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Background
Antimicrobial peptides (AMPs) are olden defensive tools of living organisms against 
microbial infections [1]. AMPs are highly diverse in terms of length, sequence and their 
structure. This diversity suggests that these peptides have wide range of mechanisms 
of action on targets [2]. AMPs have many advantages compared to traditional antibiot-
ics such as broad-spectrum antimicrobial activity, selectivity for bacterial cells and rare 
occurrence of resistance [3]. Despite these benefits, toxicity of AMPs to mammalian 
cells is still the main concern in developing AMPs and is a major obstacle in their clinical 
applications [4].

Experimental identification and development of new antimicrobial peptides is both 
highly expensive and time-consuming. Hence, development of computational models 
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is essential to provide the fast analysis of potential AMP candidates by predicting their 
activities before their synthesis. Besides that, machine learning techniques can be used 
to determine the crucial physicochemical properties behind AMPs biological function-
alities [5].

Recently, many studies have been dedicated to develop predicting models using 
machine learning techniques to classify AMP candidates based on their sequences 
[6–10]. In 2016, Chaudhary et al. [7] developed a tool to predict hemolytic activity of 
peptides. Features used in their work were mostly linguistic-based and involved phys-
icochemical properties with global nature. Also, the classification performance for dis-
criminating highly hemolytic and poorly hemolytic peptides has still room to improve. 
In another study by Kleandrova et al. [4], simultaneous prediction of antibacterial activ-
ity and cytotoxicity with high accuracy was carried out using a limited set of features of 
Broto-Moreau autocorrelations [11].

In this work, we aim to take on both of these issues by training a model with an inclu-
sive set of features on an up-to-date dataset for prediction of toxicity of AMPs. General 
steps taken here are illustrated in Fig. 1. Features set include both physico-chemical and 
linguistic-based properties with both local and global nature. Most important proper-
ties behind the toxicity are also investigated by implementing feature selection by cross-
validation and distribution distant analysis of toxic and non-toxic AMPs.

Results and discussion
Preparation of dataset for training models

Several AMP databases were considered to obtain data from, yet the DBAASP dataset 
was chosen. This database is equipped with application programmable interface and 
it is still being updated while most other databases were outdated. DBAASP provides 
access to latest experimental data of AMPs antimicrobial activity and toxicity. Multi-
ple considerations were necessary before using this dataset. Since property calculation 
algorithms mostly recognize natural amino acids, many AMP records with unnatural 
residues or D-amino acids and terminal modification other than amid and acetyl group 
were removed. All concentration values with “µg/ml” unit were converted to “µM” using 
the molecular weights of peptides. This conversion was necessary to be able to com-
pare AMPs and also label them according to labeling rules. Several types of toxicity val-
ues including HC50, CC50 and MIC were available in data. The transformations of the 

Fig. 1  General steps taken for development of toxicity prediction model and investigating involved peptide 
properties
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HC50, CC50 and MIC toxicity values allowed for a more accurate comparison and labe-
ling since it’s based on peptide activity concentration. After these processes, dataset was 
ready for labeling and property calculation.

Analysis of distributions of features among toxic and non‑toxic AMPs

After calculating all features and removing correlated features, it was interesting to see 
if distinctive features could be found by comparing distributions of features among toxic 
and non-toxic AMPs. It should be noted that, all records in the dataset are AMPs and 
therefore they certainly have much in common in terms of features in basically all cat-
egories. Results from applying T-distributed Stochastic Neighbor Embedding (t-SNE) on 
final dataset (Additional file 1: Fig. S1) also shows that toxic and non-toxic AMPs have 
very similar feature distributions. Using Kullback–Leibler divergence method, compari-
son of toxic and non-toxic distributions for all 1263 features were carried out. As can be 
seen in the Fig. 2, although in most cases, the difference between feature distributions 
among toxic and non-toxic AMPs are negligible, some properties including Aggrega-
tion propensity in vivo, Normalized hydrophobicity and Composition of buried residues 
show distinct distributions.

Training model for classification of toxic and non‑toxic AMPs

In order to achieve a model for discriminating toxic and non-toxic AMPs, three steps of 
dimension reduction were carried out along the way. After each step, SVC, Linear SVC, 
Random Forest, KNN and hybrid models were trained and optimized on the training set. 
Receiver operating characteristic (ROC) curves were used to determine and compare 
the performances of the models. The Area Under the Curve (AUC) is used for measuring 
the ability of a classifier to distinguish between classes. The higher the AUC, the better 
the performance. Figure 3 shows the ROC results before performing feature selection. 
The dotted line shows the performance of a completely random classifier (AUC = 0.5). 
As can be seen in the figure and Table 1, Random Forest and SVC model show compara-
ble results and have achieved higher AUC scores.

Fig. 2  Histogram of Kullback–Liebler distance values calculated for each feature between the two sets of 
toxic and non-toxic AMPs
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In this scenario, it was important to minimize the number of false-non-toxic predic-
tions while also preventing the model to predict all samples as toxic. Therefore, F1 score 
was chosen as the performance measure to be optimized since it manages to consider 
both Recall (to minimize false-non-toxic) and Precision (to maximize true-non-toxic). 
Figure  4 compares these key performance measures of all implemented algorithms. 
Here, SVC (RBF, c = 5, gamma = 0.03), SVC (Polynomial, c = 0.001, gamma = 0.2), Ran-
dom forest and hybrid models show better results compared to that of Linear SVC 
(c = 0.2), Naïve Bayes and KNN (k = 5). Considering these results, Linear SVC, Naïve 
Bayes and KNN algorithms were omitted in the following steps. Compared to work of 
Chaudhary et al. [7] here we were able to achieve a roughly 9% increase in the accuracy 
of model.

Feature selection and model performances

Here, obtaining a model to discriminate toxic and non-toxic AMPs is not our only 
goal. We also want to investigate the underlying properties responsible for this dif-
ference in toxicity. These properties can either be based on amino acid sequence of 
peptide or have physico-chemical nature. Many works have been published which 
used sequence-based properties and successfully predicted a peptide function [7, 
8]. However, performances of these models depend highly on the similarity of query 

Fig. 3  Comparison of ROC curves of different algorithms before feature selection

Table 1  Comparison of area under curves of different algorithms before feature selection

Algorithm AUC before 
feature 
selection

Random Forest 0.8835

SVC (RBF) 0.8862

SVC (Polynomial) 0.8752

Naïve Bayes 0.7165

Linear SVC 0.8575

KNN 0.8452
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peptide sequence with the indexed peptides in the database. Considering that only a 
very small fraction of sequence space has enough similarity to known AMPs (even 
without considering the peptide length), these models will have arguable performance 
in many high-throughput applications such as peptide design.

Ideally, a model based on exact physico-chemical properties responsible for the tox-
icity of peptide should perform sufficiently good. However, that would be the case 
in our work only if the extracted properties cover all of those essential properties. 
Although in many works [12–15] the underlying properties behind toxicity of AMPs 
have been investigated, there’s still much to understand about this phenomenon. 
Accordingly, in order to cover as much properties as we could, we used Propy package 
to calculate peptide physico-chemical properties. On the other hand, since consid-
ered physico-chemical properties may not have enough information about the AMP 
activity, sequence-based descriptors were also calculated to have a comprehensive 
set of features and let the model choose the most informative descriptors in feature 
selection steps.

In order to get to an interpretable number of features, after removing correlated 
features, two methods of feature selection including L1-SVM and Tree-Based feature 
selection by cross validation were carried out sequentially. After these steps, 1276 fea-
tures were down to 90 features (Additional file 4: Table S3, Additional file 5: Table S4). 
Figure 5 shows the ROC results of random forest (a), SVC (RBF, c = 7, gamma = 0.35) 
(b) and SVC (Polynomial, c = 0.1, gamma = 0.55) (c) models and corresponding AUCs 
have been shown in Table  2. No significant performance losses were obtained after 
performing feature selection except for SVC (polynomial). Here, random forest model 
had the highest AUC.

Using hamming distance, performances of different algorithms were also compared 
with the hybrid model and show differences between 0.0247 and 0.0883 (Additional 
file  2: Table  S1). Results on test set from final models are shown in Fig.  6. As can 

Fig. 4  Comparison of different algorithms results in classification performance measures before feature 
selection
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be seen in the figure, although SVC (RBF) shows higher performance before feature 
selection, the hybrid model acts better with selected features in terms of F1 Score 
which shows that combination of various algorithms has helped here too achieve 

Fig. 5  ROC performance of Random Forest (a) SVC (RBF) model (b) and SVC (polynomial) model (c) after 
feature selection

Table 2  Comparison of AUC performances of random forest and SVC models before and after 
feature selection

Algorithm AUC before feature selection AUC after 
feature 
selection

Random Forest 0.8835 0.8856

SVC (RBF) 0.8862 0.8814

SVC (Polynomial) 0.8752 0.8477

Fig. 6  Comparison of classification results before (A) and after (B) feature selection
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higher performance. Considering the application of this model, it favors us to have a 
model with lowest chance of predicting a false non-toxic AMP while still being able to 
detect non-toxic AMPs. As for the performance measures, this preference is reflexed 
mostly in Recall and F1 Score which have been obtained 0.849and 0.849, respectively. 
The hybrid model showed no significant performance loss with selected features. 
Therefore, it can be concluded that these features, collectively, have essential informa-
tion for prediction of toxicity of an AMP.

Using feature importance attribute of random forest model, it was discovered that 
aggregation propensity of peptide in vivo is the most distinctive feature for toxicity of 
peptide. The algorithm behind calculating this feature can predict the peptide aggre-
gation propensity in the presence of cell material [16]. Interestingly, in the Kullback–
Leibler distance results, this feature has the highest value which shows that it has the 
most distant distributions in toxic and non-toxic AMPs (Fig.  7a). The composition 
of polar residues ranked second in final 90 features. By definition, it’s the number of 
polar residues (including Leu, Ile, Phe, Trp, Cys, Met, Val and Tyr) divided by total 
number of residues in the peptide. Similarly, it was one of the top 5 features in Kull-
back–Leibler distance analysis (Fig. 7b).

A full list of selected features has been shown and categorized in Additional file 3: 
Tables S2 and Additional file 4: Table S3. Most of these features were based on physic-
ochemical properties of AMPs including charge, hydrophobicity, polarity, secondary 
structure and solvent accessibility. Many of these attributes are based on distribution 
of properties and are independent of the amino acid composition which demonstrates 
the importance of properties with local nature. The fractional distance along the pep-
tide sequence that must be traveled to encounter the first residue with high strand 
forming propensity (VIYCWFT) and the first hydrophobic residue (CLVIMFW) are 
among properties with local nature. There are also some properties which measures 
fraction of pairs of contiguous residues that belong to each of the possible combi-
nations of different categories. For instance, fraction of pairs of contiguous residues 
with considerable difference in polarity and hydrophobicity value are among the top 
important properties. AMPs with similar amino acid compositions can have different 
values for these properties based on the distribution of residues. This result confirms 
that features only with a global nature such as the ones obtained from the sequences 
of the AMPs are not informative enough to predict the activity of a peptide.

Fig. 7  Comparison of distributions of calculated in vivo aggregation propensity (a) and polar residue 
composition (b) among toxic and non-toxic AMPs
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Conclusion
Here, by using an up-to-date dataset, we developed a machine learning model to 
predict the toxicity of antimicrobial peptides with excellent performance. Feature 
selection by cross validation was carried out on an inclusive set of features of both 
physico-chemical and linguistic-based to identify crucial features involved in the tox-
icity of antimicrobial peptides. It has also been shown that local properties have cru-
cial role in peptide functionality and therefore need to be considered in training new 
models. This model can be used as a tool for extracting AMPs with low toxicity from 
AMP libraries.

Methods
Preparing data

All AMP records were collected from Database of Antimicrobial Activity and Struc-
ture of Peptides (DBAASP) [17]. Records with reported quantitative hemolytic activity 
have been imported from the database. AMPs with unnatural residues (unusual amino 
acids, D-amino acids), C-terminal modifications other than amid group and N-terminal 
modifications other than acetyl group have been removed. In addition, peptides shorter 
than 6 residues and longer than 50 residues were also removed from dataset due to lack 
of sufficient examples in those length ranges. Concentration values with μg/mL were 
divided by the molecular weight of the corresponding peptide and then multiplied by 
1000, to have all the values in μM unit. The initial range of AMPs concentrations in their 
hemolytic activity was shortened to the range of 0.5–1000 µM. In addition, in the final 
dataset, peptides with no reported activity against lipid bilayer were also eliminated.

Using peptides concentration and lysis values and based on Additional file  5: 
Table  S4, “Toxic” and “Non-toxic” labels were assigned to each record to prepare 
the data for training classification models. Most of AMPs had more than 1 reported 
hemolytic activity, so these peptides potentially could have different labels. The final 
dataset included only peptides with a single label of toxic or non-toxic. For example, 
if a peptide turns out to be toxic in one hemolytic report, and non-toxic in another 
report, all records of this peptide were removed from the dataset.

Feature extraction

Here a total number of 1541 features have been extracted from peptide sequences 
(Additional file 6: Table S5). Freely-available Propy python package [18] was used to 
extract 1527 features from categories including amino acid composition, dipeptide 
composition, autocorrelation, pseudo-amino acid composition and sequence order 
properties. Each record in the obtained data from DBAASP already had four physico-
chemical properties of normalized hydrophobic moment, normalized hydrophobicity, 
net charge and isoelectric point. The disordering property and charge density were 
calculated similar to a previous work [9]. Aggregation propensity in vitro and in vivo 
were calculated using AGGRESCAN web server [16] and TANGO software [19], 
respectively. The Mean Hydrophilicity, Steric Hinderance, Solvation, Hydropathy and 
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Amphiphilicity were calculated using data from AAIndex database [20] (Additional 
file 7).

Training machine learning models

Here, several models including Support Vector Classifier (SVC) with radial basis 
function (RBF) and Polynomial kernels, Linear Support Vector Classifier (LSVC), 
Random Forest, Naïve Bayes and K-Nearest Neighbor were trained to predict the tox-
icity of AMPs. A voting classifier which is a hybrid model of all these algorithms was 
also trained. The train set (80%) and test set (20%) were constructed with no overlap 
between them and with enabled stratify argument on the class value (toxic, or non-
toxic). All trainings have been carried out using Scikit-learn [21] Python library with 
tenfold cross validation on train set. All models were optimized on train set using 
grid search by cross-validation and then the best model was used on test set. Com-
parison of model performances was carried out using performance measures (includ-
ing precision, recall, f1-score, accuracy and AUC) and hamming distance.

Feature selection strategy

In order to remove redundant or highly correlated features, several feature selection 
methods have been implemented. Pearson correlations between all pairs of features 
have been calculated using Mathematica software [22]. Tree-based feature selection 
and L1-based feature selection have been carried out separately using Scikit-Learn 
[21] Python library. First, the input data has been randomly split into 5 folds. The 
classifier (Random Forest classifier or Linear Support Vector Classifier) has been 
trained on each part. Lastly, in each method, features which were shared among all 5 
folds, have been extracted for further usage.

Kullback–Leibler distance

To compare distributions of toxic and non-toxic AMPs on each feature, Kullback–Lei-
bler (KL) distance [23] of distributions for all features were calculated and compared. 
Kullback–Leibler divergence quantifies the difference of two distributions for a given 
variable. Here, KL Divergence was measured for all calculated features independent 
of the feature selection steps. KL Divergence is calculated as follow:

where p and q are two probability distributions of variable xi. To obtain KL distance, KL 
Divergence was calculated twice with interchanged values of p and q and the mean value 
for each variable was reported as KL distance.

Visualization of feature distribution

Using t-SNE method in Scikit-learn package, the high dimensional space of AMP fea-
tures (90) was brought to 2 components to visualize and compare the feature distribu-
tion among toxic and non-toxic AMPs.

DKL(p||q) =

N∑

i=1

p(xi) · log
p(xi)

q(xi)
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