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Background
Since the central dogma of molecular biology was proposed, RNA has been treated as an 
intermediary between protein-coding gene and protein. However, protein-coding genes 
account for only ~ 1.5% of the human genome, and more than 98% of the human genome 
cannot encode proteins [1–3]. Most non-coding genes would be transcribed into non-
coding RNAs (ncRNAs). As their names imply, ncRNAs cannot be directly translated 
into proteins, so they were often considered as the "noise" of genome transcription 
without any biological functions for decades. According to the lengths of nucleotide 
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sequences, ncRNAs can be further divided into small ncRNAs (< 200 nucleotides) and 
long ncRNAs (>  200 nucleotides) [4, 5]. Following the discovery of lncRNA H19 and 
XIST in the early 1990s [6, 7], associated with the rapid developments of scientific meth-
odologies and experimental techniques, researchers have identified thousands of lncR-
NAs in eukaryotes ranging from nematodes to humans [8, 9]. Abundant evidences have 
demonstrated that lncRNAs play important roles in many fundamental and critical bio-
logical processes, such as transcriptional and post-transcriptional regulation, epigenetic 
regulation and chromosome dynamics [10–14]. Previous studies showed that the muta-
tion or dysregulation of lncRNAs are closely related with a variety of human diseases. 
For instance, MALAT1, also known as NEAT2, was found upregulated in non-small cell 
lung cancer tissues and could be served as an early prognostic biomarker [15]; lncRNA 
HOTAIR had been explored as a potential biomarker on the detection of hepatocellular 
carcinoma relapse [16].

The complex and precise regulatory functions of lncRNAs have largely explained the 
complexity of genome and opened a new chapter for scientists to deeply understand the 
diversity of living organisms from the perspective on gene expression regulatory net-
work. However, the exact mechanisms behind these various regulative relationships 
remain to be further explored; the general characteristics of lncRNAs, such as the rela-
tionships between their spatial structures and functions, the realization of transcrip-
tional regulation, and the molecular level mechanisms in various biological processes 
or diseases, are still unknown. The identification of lncRNA-disease associations can 
not only help us better understand the underlying mechanisms of lncRNAs in various 
human diseases, but also accelerate the discovery of potential biomarkers which may 
benefit the diagnosis, treatment, prognosis of many complex diseases. The exploration 
on the association between lncRNA and disease has attracted more and more research-
ers’ attention nowadays, which has become a prevalent topic in the current research 
field of lncRNA. Due to the number of newly discovered lncRNAs is growing rapidly 
every year, identifying lncRNA-disease association purely based on clinical information 
and biological experiments has encountered bottlenecks for their enormous consume 
of time and cost, and their disability to predict the associations of unrecorded diseases 
or lncRNAs, which undoubtedly limits the development of the lncRNA related studies. 
However, computational methods based on biological data can rapidly and efficiently 
quantify the correlation probability of interested lncRNA-disease pairs automatically, 
which can significantly reduce the time and cost of biological experiments. Therefore, 
it is a significant and urgent task to develop efficient and robust computational methods 
that are capable for predicting potential lncRNA-disease associations and providing can-
didates for future experimental verification.

Many researchers have proposed numerous algorithms and models for predicting 
potential lncRNA-disease association relationships over the years. All these methods 
could be broadly divided into three groups: biological network-based methods, machine 
learning-based methods and others. Based on the hypothesis that lncRNAs with simi-
lar functions may be more likely to be associated with diseases with similar phenotypes 
[17], a significant number of different biological network-based methods have been pro-
posed by integrating multi-source biological information networks to detect potential 
disease-related lncRNAs. Sun et  al. [18] proposed a global network-based computing 
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method, RWRLNCD. By integrating a lncRNA-disease association network and a dis-
ease similarity network into a lncRNA functional similarity network, RWRLNCD 
adopted the Random Walk with Restart (RWR) algorithm on the constructed lncRNA 
functionally similar network to conduct predictions. Yao et al. [19] proposed a predic-
tive model named LNCPricNet, which was based on a multi-layer composite network 
fusing different data of phenotypic-phenotypic interactions, lncRNA-lncRNA interac-
tions and gene–gene interactions with disease-ncRNA relationships. The RWR algo-
rithm was applied to predict potential lncRNA-disease associations. LNCPricNet could 
still achieve a decent performance when the known lncRNA-disease association data 
was insufficient, which may largely thank to the fact that the multi-layer composite net-
work interacted with abundant information offseted the insufficient with one particu-
lar type of data. Ding et al. [20] came up with a model named TPGLDA in which built 
a lncRNA-disease-gene tripartite graph and applied a resource allocation algorithm to 
obtain the promising lncRNA-disease associations. Zhao et al. [21] built a multi-heter-
ogeneous network which integrated the lncRNA functional similarity network, genetic 
similarity network, disease semantic similarity network and association networks among 
these three kinds of biological entries, subsequently realized the prediction of under-
lying lncRNA-disease associations through the RWR algorithm on their heterogeneous 
network. Xie et al. [22] adopted unbalance bi-random walk in their heterogeneous net-
work to reconstruct the lncRNA-disease association matrix, which reflected the latent 
lncRNA-disease associations. After that, they proposed a NCPHLDA model [23], which 
constructed two cosine similarity networks for all lncRNAs and diseases separately, and 
combined the network consistency projection score for each similarity network as the 
associated probability of corresponding lncRNA-disease pairs. Most of these biologi-
cal network-based methods adopted random walk-based algorithms on the established 
heterogeneous networks, which essentially takes the underlying topology information of 
nodes in the heterogeneous networks as the basis for the potential association predic-
tion. The predicted effects of network-based methods heavily depend on whether the 
built network could accurately and comprehensively reflect the interactions among real 
biomolecules. Meanwhile, the rigid neighborhood relationship utilized by the random 
walk algorithm or its derivations limits the information richness of molecular features.

In recent years, machine learning and deep learning techniques have been widely 
adopted in lncRNA-disease assocaition predictions. Most of machine learning meth-
ods for disease-related lncRNA candidate selection typically train classifiers with the 
acquired features of experimentally confirmed lncRNA-disease associations and inter-
ested candidates, then rank the candidating associations according to the classification 
results. Chen et al. [17] came up with a calculating model, LRLSLDA (Laplacian Reg-
ularized Least Squares for lncRNA-Disease Association), based on the “guilt by asso-
ciation” assumption that similar diseases tend to be associated with lncRNAs which 
possess similar functions. They developed a semi-supervised learning framework to 
predict potential disease-lncRNA associations. However, there are too many parameters 
involved in their model, and how to adjust parameters was not well addressed. In addi-
tion, the same lncRNA-disease pairs may get different scores from the lncRNA space and 
the disease space respectively, how to properly combining these scores is a tricky prob-
lem. Liu et al. [24] designed a computational model by integrating known human disease 
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genes, human lncRNAs and gene expression profiles without relying on any known 
human lncRNA-disease relationships. However, this model could not predict disease-
associated lncRNAs which have no associated gene records. Guo et al. [25] integrated 
the Gaussian interaction profile kernel similarity of lncRNAs and diseases with disease 
semantic similarity, and utilized an autoencoder getting lower-dimensional features of 
lncRNA-disease pairs. Finally, a rotating forest classifier was adopted to gain the predic-
tion results. Beyond that, several deep learning-based models have been developed in 
lncRNA-disease prediction field. Zeng et al. [26] initially combined matrix factorization 
method with a two-hidden-layer neural network architecture to capture the linear and 
non-linear features of lncRNAs and diseases respectively. Subsequently, they proposed 
a deep learning framework named DMFLDA [27], which adopted deep matrix factori-
zation to learn the represents of lncRNAs and diseases. Besides, they also proposed a 
SDLDA model [28] mixed matrix factorization method with neural network framework 
to extract different features of lncRNAs and diseases.

In addition to biological networks and machine learning methods, plenty of statistical 
methods are also adopted to predict latent lncRNA-disease associations. Chen et al. [29] 
proposed a HGLDA model based on hypergeometric distribution, where the functional 
similarity of lncRNA was calculated by integrating disease semantic similarity, miRNA-
disease association, and miRNA-lncRNA interaction. By testing whether the number of 
the common miRNAs shared by the disease and the lncRNA which were in the same 
lncRNA-disease pair exteeded beyond some threshold, HGLDA performed hypergeo-
metric distribution tests for each lncRNA-disease pair. Lu et al. [30] proposed a matrix 
factorization-based model, SIMCLDA. According to known lncRNA-disease, gene-
disease, gene–gene interactions and the functional similarities of diseases, the Gauss-
ian interaction kernel of lncRNAs was calculated, the matrix decomposition method 
was introduced to predict the potential lncRNA-disease associations. However, it did 
not tackle the problem of data sparsity and further studies are needed to improve its 
performance. Apart from statistical methods, there are still a lot of novel algorithms 
could be applied for potential association predictions. For example, Fan et al. [31] intro-
duced graph convolutional matrix completion to implement potential lncRNA-disease 
associations. Fusing verified lncRNA-disease associations and similarity data, they con-
structed an encoder-decoder model to learn nodes embeddings and score associations 
respectively.

In this paper, we propose an integrated feature extraction model, Singular Value 
Decomposition SVD and Node2Vec based LncRNA-Disease Association prediction 
model (SVDNVLDA), to predict potential lncRNA-disease associations. The rest of this 
paper is arranged as follows:

The results and discussions section exhibits the influences of hyperparameters in SVD-
NVLDA, the results of model comparison, robustness test and case studies, as well as an 
in-depth analysis of the limitions of SVDNVLDA and futher improvement directions.

The conclusion section overviews the workflow of SVDNVLDA, and its first-class pre-
diction capabality for practical applications.

The methods section introduces the acquisition and preprocessing of experimen-
tal data, the prediction process of SVDNVLDA, and the theoretical datails of SVD and 
node2vec methods involved in our model.
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Results and discussions
Evaluation metrics

Except for special instructions, all the numerical experimental results involved in this 
paper were generated under tenfold cross-validations. The evaluation metrics used 
in classifier selection and parameter adjustment processes contained Accuracy (Acc), 
Sensitivity (Sen), Specificity (Spec), Precision (Prec), and Matthews correlation coeffi-
cient (MCC) [32, 33]. In contrast experiments, the average AUC values and the AUPR 
values of ten testing sets of each model were gained and the corresponding ROC 
curves and PR curves were drawn through the results of tenfold cross-validations [34, 
35].

Classifier selection and parameter tuning

After gaining the linear feature matrixes U  and VT  based on SVD, we found a huge 
decay gap from 10−1 to 10−14 between the 173rd and the 174th dimensions of the 
importance matrix � (Additional file  1). In the light of principle of SVD, the linear 
features of entities were mainly focused on the top 173 dimensions. Therefore, the 
linear feature vectors of lncRNA and disease were fixed to 173 dimensions. As node-
2vec is a highly encapsulated node representation learning method, most of the inner 
parameters were kept constant and the hyperparameters acted as the dimensions of 
nonlinear vectors in our model. The16-, 32-, 64-, and 128-dimensional nonlinear fea-
ture representations were obtained, respectively.

In the selection process of machine learning classifiers, Linear Regression (LR), 
Naive Bayes (NB) [36], Random Forest (RF) [37], AdaBoost (ADB) [38] and XGB 
(XGBoost) [39] were tested based on different integrated features, respectively. The 
results of ACC and MCC values of all classifiers are shown in Tables 1 and 2. The col-
umn named “SVD” represents the features extracted based on single SVD method. 

Table 1  The ACC results of different features on classifiers

SVD N2V16 SN2V16 N2V32 SN2V32 N2V64 SN2V64 N2V128 SN2V128

LR 0.9207 0.9381 0.9404 0.9357 0.9370 0.9348 0.9366 0.9389 0.9374

NB 0.8327 0.9189 0.8456 0.9079 0.8559 0.9046 0.8644 0.8978 0.8795

RF 0.9261 0.9288 0.9308 0.9248 0.9303 0.9246 0.9304 0.9257 0.9385

ADB 0.9307 0.9361 0.9376 0.9331 0.9375 0.9289 0.9378 0.9281 0.9350

XGB 0.9383 0.9400 0.9460 0.9392 0.9454 0.9365 0.9452 0.9364 0.9444

Table 2  The MCC results of different features on classifiers

SVD N2V16 SN2V16 N2V32 SN2V32 N2V64 SN2V64 N2V128 SN2V128

LR 0.8412 0.8766 0.8812 0.8717 0.8743 0.8698 0.8736 0.8779 0.8750

NB 0.6719 0.8391 0.6956 0.8717 0.7150 0.8116 0.7317 0.7994 0.7613

RF 0.8527 0.8579 0.8619 0.8500 0.8607 0.8496 0.8609 0.8517 0.8618

ADB 0.8617 0.8705 0.8754 0.8667 0.8752 0.8580 0.8758 0.8566 0.8700

XGB 0.8770 0.8803 0.8922 0.8789 0.8920 0.8730 0.8906 0.8730 0.8891
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Analogously, “N2V16” represents the 16-dimensional features extracted based on 
node2vec, “SN2V16” represents the integrated features combined with SVD features 
and 16 dimensional node2vec, and so on. For results on other evaluation indexes Sen, 
Spec and Prec, refer to Additional file 2, Additional file 3 and Additional file 4 respec-
tively. All above classifiers were imported from scikit-learn library and implemented 
on Python, all inner-classifier parameters were set as defaults.

As known from Tables 1 and 2, the combination of linear features and 16-dimensional 
node2vec features obtained the optimal classification results in the XGBoost classifier 
(bolded in Tables 1, 2). Moreover, in most classifiers, prediction results based on inte-
grated features were better than single linear feature prediction results and correspond-
ing nonlinear feature prediction results, which demonstrated that the combination of 
SVD and node2vec does enhance the expression of integrated feature vectors in majority 
of classifiers.

Model contrast

After the model construction, we compared the proposed model with five state-of-
the-art lncRNA-disease prediction methods: LDASR [25], LDA-LNSUBRRW [22], 
NCPHLDA [23], SDLDA [28], and TPGLDA [20]. The ROC and PR curves under ten-
fold cross-validations as well as relevant AUC and AUPR values are shown in Figs. 1 and 
2 respectively.

Just as shown in Figs. 1 and 2, both the AUC value and AUPR value of SVDNVLDA 
are the highest among tested models, which indicated that the outperformance of SVD-
NVLDA. In terms of AUC, compared with NCPHLDA model, which gained the best 
result in contrast group, our model also improved the AUC value by about 5% . Moreo-
ver, the excellent AUPR value manifested that our model also has first-class classification 
ability on unbalance data sets.

Since all parameters of XGBoost classifier were set as defaults, to testify whether the 
AUC and AUPR results of SVDNVLDA is overfitted, we futher seperated 10% samples 
as validation set and trained classifier without leveraging the validation set. The ROC 

Fig. 1  The ROC curves of comparison test
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Fig. 2  The PR curves of comparison test

Fig. 3  The ROC curves of train set and validation set

Fig. 4  The PR curves of train set and validation set
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and PR curves of the train set and the validation set were exhibited in Figs.  3 and 4 
respectively. SVDNVLDA achieved remarkable results with AUC of 0.9798 and AUPR of 
0.9723 on the validation set, and it was not a result of overfitting.

Robustness testing

The robustness of the predictive model is that the predictive model can give a stable 
performance for data sets on different scales. For evaluating the robustness of SVDN-
VLDA, we applied it on three varying scale data sets, which had been adopted by other 
open-source lncRNA-disease association identification models. Similarly, under ten-
fold cross validations, the ROC and the PR curves of SVDNVLDA on these data sets 
are plotted in Figs. 5 and 6 respectively. The data set used in Yao’s model [19] includes 
2697 lncRNA-disease associations, 1002 lncRNA-miRNA associations, and 13,562 
miRNA-disease associations. And the data leveraged in Zhanghui’s model [40] con-
tains 1151 lncRNA-disease associations, 10,102 lncRNA-miRNA associations and 4634 

Fig. 5  The ROC curves of robustness test

Fig. 6  The PR curves of robustness test
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miRNA-disease associations. While, it is worth mentioning that miRNA entities were 
replaced with genes in the data set of MHRWR [21], which included 264 lncRNA-gene 
associations, 855 lncRNA-disease associations, and 9997 gene-disease associations. The 
experimental test results yielded that SVDNVLDA achieved excellent prediction results 
on all data sets, in particular, the prediction results after replacing miRNAs with other 
biological entities were still fine in the MHRWR model data. All these results suggested 
that SVDNVLDA can be flexible to accommodate data in different scales or even differ-
ent contents.

Case studies

To further evaluate the performance of SVDNVLDA model in practical applicaitons, we 
selected lung cancer, breast cancer and pancreatic cancer as case studies. The general 
processes of each of case studies were as following: first, all lncRNA-disease association 
data and the same number of negative samples were utilized to train an XGBoost clas-
sifier. Then, all lncRNAs unrelated to the interested disease in experimental data were 
screened, each of lncRNA feature vectors was combined with the current disease feature 
vectors. Finally, all these lncRNA-disease feature pairs were inputted into the trained 
classifier, and the output scores were taken as the correlation probability between the 
lncRNAs and the corresponding disease. After sorting these scores by descending order, 
the top ten lncRNA-disease associations were selected. And the validity of selected asso-
ciations was verified by searching the relative literature in the PubMed database. The 
results of case studies (Tables 3, 4, 5) and roughly analyses of each disease are as follows.

[Breast Cancer] According to the latest data of the global cancer burden in 2020 [41], 
there were 2.26 million new cases of Breast cancer worldwide in 2020, accounting for 
11.7% of all new cases of cancer this year, ranking first among all cancers. Symptoms of 
breast cancer includes lumps in the breast, changes in the shape of the breast, depres-
sions in the skin with bone pain, swollen lymph nodes, tachypnea or yellow skin. Table 3 
shows the top-10 lncRNA-disease associations of unknown association of SVDNVLDA 
for breast cancer prediction.

[Lung Cancer] Lung cancer is a kind of malignant lung tumor caused by uncon-
trolled cell growth in lung tissues, the malignant growth can spread beyond the lungs 
by metastasizing to nearby tissues or other parts of the body. In 2020, there were 2.2 

Table 3  Case study results of breast neoplasms

Rank lncRNA PMID

1 HCP5 32165090

2 MBNL1-AS1 31113460

3 TNRC6C-AS1 30038597

4 RN7SL1 28709002

5 MIR155HG 32165090

6 DISC1 31783305

7 LRRC2-AS1 Unknown

8 NRON 32913541

9 lnc-KCTD6-3 Unknown

10 MORT 28690657
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million new cases of lung cancer worldwide, accounting for 11.4% of all the new can-
cer cases, ranking secondly among all cancers [41]. The most common symptoms of 
lung cancer include coughing, weight loss, breath hard and chest pain. Most of lung 
cancer cases are caused by long-term smoking. Table 4 illustrates the top-10 lncRNA 
results of lung cancer predicted by SVDNVLDA.

[Pancreatic Cancer] The common signs and symptoms of pancreatic cancer include 
yellow skin, abdominal or back pain, unexplained weight loss and loss of appetite. 
Usually, there are no obvious symptoms in the early stages of pancreatic cancer, yet 
when the symptoms are sufficient to indicate contraction generally means the disease 
is at an advanced stage, and by the time of diagnosis, pancreatic cancer has usually 
spread to other parts of the body. In the global statistics of cancer deaths in 2020, 
pancreatic cancer caused 466,000 deaths, and more than half of these clinical cases of 
pancreatic cancer were over 79 years old [41]. Table 5 presents the top-10 potential 
lncRNAs with pancreatic cancer prediction.

Among all the results of three diseases, the latest Pubmed literature support was 
found for 8, 9 and 8 of the top-10 predicted lncRNAs with maximum correlation 
probability, respectively. This clearly indicates that our model has a good performance 
in the prediction of actual disease-related lncRNAs, and possess potential application 

Table 4  Case study results of lung neoplasms

Rank lncRNA PMID

1 TNRC6C-AS1 32041817

2 SNHG16 33015794

3 TUG1 33073961

4 LINC00963 28923857

5 NRON 29772429

6 RN7SL1 Unknown

7 lnc-Sox5 23932921

8 HAGLR 28632999

9 LINC00460 32633366

10 AGAP2-AS1 32015683

Table 5  Case study results of pancreatic neoplasms

Rank lncRNA PMID

1 TNRC6C-AS1 32382761

2 FENDRR 33417179

3 FOXCUT​ Unknown

4 PCAT1 33629282

5 MBNL1-AS1 Unknown

6 lnc-KCTD6-3 32046932

7 MIR31HG 32134327

8 CASC9 33520364

9 DGCR5 33613108

10 MORT 26549028
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value and scientific significance. Full results of the three cancers are given in Addi-
tional file 5, Additional file 6 and Additional file 7.

Discussions
In this paper, we proposed an integrated feature extraction model, SVDNVLDA, for pre-
dicting potential lncRNA-disease associations. In SVDNVLDA, the network representa-
tion learning method node2vec and matrix decomposition method SVD were originally 
integrated to predict the potential lncRNA-disease associations. It also can be regarded 
as an open framework, in which more feature extraction methods can be flexibly applied.

However, there are still some potential weaknesses in our model, which mainly relies 
on the limitations of the data used in this paper. Specifically, relying solely on the associ-
ated data almost could not comprehensively reflect the complex interactions between 
lncRNAs and the other biomolecules. Meanwhile, in the heterogeneous network LMDN, 
the node representations, obtained by node2vec, have been proven to be capable to 
retain the topology information of nodes in network, yet they fail to remain the informa-
tion of different node types which is abundant and valuable in heterogeneous networks. 
It would be improved on the expansion of experimental data and introducing more 
advanced representation learning methods in future studies.

Conclusions
In SVDNVLDA, the linear feature representations of lncRNAs and diseases con-
taining their linear interaction information were obtained by matrix decomposition 
method SVD; and the nonlinear features containing network topology information 
were obtained by node2vec. The integrated feature vectors of aforementioned features 
were inputted into a machine learning classifier, which transformed the lncRNA-disease 
association prediction into a binary classification problem. The AUC and AUPR values 
of SVDNVLDA are higher than any of five popular prediction methods under tenfold 
cross-validations. The prediction performance on data sets of different scales shows that 
SVDNVLDA can be adapted to a range of data sets and possess strong robustness. In 
addition, the case studies of three common cancers indicate its effectiveness in practical 
applications.

Materials and methods
Overview of SVDNVLDA

Matrix decomposition method, SVD, and network embedding method, node2vec, were 
novelly integrated in SVDNVLDA for obtaining the linear and the nonlinear representa-
tions of both lncRNA and disease entities respectively. By combining the different fea-
tures of each lncRNA and each disease, the integrated feature vectors were constructed 
which fused the linear features of interaction information and the nonlinear features of 
network topology information. These feature vectors were served as the inputs of one 
machine learning classifier and the corresponding predicted results would be obtained 
in the end (Fig. 7).

Step1: Data processing and construction of lncRNA-disease association matrix 
and lncRNA-miRNA-disease association network (LMDN). Step 2: Apply SVD on 
association matrix to get linear features. Step 3: Apply node2vec on LMDN to get 
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nonlinear features. Step 4: Feature integration. Step 5: Use XGBoost classifier to pre-
dict association.

Data preprocessing

The study mainly included lncRNA-disease association data, lncRNA-miRNA asso-
ciation data and miRNA-disease association data. The experimentally confirmed 
lncRNA-disease association data were downloaded from LncRNADisease v2.0 [42] 
and Lnc2Cancer v3.0 [43]. All disease names were converted into standard MESH 
disease terms, and duplicate data was filtered to retain only one replication. For 
avoiding experimental errors that came from the downloaded data, the lncRNAs 
with one or none association were removed. In the end, a total number of 4518 asso-
ciations between 861 lncRNAs and 253 diseases were obtained.

The known lncRNA-miRNA association data was downloaded from Encori [44] 
and NPInter V4.0 databases [45]. After eliminating redundancy, only records of the 
lncRNAs commonly to lncRNA-disease data and the miRNAs commonly to miRNA-
disease data were selected. Finally, a total of 8172 lncRNA-miRNA associations were 
obtained involving 338 lncRNAs and 285 miRNAs.

As for miRNA-disease association data, it was obtained from the HMDD v3.2 
database [46]. The original data includes two types of association records, namely 
the subjective causality and passive changes of miRNAs during the course of dis-
eases. By contrast, the studies of miRNAs in causal relationship with diseases were 
more valuable for exploring the pathogenesis and searching for new biomarkers. In 
our experiment, only the related records with causal relationships in HMDD data-
base were picked. All disease names were transformed to standardized names based 
on MeSH glossary, and the lncRNAs associated with only one disease were removed 
from the original data. Ultimately, a total count of 861 lncRNAs, 437 miRNAs and 
431 diseases were involved in our experiment. The statistical overview of formed 
data, also as the statistical overview of LMDN was documented in Additional file 8.

Fig. 7  The flowchart of SVDNVLDA
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Construct lncRNA‑disease association matrix and LMDN

Firstly, the lncRNA- disease association matrix was constructed. For lncRNA l  , if 
there is a known association with disease j in our collected data, the corresponding 
element value in the association matrix RM×N  is 1 ; otherwise, it is 0 . The formula is 
made out as:

in our experiment, the real matrix RM×N was shaped as 861 × 437 dimensions.
After the construction of association matrix, lncRNA-disease association data 

combined with lncRNA-miRNA association and miRNA-disease association data 
were used to construct lncRNA-miRNA-disease association heterogeneous network 
(LMDN). Among the three types of vertices in LMDN, namely lncRNA, miRNA and 
disease, there would be an edge between two vertices with association record, other-
wise the two vertices would have no connection. The heterogeneous network was a 
sparse network with 1769 nodes and 16,878 edges, as detailed in Additional file 8.

Linear feature extraction based on singular value decomposition

SVD is a matrix decomposition method which has been widely used in recommender 
systems [47, 48]. In SVD, the matrix is common decomposed into the multiplying of 
three matrices:

As a typical collaborative filtering-based recommendation system with SVD, the 
initial matrix R represents a rating matrix for M users’ rates on N  goods. Among 
the resulted matrixes, U  represents the interesting levels of M users on C features 
of goods, namely users’ characteristics or commodity affinity; while � represents the 
importance of each feature of goods, specified as a non-negative diagonal matrix, in 
which diagonal elements are arranged as descending order. VT  represents the distri-
bution of C features in N  goods [49].

Analogically, applying SVD on lncRNA-disease association matrix RM×N  , the 
obtained matrixes U  , � and VT  could represent lncRNA feature matrix, feature weight 
matrix and disease feature matrix, respectively. For dimensional reduction purpose, 
only the ranked k features with larger numerical values in � were taken, and R would 
be expressed as:

In fact, the binary matrix R is not an ideal initial matrix. In recommendation sys-
tem, 0 (or blank) elements in rating matrixs cannot actually represent these rates 
of products, more likely, it is commonly due to missing users’ evaluations. Thus, in 
lncRNA-disease association matrix R , the value 0 usually represents that the corre-
sponding association has not been confirmed. Therefore, for calculation convenience 
and considering biological meaning, all the 0 elements in original binary matrix R 

(1)RM×N

(

i,j
)

=

{

1, if i and j have association
0, otherwise

(2)RM×N = UM×C ·�C×C · VT
C×N

(3)RM×N ≈ UM×k ·�k×k · V
T
k×N
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were replaced by 10−6 in our experiment. Based on the theory of SVD, each row in 
UM×k represents a k-dimensional linear feature vector of a certain lncRNA. Similarly, 
each column in VT

k×N  represents a k-dimensional linear feature vector of a certain dis-
ease (Fig. 8).

Nonlinear feature extraction based on Node2vec

Network representation learning (NRL), also known as network embedding, refers to 
map nodes into a continuous low-dimensional space on the premise of keeping charac-
teristics of nodes in the original network. Given a network G = (V ,E) , where V = {vi} 
represents the collection of nodes and E = ei ⊂ {V × V } represents the collection of 
edges. The mathematical expression of NRL is: ∀vi , find a map f : V → Rd , and d ≪ |V | . 
The ideal learned node representations should be able to quantify the characteristics of 
nodes in social network, which could be intuitively expressed that topological neigh-
bor nodes have small numerical vector distance and the representations of nodes in the 
same community have larger similarity than nodes outside the community. Up to now, 
many NRL methods have been widely used to solve problems such as node classification, 
community discovery, link prediction and data visualization [50].

As a semi-supervised network feature learning method, node2vec [51] innova-
tively proposed a biased random walk on the basis of word representation method 
[52] and DeepWalk [53], as well as defined a more flexible way to select the next 
step node with random walk. More specifically, node2vec trades off the two kinds 
of random walk strategy: Breadth-first search (BFS) and Depth-first search (DFS), 
which are shown in Fig. 9. Unlike the original random walk, node2vec can artificially 

Fig. 8  The illustration of applying SVD on lncRNA-disease association matrix

Fig. 9  The illustration of distinctions between BFS and DFS
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control the degree of BFS and DFS by adjusting parameters based on the preferences 
of actual practice scenario. Here is a detailed description of simple random walk and 
modified biased random walk in node2vec (Fig. 10).

For a given boot node u , simulate a simple unbiased random walk with l  length. ci 
represents the ith node in the process of random walk. Let c0 = u , and the transition 
probability of the node reached in ith step is:

of which πvx is the unnormalized transition probability between nodes v and x , Z repre-
sents a normalized constant term.

As for the biased random walk in node2vec, just as shown in Fig.  10, if the root 
position of a random walk is set at node t , through edge (t, v) , the current position 
reached node v , and the transition probability is set as follows:

dtx represents the shortest distance between nodes t and x and the possible value of dtx 
is 0,1,2. As shown in Fig. 10, the parameter p controls the probability that the next step 
of walk will return to the previous node. If p is greater than 1 , the random walk will 
have less tendency to turn back. The value of q controls the preference of BFS and DFS 
to guide the bias of random walk. If q is greater than 1 , the random walk will be more 
inclined to BFS, that is, to the neighbor node of the starting node. If q is less than 1 , the 
random walk is more inclined to DFS, that is, to go away from the starting node. When 
the values of p and q are both equal to 1 , node2vec is equal to DeepWalk.

In the constructed LMDN, node2vec was adopted to obtain the corresponding 
representations for vertices. The representations of lncRNA and disease nodes gen-
erated by node2vec retain the topological information of the nodes in LMDN. The 
experimental results demonstrate that the obtained nonlinear features could effec-
tively enhance the SVD based linear features and improve the information richness 
in integrated features.

(4)P(ci = x|ci−1 = v) =

{

πvx
Z , if (v,x) ∈ E
0, otherwise

(5)αpq(t, x) =











1
p if dtx = 0

1 if dtx = 1
1
q if dtx = 2

Fig. 10  The bias random walk on node2vec 
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Feature integration

Based on the decomposition of RM×N  and NRL method node2vec, we have obtained 
the linear feature matrixes U  , VT  , and the nonlinear feature representations of 
lncRNA and disease nodes in LMDN. For each lncRNA i and disease j , the feature 
integration rules are as follows:

The linear features corresponding to lncRNA i is the ith row of U  , which is noted 
as LLi after being converted into a column vector. Similarly, the linear features cor-
responding to disease j is the jth column of VT  , represented as LDj . The nonlinear 
features corresponding to i is noted as NLi as well as the nonlinear features corre-
sponding to j is noted as NDj . The final integrated features of i and j is expressed as:

where [] represents the vector connect operation.
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