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Background
Microarray data is a valuable tool for analyzing gene expression profiles [1]. This kind of 
data usually contains a small number of biological or clinical samples and a large num-
ber of genes (features) that are not related to the target disease [2]. In addition, microar-
ray data shows a high complexity, i.e., genes are direct- or inter-related, which results in 
a high degree of redundancy. These features make many machine learning algorithms 
incompetent to microarray data with low robustness and poor classification accuracy 
[3]. Therefore, it is essential to find a suitable method to reduce the number of features 
for constructing a model, to improve the classification accuracy and robustness.
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Extensive research has shown that feature selection is crucial for building statisti-
cal models when mining large datasets of high dimension, especially for those gener-
ated from microarray and mass spectra analysis [4]. It is a significant step forward 
for selecting biomarkers in biological data. Standard feature selection methods can 
be divided into filter methods, wrapper methods, and embedded methods [5]. Some 
advanced hybrid feature selection methods [6–12] have been reported, which can 
achieve a higher classification accuracy with a smaller number of features using pub-
lic gene datasets. These methods are described in detail in the Related work section.

Meanwhile, results from the proteomic analysis are experiencing the same issue as 
high-dimensional gene expression data based on advanced mass spectroscopy. Many 
of identified proteins might be irrelevant to the disease and have high correlations 
among each other. Machine learning methods have shown a significant advantage 
in dealing with this genetic and clinical data in the past few years [13–15]. Recently, 
these methods have been optimized to process proteomic/metabolic data acquired 
from mass-spectrometry in some diseases [16–18].

Existing researches have dedicated to improving the accuracy of prediction models 
with a smaller number of features. However, for the discovery of markers, the reli-
ability and stability of the results must be emphasized. If part of the data is updated 
or modified, and the markers selected by the algorithm change significantly after the 
disturbance of the data set, ,which makes the original ones are no longer reliable for 
researchers [19]. Although literature [20] emphasizes the importance of feature sta-
bility and designs a sorting algorithm, this method does not consider result stability 
in the feature selection process simultaneously.

Meanwhile, there is little literature explaining and validating the clinical meaning 
of the selected genes or proteins in these literatures. Despite the high classification 
accuracy, a priori knowledge or manual verification is necessary for assessing the 
biological plausibility and the specificity of any biomarker clusters identified by the 
algorithm. Taken alpha-fetoprotein (AFP) as an example, it is a well-known biomarker 
for a variety of problems of pregnancy, such as open neural tube defects, abdominal 
wall defects and Down’s syndrome [21]. However, the level of AFP is also elevated 
in omphalocele, gastroschisis, and sacrococcygeal teratoma, etc. [22], which makes it 
insufficient to distinguish the actual fetal abnormalities.

In this paper, a hybrid method combining improved L1 regularization and clus-
ter-based (ILRC) biomarker selection is proposed to solve the above problems. The 
overall framework is shown in Fig. 1. The method firstly clusters the features and fil-
ters the part of the features that has the highest correlation with the seed node in 
each sub-cluster. Then it uses the improved L1 regularization method to evaluate the 
weight of each feature for multiple iterations, and finally it sorts the output features 
according to the weight of the feature subset. The results on the public data set and a 
set of cleft lip and palate disease proteomics data (provided by the cooperative hospi-
tal, biomarkers have been verified) prove the effectiveness of this method.

The contribution of this article is reflected in the following aspects: 
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1.	 A hybrid feature selection method is designed for biomarker selection. This method 
focuses on the stability and validity of the results during the feature selection process 
while ensuring a high accuracy rate.

2.	 A combination of clustering algorithm with filter method and embedded method for 
biomarker selection.

3.	 Comparatively evaluation of the performance of various classifiers on microarray 
data.

4.	 Introduce a data set that can be used for biomarker verification to prove the validity 
of the results.

Related work

Traditional feature selection methods can be divided into filter, wrapper and embed-
ded methods. In general, the filter method does not involve classification models. It 
only uses the intrinsic characteristics of the data to measure the important feature 
score [23]. Comparing to other feature selection methods, it has a lower time com-
plexity, which allows a flexible arrangement to combine with other feature selection 
algorithms for data preprocessing achieving, noise removal and dimensional reduc-
tion [24–26]. The common filter methods mainly contains ReliefF [27], T-Test [28], 
Chi-squared test [29], and maximal information coefficient (MIC) [30], Gini Index 
[31], Kullback–Leibler divergence [32], Fisher score [33], Laplace operator score [34].

Wrapper methods usually add a classifier that involves evaluating the subset of fea-
tures [35]. It takes classifiers as an integral part of the algorithm and evaluates the 
importance of selected features according to the classifier performance, which usually 
generates a better model accuracy. Common wrapper methods incorporates stability 
selection [36], recursive feature elimination (RFE) [37], genetic algorithm (GA) [38], 
K-nearest neighbor (KNN) [39] and particle swarm optimization (PSO) [40].

The idea of embedded methods is similar to wrapper methods. They both involve 
classifiers. However, in the embedded method, the selection of feature subsets is 
directly embedded in the classifiers. In other words, the feature selection is carried 
out simultaneously with the training of the classifier. The common embedded method 
comprises supported vector machine recursive feature elimination (SVM-RFE), deci-
sion tree (DT) [41], random forest algorithm (RF) [42], and Lasso regression (LR) [43].

Fig. 1  Proposed method framework. This method first clusters the features, and filters the features that are 
highly correlated with the node with the highest weight in each sub-cluster, and then uses the improved 
L1 regularization method to evaluate the weight of each feature for multiple iterations. Finally, the output 
feature subsets are sorted according to feature weights
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However, recent studies have shown that hybrid feature selection methods can simul-
taneously take the efficiency advantages of filter method and the accuracy advantages of 
warpper method to achieve superior performance [44]. In addition, some studies have 
also figured out the data imbalance problem commonly appeared in microarray datasets 
[45, 46].

For the microarray data of DNA, Lu et al. combined mutual information maximization 
(MIM) and adaptive genetic algorithm (AGA) to propose a hybrid feature selection algo-
rithm, MIMAGA-Selection [6]. The method effectively reduces the dimensionality of the 
original gene expression dataset and achieves the goal of eliminating data redundancy. It 
uses MIM to find genes in the same category that are highly dependent on other genes. 
Experimental results show that the accuracy of the MIMAGA-Selection method out-
performs the three existing algorithms selected, ReliefF, sequential forward selection 
(SFS) and MIM. To verify the validity of the genes selected by the MIMAGA-Selection 
method, the paper of MIMAGA-Selection includes the backpropagation neural network 
(BP), the support vector machine (SVM), extreme learning machine (ELM) and the reg-
ularized extreme learning machine (RELM).

Salem et al. proposed a new method for finding biomarkers from gene microarray data 
that combines information gain (IG) and a standard genetic algorithm (SGA) for feature 
selection, called IG/SGA [7]. The information gain is used for the initial feature selec-
tion to reduce redundant features and is used to improve the efficiency of the genetic 
algorithm. The genetic algorithm is then used for further feature selection, and finally, 
genetic programming (GP) is used to build the final classification model. Experimen-
tal results on the seven datasets employed show that, compared to other hybrid feature 
selection methods, the method proposed in this paper generally achieves the best clas-
sification accuracy and achieves 100% classification accuracy on two datasets.

Alshamlan et  al. proposed a new feature selection algorithm, called the minimum 
redundancy maximum relevance (mRMR) method, and combined it with an Artificial 
Bee Colony algorithm (ABC) to filter biomarkers from gene microarray data [8]. mRMR 
is used as a filtering method to reduce the number of features and improve the efficiency 
of the ABC algorithm. The method uses a support vector machine (SVM) as a classifier 
and compares with mRMR combined with genetic algorithm (mRMR-GA) and mRMR 
combined with particle swarm optimization algorithm (mRMR-PSO) on five datasets. 
The results show that the mRMR-ABC method is able to provide a higher classification 
accuracy when using a small number of features.

Jain et al. combine correlation-based feature selection (CFS) with an improved binary 
particle swarm optimization (iBPOS) to propose a two-stage hybrid feature selection 
method for biomarker selection of microarray data [9]. Like other advanced hybrid fea-
ture selection methods, CFS is used to improve the particle swarm algorithm’s perfor-
mance. The method uses a Bayesian model as a classifier and experiments have been 
conducted on 11 different microarray datasets. Results comparing the method with 
some advanced feature selection methods show that the method generally outperforms 
the comparison algorithm in terms of classification accuracy and achieves 100% classifi-
cation accuracy on seven datasets.

Moradi et  al. proposed a hybrid feature selection method based on particle swarm 
optimization (PSO) algorithm [10]. The main idea of the method is to sneak in a local 
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search strategy to guide the search and selection process of the particle swarm optimiza-
tion algorithm. A comparison with five advanced feature selection methods on 13 data-
sets was carried out. The results showed that the proposed method could improve the 
classification accuracy and had significant advantages over other methods.

Shreem et  al. proposed a two-stage feature selection hybrid method for solving the 
biomarker identification problem for microarray data [11]. The method combined sym-
metric uncertainty (SU) and harmonious search algorithm (HSA), abbreviated as SU-
HAS. In the first step, the SU method is used to remove redundant features, while the 
second stage used HAS to select the best feature genes. In the experiments with 10 
microarray data, the method obtained the highest classification accuracy in five datasets 
compared to other advanced feature selection methods.

Two hybrid feature selection methods based on the fast correlation based filter (FCBF) 
algorithm were studied by Djellali et al. [12]. The first method was based on a genetic 
algorithm (FCBF-GA) and the second method was based on a particle swarm optimiza-
tion algorithm (FCBF-PSO). The first stage of the method used FCBF for feature filter-
ing and then the results were fed to either the genetic or particle swarm algorithm. The 
method was evaluated on four microarray datasets using a support vector machine as a 
classifier, and the results showed that FCBF-PSO outperformed FCBF-GA.

Results
In this section, we show the experimental results according to the processing flow of 
the feature engineering pipeline. In the data preprocessing process, the impact of differ-
ent sampling methods on the unbalanced data set is compared. In the process of feature 
selection, we compared our proposed method with typical feature selection methods. 
In the model-building stage, we compared the effectiveness of different classification 
models. Finally, in the result evaluation, the proposed method was compared with the 
advanced feature selection method. In addition, we also evaluated the proposed method 
on the cleft lip and palate (CLP) dataset.

Sampling results of unbalanced data sets

Table 1 shows the evaluation of the results after sampling on five imbalanced data sets 
using two different sampling methods (oversampling and combined sampling). To ensure 
the reliability of the results, the experiment selected multiple classification models and 
selected the same number feature. These methods included support vector machine 
(SVM), Gaussian Bayes (GB), decision tree (DT), neural network (NN) and K-nearest 
neighbor (KNN). These classifiers are commonly used in bioinformatics analysis, and 
have been proven to have good performance [47–49]. It can be see that combined sam-
pling achieves the best results.

Comparison results of feature selection methods

Figure 2 shows the classification accuracy of different classification models on the bal-
anced datasets. These methods are random forest (RF), linear regression model (Linear), 
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Ridge regression model (Ridge), improved L1 regularization based linear regression 
model (ILR), recursive feature elimination (RFE), and decision tree (DT).

Usually, in microarray data analysis, the number of features that researchers pay 
attention to is between 5 and 30, which is also the focus of our attention. It can be 
seen that ILR has achieved better results in this area, and ILR is also part of the 
hybrid algorithm we proposed.

Figure 3 shows the average classification accuracy of different methods when the 
number of features is limited to 30. Figure 4 shows the changes of different indica-
tors. The results indicate that in the area of interest, the evaluation indicators can 
reach a stable state.

Table 1  Classification accuracy of different sampling methods on unbalanced datasets

Datasets SVM GB DT NN KNN

Origin datasets ALL1 1.0000 1.0000 0.9843 1.0000 1.0000

ALL3 0.8080 0.8640 0.7680 0.8240 0.8080

ALL4 0.9567 0.9053 0.8053 0.9129 0.8930

DLBCL 0.9875 0.9750 0.8558 0.9875 0.9750

Myeloma 0.9018 0.8965 0.7114 0.8842 0.8382

Over sampling ALL1 1.0000 1.0000 1.0000 1.0000 1.0000

ALL3 0.8261 0.8271 0.8371 0.9307 0.7326

ALL4 0.9704 0.9254 0.8644 1.0000 0.8729

DLBCL 0.9482 0.9312 0.9141 0.9739 0.8790

Myeloma 0.8793 0.8613 0.8359 0.8687 0.8100

Combined sampling ALL1 1.0000 1.0000 1.0000 1.0000 1.0000

ALL3 0.8766 0.7926 0.7918 0.9456 0.7616

ALL4 0.9704 0.9259 0.7610 0.9630 0.8667

DLBCL 0.9913 0.9913 0.8877 1.0000 0.9830

Myeloma 0.8943 0.8650 0.8250 0.8725 0.8100

Fig. 2  Classification accuracy of different classification models. The result is the average of all data sets. 
The horizontal axis represents the number of features selected, and the vertical axis represents the average 
classification accuracy. The Focus Area in the figure is the range of the number of features that researchers are 
concerned about
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Fig. 3  Classification accuracy of different feature selection mehtods. The box graph represents the 
classification accuracy of cross validation, the horizontal axis represents the feature selection method 
adopted, and the vertical axis represents the classification accuracy

Fig. 4  Summary results for each evaluation indicator under different number of features. a The horizontal 
axis indicates the number of features, and the vertical axis indicates the classification accuracy rate. b The 
horizontal axis indicates the number of features, and the vertical axis indicates the recall rate. c The horizontal 
axis indicates the number of features, and the vertical axis indicates the precision rate. d The horizontal 
axis represents the number of features, and the vertical axis represents false discovery rate (FDR) and miss 
discovery rate (MDR) for different number of features
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Effect evaluation of different classification models

Figure 5 shows the average classification accuracy of different classification models on 
different data sets. SVM, GB and NN can provide good classification accuracy and are 
suitable for processing microarray data. In this article, we use SVM as the classifier 
for all experiments.

Evaluation of the effectiveness of the proposed method ILRC

Table  2 shows the comparison between the proposed method and the advanced 
hybrid feature selection algorithm on the public microarray dataset. The number of 
features and classification accuracy are evaluated respectively. It can be seen that 
ILRC can achieve higher classification accuracy with a smaller number of features.

Fig. 5  Classification accuracy of different classification models. The horizontal axis represents the classifier, 
the vertical axis represents the classification accuracy rate, and each point represents a dataset. The result in 
the figure is the average classification accuracy on all data sets

Table 2  Comparison on the dataset Colon, Lymphoma and Leukemialy with 7 advanced hybrid 
feature selection algorithms

Dataset Colon Lymphoma Leukemial

Acc Features Acc Features Acc Features

Lu et al. [6] 83.41 202 / / 96.67 44

Salem et al. [7] 85.48 60 / / 97.06 3

Alshamlan et al. [8] 96.77 15 100 5 100 14

Jain et al. [9] / / 100 24 100 4

Moradi et al. [10] / / 50 87.71 89.28 100

Shreem et al. [11] 87.53 9 100 10 100 26

Djellali et al. [12] 96.3 1000 / / / /

ILRC 95 5 100 9 100 5
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Effect evaluation of ILRC on CLP data set

In order to verify the performance of the proposed feature selection method in real 
data sets, we tracked the ranking of three known biomarkers in the algorithm in the 
CLP data set. These biomarkers have been labeled and verified to be effective.

To ensure the stability of the results, we repeated 1042 experiments (consistent with 
the number of features) in different methods and respectively took the average weight 
ranking and average frequency corresponding to each feature as the final ranking. The 
feature weight comes from the classifier and is generated in the model building. The 
average frequency is the average number of occurrences of the feature in repeated 
experiments.

Table  3 shows the ranking of three biomarkers in different methods. In the experi-
ment, if the threshold is set too small, redundant features cannot be filtered. On the 
other hand, if the threshold is set too large, some important features will be filtered out. 
Usually a threshold of 30% can achieve the best effect, and 20–35% is the recommended 
threshold interval. ILR is an improved L1 regularization method. ILRT and ILRM repre-
sent ILR methods that use T-test and mutual information as a preprocessing method, RF 
represents random forest, and DT represents Decision tree. For ILRC, we set different 
weights, and the weight coefficient corresponds to the p% node with the highest correla-
tion with the seed node in the method. It can be seen that the three known biomarkers 
rank better than other methods in ILRC.

Discussion
From the results in Table  1, it can be seen that sampling for unbalanced data sets is 
necessary for the data preprocessing stage. The effects of oversampling and combined 
sampling methods on classification accuracy were tested [50]. Combined sampling can 
significantly improve the classification accuracy under different classification models.

The average classification accuracies of different feature selection methods with mul-
tiple datasets were compared in Figs. 2 and 3, where ILR is part of our proposed hybrid 
approach. It can be seen that ILR achieves high results within the interval of the num-
ber of features of interest to the researchers. Figure 4 evaluates the different metrics for 
all results within the number of features we focus on. The results show that the classi-
fier can achieve the highest evaluation within the number of features we focus on, while 
the inclusion of more features decreases the model performance. This is because some 

Table 3  Ranking of characteristic proteins on CLP datasets by different methods, “/” indicates that 
the corresponding feature is within the number of cycles, and the feature has not been selected by 
the algorithm once

Bold indicates that the protein ranked best at the corresponding threshold

ID ILR ILRT ILRM RF DT ILRC (20%) ILRC (25%) ILRC (30%) ILRC (35%)

Count P31946 22 56 46 102 158 7 10 20 12

P35968 87 / / 83 85 14 29 18 19

P62258 55 48 / 14 52 13 16 12 76

Weight P31946 61 69 61 96 158 21 18 20 15
P35968 68 / / 139 88 27 27 15 20

P62258 39 13 / 97 57 9 15 1 31
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irrelevant and redundant features are fed into the classifier, and our proposed approach 
will focus on removing such features.

In Fig. 5, the classification performance of different classification models was evalu-
ated for microarray data, and for each classifier, we input 15 features selected by the 
proposed method. The results show that SVM, GB and NN are more suitable for the 
classification task with microarray data. However, the results differ slightly on different 
datasets. To solve this problem, pre-experiments may be needed to select classifiers suit-
able for microarray datasets.

In Table 2, our proposed method was compared with published advanced hybrid fea-
ture selection methods. ILRC performs very stably, achieving over 95% accuracy for 
less than ten features and 100% accuracy on the Lymphoma and Leukemia datasets. 
Although some of the results lagged slightly behind the other methods, these differences 
were not significant. Overall, we have reason to believe that ILRC can achieve excellent 
performance on most datasets.

Table 3 evaluates the effect of ILRC on a CLP dataset in which a subset of biomark-
ers have been labeled and validated by clinical experts. P31946, P35968 and P62258 are 
proteins that have been validated as clinical biomarkers, and it can be seen that ILRC is 
better than some traditional feature selection methods and ILR algorithms based on dif-
ferent combinations of filtering methods for the discovery of such proteins. The results 
indicate that ILRC results are stable and have the potential to discover biomarkers of 
clinical significance.

ILRC combines the clustering algorithm with the hybrid feature selection algorithm 
(T-Test and ILR), which can effectively filter redundant features, select biomarkers with 
diagnostic significance, and ensure high classification accuracy. However, the ILRC algo-
rithm does not involve ensemble learning. Usually for feature selection tasks, especially 
the selection of biomarkers, the use of ensemble models and feature ranking fusion 
technology can improve the robustness of the results. We will focus on this direction in 
future research.

Conclusion
Microarray data analyzes the genetic differences of tissues and cells. In clinical medicine, 
effective gene selection can greatly enhance the process of disease prediction and diag-
nosis. Genes useful for predicting cancer types may also provide support for the patho-
genesis and pharmacology of cancer [51]. The ILRC method proposed in this paper 
clusters the features and establishes seed nodes in the sub-clusters according to the 
evaluation rules. It deletes the features with higher redundancy of the seed nodes, and 
uses the improved L1 regularization method to evaluate the remaining feature subsets 
before the best subset are finally chosen. Multiple comparison experiments and verifica-
tion experiments on real data sets have proved the accuracy and stability of ILRC, and it 
has the potential to discover clinically significant biomarkers.

In our research, we found that the feature subsets generated by different models may 
have large deviations. Researchers need a stable subset of features. Supposing part of the 
data is updated or modified, the markers selected by the algorithm change significantly 
after the disturbance of the data set. These markers may be unreliable for researchers 
[19]. The following research will focus on the stability of features and the multi-model 
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feature ranking fusion method. Related methods have been reported in the literature 
[20], and excellent results have been achieved. In addition, in future work, we will evalu-
ate the effects of related reports on the CLP dataset.

Method
Datasets and evaluation index

There are 17 different datasets used in this paper, including 17 publicly available genetic 
datasets and CLP protein dataset, as shown in Table 4. The 16 publicly available datasets 
include diffuse large B-cell lymphoma (DLBCL) [52], Prostate [53], acute lymphoblas-
tic leukemia (ALL; subdivided into four subtypes based on different phenotypes) [54], 
central nervous system embryonal tumor (CNS) [55], Lymphoma (Lym) [56], Adenoma 
[57], Colon [58], Leukaemia [59], Myeloma [60], Gastric [61], Stroke [62] and Cleft lip 
and palate (CLP). Among them, DLBCL, Colon, Leukaemia, Myeloma, ALL1-4, and 
CNS datasets are imbalanced.

Cleft lip and palate (CLP) are common congenital orofacial defects of a baby’s lip or 
mouth. It is originated from a failure joint of tissue and special cells during the forma-
tions of lip and mouth (palate), which happens between the fourth and ninth weeks of 
pregnancy [63]. Babies with cleft lip and/or palate have an opening in their upper lips 
(and/or the front part of their palates). In some severe cases, this cleft goes even fur-
ther to babies’ noses. There are approximately 1 out of 700 live births affected by orofa-
cial clefts on average [64]. Children with these defects suffer from difficulties in feeding, 
speaking and sometimes hearing problems caused by infections.

In general, this congenital malformation can be divided into two types: syndromic 
which is mainly caused by genetic mutations, and non-syndromic with more com-
plicated inducing factors including a combination of genes and environment, such as 

Table 4  The data set involved in this article, Ratio represents the unbalanced ratio of the data set

ID Dataset Pos/Neg Samples Features Ratio Summary

1 Adenoma 18/18 36 7457 1.00 Colon adenocarcinoma (18) and normal (18)

2 ALL_AML 47/25 72 7129 1.88 ALL (47) and AML(25)

3 ALL1 95/33 128 12,625 2.88 B-cell (95) and T-cell (33)

4 ALL2 65/35 100 12,625 1.86 Patients that did (65) and did not (35) relapse

5 ALL3 24/101 125 12,625 0.24 With (24) and without (101) multidrug resistance

6 ALL4 26/67 93 12,625 0.39 With (26) and without (67) the t(9;22) chromosome 
translocation

7 CNS 39/21 60 7129 1.86 Medulloblastoma survivors (39) and treatment 
failures (21)

8 Colon 40/22 62 2000 1.82 Tumour (40) and normal (22)

9 DLBCL 58/19 77 7129 3.05 DLBCL patients (58) and follicular lymphoma (19)

10 Gastric 29/36 65 22,645 0.81 Tumors (29) and non-malignants (36)

11 Leukaemia 47/25 72 7129 1.88 ALL (47) and AML (25)

12 Lymphoma 22/23 45 4026 0.96 Germinalcentre (22) and activated B-like DLBCL (23)

13 Myeloma 137/36 173 12,625 3.81 Presence (137) and absence (36) of focallesions of 
bone

14 Prostate 52/50 102 12,625 1.04 Prostate (52) and non-prostate (50)

15 Stroke 20/20 40 54,675 1.00 Ischemic stroke (20) and control (20)

16 CLP-prot 30/30 60 1042 1.00 Mothers with CLP-affected fetuses(30) and with 
normal controls (30)
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smoking, diabetes, the usage of certain medicines before and during pregnancy [65–68]. 
Over hundreds of genes have been mapped to the genetic causes of these defects indi-
cating a strong genetic component to the disease development [69]. However, the under-
lying mechanism is still unclear.

Routine prenatal diagnosis method of CLP is conducted by anatomic ultrasonography 
between 18 and 20 weeks’ gestation [70]. Repairing surgeries can be performed directly 
after babies are born and within the first 18 months of life [71]. Apart from the fetal 
position and physical conditions of the mother, detection sensitivity of any abnormalities 
in an ultrasound screen is highly dependent on the instruments used and the experience 
of medical sonographers. In most cases, further genetic or biochemical tests are carried 
out to gain a definitive diagnosis. The use of biomarkers provides great promise for aid-
ing clinical diagnosis with the potential to detect early signs of fetal abnormalities. Early 
diagnosis of such defects will allow doctors to have a comprehensive treatment plan.

In this paper, the CLP dataset is the only dataset in which biomarkers have been tagged 
and validated by clinical doctors. The dataset contains 60 maternal serum samples (30 
mothers with CLP-affected fetuses and 30 health babies as normal controls) that are col-
lected between gestational weeks 22–30 for this study. 1042 proteins are identified by 
an iTraq based proteomics analysis. The serum samples were collected from pregnant 
women who underwent prenatal examination in a partner hospital. During the mass 
spectrum analysis experiment, every ten blood samples were mixed into one sample, so 
the actual sample size of the dataset is only six.

In this paper, the Accuracy, Precision, and Recall Rate, which are widely used in exist-
ing studies, are used as the primary evaluation metrics. We also introduce False Dis-
covery Rate (FDR) and Miss Discovery Rate (MDR) to evaluate the selected features 
and classification models. The estimation of the fdr and mdr are requirements for the 
analysis and documentation of mass spectrometry data according to the Paris guidelines 
of Molecular and Cellular Proteomics [72]. These evaluation indicators are defined in 
the following formulas, where P and N represent the number of positive and negative 
samples, TP and TN represent the number of positive and negative samples predicted 
correctly, FP and FN represent the number of positive and negative samples predicted 
incorrectly. The evaluation indicators used in this paper are calculated as Eq. (1).

In this experimental section, a tenfold cross-validation method is used and averaged as 
the final classification accuracy to ensure consistency with the experimental approach of 
the comparison articles. For datasets with a smaller number of samples, the “leave-one-
out” method is used to validate and average these data so that the result is closest to the 
expected value in the entire training and test set.

Improved L1 regularization method

The Improved L1 Regularization method, also known as stability selection, is based on 
a combination of sampling and feature selection [73]. This method is a complement to 

(1)
FDR =

FP

TN + FP
Accuracy =

TP + TN

P + N

MDR =
FN

TP + FN
Precision =

TP

TP + FP
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the L1 regularization method: when the L1 regularization method is confronted with a 
set of associated features, it tends to select only one of the features. Stability selection 
uses randomization techniques. The main idea is to run the feature selection algorithm 
on different subsets of data and subsets of features, constantly repeating and eventually 
aggregating the feature selection results. Ideally, important features will score close to 
1, less important features will score somewhere between 0 and 1, and the most useless 
features will score close to 0.

An important feature of the L1 regularization method is the ability to generate sparse 
matrices of feature weight coefficients, i.e., the coefficients of some features become 
zero, so that feature selection can be achieved based on feature weights. Therefore L1 
regularization is often used for feature selection of high dimensional data. However, to 
obtain the correct results, the L1 regularization method requires the data space to meet 
specific conditions. In addition, if there is a high correlation between features, the L1 
regularization method is prone to distortion, making it difficult to achieve a high classi-
fication accuracy. The L1 regularization method is also very sensitive to the regular term 
coefficient alpha, so it is critical to choose the right parameters. When facing data with 
high dimensional and small sample, the number of features selected by L1 regularization 
method is less than min(n, p) , which leads to less stable and reproducible parameters 
obtained by estimation [74].

The improved L1 regularization algorithm’s core idea is first random sampling, and 
then use a feature selection model to evaluate the selection [75]. When the feature corre-
spondence coefficient is non-zero, the feature is considered to be selected. The algorithm 
repeats the above process several times to get the frequency of each selected feature, and 
the feature with the higher frequency is selected as the final selection result. According 
to the improved L1 regularization framework, it is easy to see that it allows the selec-
tion of appropriate methods according to the sample space, which also makes the stabil-
ity selection framework has a broader application scenario. At the same time, stability 
selection weakens the sensitivity of the final results to the regularization coefficient α , 
which greatly reduces the workload; stability selection is able to effectively control false 
positives, especially on high-dimensional small sample data, and this advantage is more 
obvious.

K‑means clustering method

Removing irrelevant features does not negatively affect the clustering accuracy and 
can reduce the required storage and computation time from a clustering perspective. 
Therefore, clustering algorithms are often used as one of the pre-processing meth-
ods to remove redundant features before feature selection [76]. For the sample set 
D = {x1, x2, x3, . . . , xm} , the K-means algorithm is the least square error E for the clus-
tering partition C = {C1,C2, . . . ,Ck} as shown in Eq. (2).

where ui = 1
|Ci|

∑

x∈Ci
x is a vector of mean values of Ci.

(2)E =

k
∑

i=1

∑

x∈Ci

�x − µi�
2
2
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Equation (2) depicts the degree of closeness of the intra-cluster samples around the 
cluster mean vector, with the smaller the E value, the greater the similarity of the intra-
cluster samples.

Improved L1 regularization clustering based feature selection method (ILRC)

A hybrid feature selection method, improved L1 regularized clustering-based (ILRC) 
for biomarker discovery is proposed in this subsection. This method uses T-test and 
improved L1 regularization (ILR) method as a hybrid feature selection method, and 
combines the improved K-Means clustering algorithm into ILR [77]. The experimen-
tal results show that the proposed method can obtain higher classification accuracy 
than most traditional feature selection methods and some advanced hybrid algorithms. 
Moreover, the CLP dataset experiments show that the addition of K-means can effec-
tively improve the clinical interpretability of the selected features.

The overall flow of the algorithm is shown in the Fig.  6. In ILRC, the data is firstly 
clustered using the K-means, the number of clusters (k) is determined using the elbow 
method [78]. The original dataset is divided into k sub-datasets (clusters), so each 

Fig. 6  ILRC feature selection process. After the input data is preprocessed, the clustering operation is 
performed. After clustering, the features are sorted by T-test, and the seed node is selected. Then the 
correlation between the remaining nodes and the seed node is evaluated, and redundant features are 
deleted. Finally, use ILR to assess the remaining features’ weight, repeat the experiment, and output the 
results according to the order of features
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cluster’s features are similar. For each cluster, the p value of each feature (node) is cal-
culated using the T-Test method. For each feature xi , its p value is calculated as Eq. (3).

where S2
1
 and S2

2
 are the two sample variances corresponding to the same fea-

ture; n1 and n2 are the two sample capacities corresponding to the same feature, 
X̄ =

∑n
i=1 xi
n , i = 1 . . .n.

The nodes are then ranked according to their p values, the node with the smallest p 
value is defined as the seed node, and the Pearson correlation coefficient between the 
remaining nodes and the seed node is calculated. The correlation coefficients are sorted 
in descending order and the top p% of nodes other than the seed nodes are removed. 
The purpose of this step is to remove the nodes in each cluster that have a high correla-
tion with the seed node. The remaining features in each cluster are used to form a new 
dataset D∗ . Then an Improved L1 Regularization method is applied on D∗ . Considering 
the random nature of the method: for the dataset with sample number n, the experiment 
repeats n feature selections and statistically incorporates the weight of each feature and 
the number of occurrences of each feature as the final feature selection result. The pro-
cess is shown in Algorithm 1.

Algorithm 1 Improved L1 Regularization Clustering based feature selection method
Input: Dataset D = {x1, x2, x3, . . . , xm}, number of clusters k ,number of features n , number of

samples m, threshold p
Output: feature subset P = {p1, p2, . . . , pn}
1: Clustering of D using K-means clustering method and obtaining C = {C1, C2, . . . , Ck}
2: for {C1, C2, . . . , Ck} do
3: Calculate the P-value for each feature and select the feature with the highest P-value as the

seed node
4: Calculation of Pearson correlation coefficient between the remaining nodes and the seed nodes

ρ(x,y) = E(xy)−E(x)E(y)√
E(x2)−E2(x)

√
E(y2)−E2(y)

5: Sort the correlation coefficients from largest to smallest, removing the top p% of nodes
6: Denote the set of the remaining nodes as C∗

i
7: end for
8: Get the new dataset D∗ = {C∗

1 , C
∗
2 , . . . , C

∗
k}

9: for i = 0 to m do
10: Feature selection of D∗ using Improved L1 Regularization
11: Make the weight of the n-th feature as pin
12: end for
13: pn =

∑n
i=1 p

i
n

14: Sorting all pn in decending order
15: Output the top-n feature set P = {p1, p2, . . . , pn}

 
This method can effectively remove redundant features. In an experiment on the CLP 

data set, we removed the following proteins in one Cluster: P37837, P40197, A0AUP5, 
B2R701. By reviewing the relevant information on UniProt, we did not find any informa-
tion indicating that these proteins are related to the clinical diagnosis of CLP, these pro-
teins in this Cluster are removed for the clinical diagnosis redundancy.

(3)
P =

X̄1 − X̄2
√

(n1−1)S2
1
+(n2−1)S2

2

n1+n2−2

(

1
n1

+ 1
n2

)
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