the FID is optimized from 350,781
to 864,282 (ADC value), and the half peak width of H2O peak is optimized from 15.8 to

import numpy as np
from scipy.optimize import minimize
from command import spinspj
x=[4500,15000,10000,8000]
def eval(x):
spinspj.setshimvalue('z1', int(round(x[0])))
spinspj.setshimvalue('z2', int(round(x[1])))
spinspj.setshimvalue('z3', int(round(x[2])))
spinspj.setshimvalue('z4', int(round(x[3])))
spinspj.go()
fidArea=np.sum(abs(np.real(getFIDData())))
return 1/fidArea

result=minimize(eval,x,x, method='nelder-
mead',options={...},callback=callback)

z1=4500 z2=15000 z3=10000 z4=8000 fidArea=350781
z1=2000 z2=15000 z3=10000 z4=8000 fidArea=389469

z1=3426 z2=11224 z3=7869 z4=6512 fidArea=864282

...

Iteration 1:
Iteration 2:

Iteration 40:

FID before shimming

FID after shimming

Area:350781

Area:864282

FWHM=15.8Hz

FWHM=3.7Hz

1000

500

0

-500

-1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 [s]

1500

1000

500

0

-500

-1000

-1500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 [s]

4.80 4.75 4.70 4.65 4.60 [ppm]

4.80 4.75 4.70 4.65 4.60 [ppm]

Fig. 5  Searching shimming by FID area and simplex algorithm. As the evaluation of field’s homogeneity, FID
area can be acquired and calculated by calling Java based method; the library SciPy of CPython provides the
simplex algorithm to optimize the shim values with an iterative style. The homogeneity of the magnetic field
is much better after utilizing the searching shimming method

Page 10 of 14Liu et al. BMC Bioinformatics (2021) 22:581

3.7 Hz, which presents a substantial improvement on the magnetic field homogeneity.
This example demonstrates that the scripting system can be used to flexibly develop user
defined NMR methods for the instrument calibration by combining data acquisition and
CPython based optimization algorithms.

The second example is for a principal component analysis (PCA) [37] of metabolomic
data. A PCA is the significant step to distinguish among the bulk data by projecting them
onto multiple orthogonal components. As illustrated in Fig. 6, the data are from the web
site metabolomics workbench [38], and the corresponding study ID is “ST000101” which
presents an NMR analysis of synthetic mixtures. Each of a total of 10 samples has 20
synthetic metabolites. All of the samples can be divided into two groups because the
quantities of the 10 metabolites are quite different. After a Java based automatic phase,
baseline correction, and integration of binned spectrals, the data set is analyzed by a
PCA that is implemented with the proposed SpinSPJ scripting system. The script for the
PCA includes reading the original data, calculating the average and standard deviation,
conducting a PCA, and displaying the columnar and scattered data. The CPython librar-
ies of NumPy, scikit-learn[39], and matplotlib are helpful to implement above require-
ments. The histogram gives the result of the 1st–8th principal components and their
contribution percentages. Among all of the components, the first principal component
can explain 58.02% of the information in the total samples. The score scatter plot shows
the score values of each sample on the first and second principal component, where “·”
denotes the published result of the study and “×” denotes the calculated score values by
the scripts. Obviously, on the first dimension of the PCA, the samples are divided into
group A and B, which is consistent with the metabolite composition of the samples. The

Score scatter plot

PC 1

PC
2

Principal component analysis

import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from command import spinspj
......
for filename in filelist:
spinspj.wft()
spinspj.aph()
spinspj.abs()

spinspj.peaksAligment([3,0,1],specData,1,peakAligment)
......#integration, normalization
for k in range(rownum):
m=np.mean(data[k,:])
stddata = np.std(data[k,:])
data[k,:] = (data[k,:] – m)/stddata

data2 = np.transpose(data)
pca1=PCA(n_components=8)
newData=pca1.fit(data2)
plt.bar(xcomp, pca1.explained_variance_ratio_[0:8])
......
fitted_data = pca1.fit_transform(data.T)
plt.scatter(fitted_data[:, 0], -fitted_data[:, 1])

R
2X

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1 2 3 4 5 6 7 8

40

20

-20

-40

0

-40 -20 0 20 40 60 80

Principal component

Mixture B5
Mixture B3
Mixture B4
Mixture B1

Mixture B2

Mixture A1
Mixture A2
Mixture A5

Mixture A3
Mixture A4

-reference
-script analyzed

Fig. 6  Principal component analysis. After some basic data processing, PCA is easily performed with the help
of the CPython library scikit-learn

Page 11 of 14Liu et al. BMC Bioinformatics (2021) 22:581 	

data of the score scatter plot are consistent with the published results of the study [40].
This example indicates that the scripting system can support complex multivariate sta-
tistical algorithms and chart displays with the help of native CPython libraries.

The third example focuses on deep learning NMR (DLNMR) [1] for non-uniform sam-
pling (NUS)[41, 42]. NUS is an emerging NMR field that can accelerate multi-dimen-
sional experiments of biomacromolecule as well as reducing the heating effect due to RF
excitation. Deep learning based NUS methods have achieved accurate and fast recon-
struction. The script reconstructs the spectra with a smart dense convolution neural
network (DCNN) [1], which has been trained with simulated or acquired data. A DCNN
requires a variety of libraries to implement the convolution and data fitting capabilities.
SpinSPJ can integrate all of the related libraries (such as TensorFlow, keras, cuDNN) in
the CPython environment. As illustrated in Fig. 7, a 3D HNCO NMR data of Azurin
(molecular weight is 14 kDa) with full sampling was downloaded from the MddNMR
website http://​mddnmr.​spekt​rino.​com. A fair comparison between full and 20% sam-
pling with respect to the spectral quality are shown in (a)–(f). In Fig. 7, (a) and (c) are the
sub-regions of the projections on the planes of 15N–1H and 15N–13C for the fully sam-
pled 3D spectrum, which is reconstructed by fast Fourier Transform. (b) and (d) are the
corresponding reconstruction results of a 20% sampling rate, which is reconstructed by
a DLNMR method. (e) gives the correlation coefficient of the peak intensities of (a) and
(b); (f) gives the correlation coefficient of the peak intensities of (c) and (d). The correla-
tion coefficients of peak intensities between DLNMR reconstructed and fully sampled

#Import libraries including deep learning
import numpy as np
from r import DLNMR,reconstruction
from keras.models import Model
from command import spinspj

fid = spinspj.readNUS3DFid(path)
fid = numpy.asarray(fid)
......
#Load the model of deep learning

DL_NMR = DLNMR(
model_kind="HyperComplex",
weight_path=weight_path,
GPU_index="0",
verbosity=2,)

......
#Set the related parameters

dimension = 3 #dimension
targetFidPt = (366, 120, 120) #FID size
fnMode = 4 #acquisition mode of indirect

#dimension
#Reconstruct the spectrum

DL_NMR_rec = reconstruction(
DL_NMR, data_nus, dimension,
targetFidPt, acquiredPtF1, fnMode,
number_split=32, verbosity=2,)

Fully sampled 20% sampled

13C

15N

15N

1H

(a) (b)

(c) (d)

Peak intensities of fully sampled

Peak
intensitiesof20%

sam
pled

15N-1H 15N-13C
R2=0.9987 R2=0.9986
(e) (f)

Fig. 7  Non-uniform sampling by deep learning. The original FID data is read by calling the function offered
by the main program of SpinStudioJ. The reconstruction method based on deep learning is easily performed
with the help of CPython libraries such as Tensorflow, keras, cuDNN, etc.

http://mddnmr.spektrino.com

Page 12 of 14Liu et al. BMC Bioinformatics (2021) 22:581

spectrums are greater than 0.99, which indicates excellent fidelity of the two spectrums.
For the 3D NMR, the achieved acceleration factor of 5 in NUS implies that the experi-
mental time can be reduced from 22.4 to 4.48 h. In addition, the computation time for
the 3D reconstruction is 9.66 s (data size: 732*60*60, GPU: NVIDIA Tesla K40m), which
demonstrates the method achieves very high computational efficiency. This example
shows the capability of the scripting system to implement a deep learning based NMR
method by leveraging native CPython libraries.

Conclusion
SpinSPJ is a novel NMR scripting system which offers general functionality for instru-
ment control and data processing; in addition, it can leverage native CPython libraries.
Conventional instrument control and data processing are implemented by Java program-
ming language; CPython libraries are helpful for providing advanced algorithms such as
fast numerical computation, artificial intelligence etc. More advanced NMR functional-
ity such as chemical shift and protein structure prediction are going to be integrated in
the future.

SpinSPJ can be downloaded free of charge by visiting the website: http://​www.​spins​
tudioj.​net/​spins​pj. The source code is private and owned by Zhongke-Niujin MR Tech
Co.Ltd. The released software products are freely available to any researcher wishing to
use them for non-commercial purposes, and licenses are needed for commercial pur-
poses. The coded scripts are available in the GitHub repository https://​github.​com/​
qonen​mr/​spins​pj.

Availability and requirements

Project name: SpinSPJ
Project home page: http://​www.​spins​tudioj.​net/​spins​pj
Operating system(s): Platform independent
Programming language: Java, CPython
License: source code private
Any restrictions to use by non-academics: license needed

Abbreviations
NMR: Nuclear magnetic resonance; NUS: Non-uniform sampling; MAGICAL: MAGnetics instrument control and analysis
language; FID: Free induction decay; JNI: Java native interface; OSGi: Open Service Gateway Initiative; DCNN: Dense
convolution neural network; PCA: Principal component analysis; DLNMR: Deep learning NMR.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04492-y.

Additional file 1: User manuals. Instructions about the installation, function list and programming for the pro-
posed scripting system SpinSPJ.

Additional file 2: Script examples. Example script files of SpinSPJ, including automation, searching shimming,
baseline correction, PCA, NUS, etc.

Acknowledgements
We gratefully acknowledge Mr. Rui Chen, Mr. Rui Cao, Mr. Xuedong Zheng, and Ms. Qingyuan Li for their patient pro-
gramming assistance. We sincerely appreciate the fruitful discussions with Prof. Xiaobo Qu, Prof. Xianzhong Yan, and Mr.
Shigan Chai. We also thank EditSprings (https://​www.​edits​prings.​com) for the expert linguistic services.

http://www.spinstudioj.net/spinspj
http://www.spinstudioj.net/spinspj
https://github.com/qonenmr/spinspj
https://github.com/qonenmr/spinspj
http://www.spinstudioj.net/spinspj
https://doi.org/10.1186/s12859-021-04492-y
https://www.editsprings.com

Page 13 of 14Liu et al. BMC Bioinformatics (2021) 22:581 	

Authors’ contributions
ZL completed the programming task and wrote the manuscript. ZWC designed the main framework of the scripting
system. KS designed the script examples presented in this article. All authors read and approved the final manuscript.

Funding
No funding was obtained for this study.

Availability of data and materials
All of the programs and script examples can be downloaded by visiting web site: http://​www.​spins​tudioj.​net/​spins​pj.
The coded scripts are available in the GitHub repository https://​github.​com/​qonen​mr/​spins​pj. The original data for PCA
are from https://​www.​metab​olomi​cswor​kbench.​org/​data/​pca/​show_​metab​olite_​pca_​NMR.​php. The NMR example data
of sample Azure for NUS have been downloaded from http://​mddnmr.​spekt​rino.​com.

Declarations

Ethics approval and consent participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author ZL and KS are employees of Zhongke-Niujin MR Tech Co.Ltd, and the company has no competing interests
with the published results.

Author details
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic
Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China. 2 Zhongke-Niujin MR Tech
Co. Ltd, Wuhan 430075, People’s Republic of China. 3 Department of Electronic Science, Fujian Provincial Key Laboratory
of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361005, People’s Republic of China.

Received: 4 June 2021 Accepted: 24 November 2021

References
	1.	 Qu XB, Huang YH, Lu HF, Qiu TY, Guo D, Agback T, Orekhov V, Chen Z. Accelerated nuclear magnetic resonance

spectroscopy with deep learning. Angew Chem Int Ed. 2020;59:10297–300.
	2.	 Liland KH. Multivariate methods in metabolomics—from pre-processing to dimension reduction and statistical

analysis. Trends Anal Chem. 2011;30:827–41.
	3.	 Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.
	4.	 Wu K, Luo J, Zeng Q. Improvement in signal-to-noise ratio of liquid-state NMR spectroscopy via a deep neural

network DN-Unet. Anal Chem. 2021;93:1377–82.
	5.	 Cobas C. NMR signal processing, prediction and structure verification with machine learning techniques. Magn

Reson Chem. 2020;58:512–9.
	6.	 Meiler J, Meusinger R, Will M. Fast determination of 13C NMR chemical shifts using artificial neural networks. J Chem

Inf Comput Sci. 2000;40:1169–76.
	7.	 Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin CL, Zídek A, Nelson AWR, Bridgland A, Penedones H,

Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D. Improved protein structure
prediction using potentials from deep learning. Nature. 2020;577:706–10.

	8.	 Chen DC, Wang Z, Guo D, Orekhov V, Qu XB. Review and prospect: deep learning in nuclear magnetic resonance
spectroscopy. Chem Eur J. 2020;26:10391–401.

	9.	 Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.
	10.	 German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human

health. Metabolomics. 2005;1:3–9.
	11.	 OpenVnmrJ. 2020. http://​openv​nmrj.​org. Accessed 24 Dec 2020.
	12.	 Jython. 2020. https://​www.​jython.​org. Accessed 25 Nov 2020.
	13.	 Tcl Developer site. 2020. https://​www.​tcl.​tk/. Accessed 25 Nov 2020.
	14.	 AU Programming. 2020. http://​www2.​chem.​uic.​edu/​nmr/​downl​oads/​ts_​au.​pdf. Accessed 25 Nov 2020.
	15.	 Comprehensive Portfolio of NMR Software. 2020. https://​www.​bruker.​com/​produ​cts/​mr.​html. Accessed 25 Nov

2020.
	16.	 Willcott MR. MestRe nova. J Am Chem Soc. 2009;131:13180–13180.
	17.	 Qt. 2020. https://​www.​qt.​io/. Accessed 25 Nov 2020.
	18.	 Kwan EE. ACD/spectrus processor review. J Chem Inf Model. 2012;52:1898–900.
	19.	 Van Beek JD. matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in

Matlab®. J Magn Reson. 2007;187:19–26.
	20.	 Vosegaard T. jsNMR: an embedded platform-independent NMR spectrum viewer. Magn Reson Chem.

2015;53:285–90.

http://www.spinstudioj.net/spinspj
https://github.com/qonenmr/spinspj
https://www.metabolomicsworkbench.org/data/pca/show_metabolite_pca_NMR.php
http://mddnmr.spektrino.com
http://openvnmrj.org
https://www.jython.org
https://www.tcl.tk/
http://www2.chem.uic.edu/nmr/downloads/ts_au.pdf
https://www.bruker.com/products/mr.html
https://www.qt.io/

Page 14 of 14Liu et al. BMC Bioinformatics (2021) 22:581

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	21.	 Lewis IA, Schommer SC, Markley JL. rNMR: open source software for identifying and quantifying metabolites in NMR
spectra. Magn Reson Chem. 2009;47:123–6.

	22.	 Helmus JJ, Jaroniec CP. Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J
Biomol NMR. 2013;55:355–67.

	23.	 The R project for statistical computing. 2020. https://​www.r-​proje​ct.​org. Accessed 25 Nov 2020.
	24.	 Python.org. 2020. https://​www.​python.​org. Accessed 25 Nov 2020.
	25.	 nmrpy · PyPI. 2020. https://​pypi.​org/​proje​ct/​nmrpy/. Accessed 17 June 2021.
	26.	 Badenhorst M, Barry CJ, Swanepoel CJ, van Staden CT, Wissing J, Rohwer JM. Workflow for data analysis in experi-

mental and computational systems biology: using python as ‘glue.’ Processes. 2019;7(7):460–76.
	27.	 What is the difference between a compiled and an interpreted program. 2020. https://​kb.​iu.​edu/d/​agsz/. Accessed

25 Nov 2020.
	28.	 Java Software | Oracle. 2020. https://​www.​oracle.​com/​java. Accessed Nov 25 2020.
	29.	 Liu Z, Chen ZW. SpinStudioJ: a cross-platform NMR data acquisition and processing workbench based on a plug-in

architecture. Magn Reson Chem. 2019;57:380–9.
	30.	 Alliance O. Osgi Service Platform, Release 3. Amsterdam: IOS Press; 2003.
	31.	 Numpy. 2020. https://​numpy.​org/. Accessed 25 Nov 2020.
	32.	 TensorFlow. 2020. https://​www.​tenso​rflow.​org/. Accessed 25 Nov 2020.
	33.	 Java Native Interface. 2020. https://​docs.​oracle.​com/​javase/​8/​docs/​techn​otes/​guides/​jni. Accessed 25 Nov 2020.
	34.	 The HDF group. 2020. https://​www.​hdfgr​oup.​org/. Accessed 25 Nov 2020.
	35.	 Embed Python in Java. 2020. http://​github.​com/​ninia/​jep. Accessed 25 Nov 2020.
	36.	 Hull WE. NMR tips for shimming, part I: computerized shimming with the simplex algorithm. Bruker SpinReport;

2003.
	37.	 Ma S, Dai Y. Principal component analysis based methods in bioinformatics studies. Brief Bioinform. 2011;6:714–22.
	38.	 Metabolomics Workbench - NIH Data Repository. 2020. https://​www.​metab​olomi​cswor​kbench.​org/​data/​DRCCM​

etada​ta.​php?​Mode=​Study​&​DataM​ode=​NMRDa​ta&​Study​ID=​ST000​101&​Study​Type=​NMR&​Resul​tType=2#​DataT​
abs. Accessed 25 Nov 2020.

	39.	 scikit-learn : machine learning in Python. 2020. https://​www.​sklea​rn.​org. Accessed 25 Nov 2020.
	40.	 Metabolomics Workbench. 2020. https://​www.​metab​olomi​cswor​kbench.​org/​data/​pca/​study_​pca_​NMR.​php.

Accessed 25 Nov 2020.
	41.	 Hyberts SG, Takeuchi K, Wagner G. Poisson-Gap sampling and FM reconstruction for enhancing resolution and

sensitivity of protein NMR data. J Am Chem Soc. 2010;132:2145–7.
	42.	 Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G. Application of iterative soft thresholding for fast

reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR.
2012;52:315–27.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.r-project.org
https://www.python.org
https://pypi.org/project/nmrpy/
https://kb.iu.edu/d/agsz/
https://www.oracle.com/java
https://numpy.org/
https://www.tensorflow.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni
https://www.hdfgroup.org/
http://github.com/ninia/jep
https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&DataMode=NMRData&StudyID=ST000101&StudyType=NMR&ResultType=2#DataTabs
https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&DataMode=NMRData&StudyID=ST000101&StudyType=NMR&ResultType=2#DataTabs
https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&DataMode=NMRData&StudyID=ST000101&StudyType=NMR&ResultType=2#DataTabs
https://www.sklearn.org
https://www.metabolomicsworkbench.org/data/pca/study_pca_NMR.php

	SpinSPJ: a novel NMR scripting system to implement artificial intelligence and advanced applications
	Abstract
	Background:
	Result:
	Conclusion:

	Background
	Implementation
	Architecture
	Workflow

	Results
	Conclusion
	Availability and requirements

	Acknowledgements
	References

