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Background
DNA replication usually occurs during cell division, then two DNA molecules are 
distributed to daughter cells, and the genetic material is passed on to the offspring 
through cell proliferation. The point at which DNA commence to replicate is called 
the origin of replication [1]. As shown in Fig. 1, eukaryotes usually have not only one 
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origin, and they will begin to replicate from multiple points during replication [2], 
which are mainly divided into unidirectional replication and bidirectional replica-
tion. Abnormal replication may result in heritable variation in the organism. The 
accurate replication of DNA not only maintains the continuity of genetic informa-
tion, but also ensures the relative stability of the species.

However, most of related studies only focus on the organism of Saccharomyces cer-
evisiae. In 2004, Corzzareli’s group [3] predicted the starting site in Saccharomyces 
cerevisiae by using the property of replication initiation to be rich in AT bases. In 
2012, Chen et al. [4] studied the replication initiation site of Saccharomyces cerevi-
siae by calculating the bending degree and cleavage intensity of the DNA sequence, 
which is highly effective for identifying positive samples. In 2016, Zhang et  al. [5] 
first attempted to study the origin of human DNA replication and constructed a pre-
dictor based on random forest. In 2016, Wang et al. [6] studied H. sapiens, M. mus-
culus, E. coli and came up with a method “MaloPred”. The AUC values predicted 
by this method for these three organisms are 0.755, 0.827 and 0.871, respectively. 
In 2018, Liu et al. [7] studied four kinds of yeasts. In 2019, Dao et al. [8] collected 
a variety of eukaryotes. Based on characteristics such as Kmer and SVM classifier, 
they conducted a complete study of each organism and made some progress. In 
2020, Wei et al. [9] presented a novel machine learning-based approach called Stack-
ORI encompassing 10 cell-specific prediction models. And the prediction of origins 
of human and other four organisms is excellent. In consequence, it is necessary to 
further promote the experiment to improve the classification accuracy.

In this study, we collected datasets of 7 eukaryotes, including Homo sapiens (H. 
sapiens), Mus musculus (M. musculus), Drosophila melanogaster (D. melanogaster), 
Arabidopsis thaliana (A. thaliana), Pichia pastoris (P. pastoris), Schizosaccharomy-
ces pombe (S. pombe), Kluyveromyces lactis (K. lactis), and conducted independent 
research on each species. We employed three types of feature extraction methods 
(TF-IDF, PseKNC-II, Base-content), and performed the two-step feature selection 
method based on SVM. When selecting classification models, we compared SVM, 
Naïve bayes, Decision Tree, KNN, MLP, XGBoost to find the best model. In the ter-
minate, we designed the unique classification algorithm for each organism. After the 
classification experiment, we conducted cross-species tests and sequence analysis 
using STREME [10], the results showed that there were similar motifs among vari-
ous species.

Replicated 
DNA

Parental 
DNA

Origin

Origin

Replicated 
DNA

Unidirectional Replication Bidirectional Replication
Fig. 1  DNA replication in eukaryotes. This diagram shows the process of DNA replication in eukaryotes
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Results and discussion
Feature analysis

As mentioned above, we utilized three feature extraction methods. In this chapter, we 
analyzed the four features of Base-content. Firstly, we randomly selected the same num-
ber of positive and negative samples from seven species, and then used the graph to 
describe the four characteristic values corresponding to different samples. As shown in 
Fig. 2, the features corresponding to the positive and negative samples of H. sapiens, S. 
pombe are not significantly differentiated, while the other five species have significant 
differences in the GC-skew and AT-profile, which indicates that the extracted features 
are very effective.

Feature ranking analysis

As mentioned above, the method we applied originally in feature ranking was F-score. 
However, when extracting feature TF-IDF, we found that the score of TF-IDF could also 
be used as the ranking standard of corresponding features. In order to compare the two 
methods, we respectively used the two scores as the ranking standard to carry out the 
IFS experiment. As shown in Fig. 3, it is wise to sort features based on TF-IDF scores 

Fig. 2  Display of Base-content. The first half of each graph corresponds to the positive sample, and the 
second half corresponds to the negative sample

Fig. 3  Comparison of F-score and TF-IDF. This figure shows the effect of feature selection according to the 
two ranking methods of F-score and TF-IDF
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and F-score, they can accurately represent the importance of features. When the num-
ber of features is small, the feature selection effect based on F-score is better, and the 
feature selection effect based on TF-IDF is better when the feature number is increased. 
For species such as H. sapiens, M. musculus and D. melanogaster, utilizing TF-IDF can 
achieve the best feature selection effect, while A. thaliana, P. pastoris, S. pombe and 
K. lactis are more suitable for F-score. More important, the experiment in this section 
could prove that feature selection significantly improves the classification effect.

Performance evaluation on different feature extraction methods

In this experiment, we extracted three features of the sequence: TF-IDF, PseKNC-II, 
Base-content. By evaluating a variety of feature sets based on the SVM, we obtained the 
most effective feature set corresponding to each species.

In the first place, the six pseudo-nucleotide features were combined together to com-
pare the classification effect with the single optimal nucleotide features and selected the 
optimal feature set as the pseudo-nucleotide feature.

After that, we compared the three feature extracted methods, as shown in Fig. 4, the 
features extracted by TF-IDF are the most effective for H. sapiens, M. musculus, and D. 
melanogaster; while A. thaliana, P. pastoris, S. pombe and K. lactis are more suitable for 
extracting pseudo-nucleotide features to represent sequences. The classification results 
of the specific 6 single nucleotides and combined nucleotides are shown in the Addi-
tional file 1.

Performance evaluation on different model

In order to improve the classification accuracy as much as possible, we employed the 
following 6 classification models. As shown in Fig.  5, MLP is obviously superior to 
other models for classification of 6 species such as H. sapiens, and only A. thaliana has 
achieved better results on which KNN is applyed for classification.

Comparison with published methods

In order to verify the advantages of our methods, the detailed comparison was made 
with the prediction methods proposed by Dao et al. [8] and Wei et al. [9] based on the 
same training dataset and independent test dataset. As shown in Table 1, after 100 times 

Fig. 4  Comparison of different feature extraction methods. This figure shows the corresponding prediction 
effects of three feature extraction methods such as TF-IDF
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of fivefold cross-validation, the prediction methods we designed are much better for all 
species.

Since we only divided the datasets of H. sapiens, M. musculus, A. thaliana and D. 
melanogaster into training sets and independent test sets, the comparative experiments 
based on the independent test were only carried out for these four species. The specific 
results are shown in Table 2.

Cross‑species validation and sequence analysis

In this paper, we conducted independent studies on the origin of replication in seven 
eukaryotes and trained the corresponding models. In order to verify the predictive abil-
ity of various species models, we utilized cross-species studies. As shown in the Fig. 6, 
the models of H. sapiens, M. musculus, D. melanogaster and A. thaliana were employed 
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Fig. 5  Comparison of different models. This chart shows the predictive effects of models such as MLP

Table 1  Comparison of prediction methods based on training dataset

Species Methods Acc (%) Sn (%) Sp (%) MCC AUC​

H. sapiens Ours 92.60 91.16 94.16 0.8677 0.9983

Wei et al. [9] 88.30 89.60 87.00 0.7660 0.9560

M. musculus Ours 90.80 89.38 92.21 0.8280 0.9821

Wei et al. 89.10 87.50 90.70 0.7662 0.9558

D. melanogaster Ours 91.22 91.53 90.89 0.8219 0.9876

Wei et al. 88.60 85.90 91.20 0.7720 0.9470

A. thaliana Ours 96.15 97.07 95.17 0.9155 0.9963

Wei et al. 94.09 93.79 93.50 0.8729 0.9817

P. pastoris Ours 94.20 92.36 95.76 0.8953 0.9678

Dao et al. [8] 88.38 87.69 89.00 0.7669 0.9500

S. pombe Ours 99.86 100 100 1 0.9985

Dao et al. 99.85 100 99.71 0.9971 0.9945

K. lactis Ours 96.72 97.36 96.19 0.9251 0.9965

Dao et al. 93.75 94.12 93.50 0.8715 0.9781
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for the classification of other species. The results shows that models of H. sapiens, M. 
musculus, A. thaliana and D. melanogaster work well in classifying other species. Then 
we made use of the STREME [10] to analyze the sequences, which was more suitable for 
processing dataset containing more than 50 sequences than MEME [11, 12]. As shown 
in the Fig. 7, the sequences of H. sapiens, M. musculus and A. thaliana have significantly 
the same motif fragment "GGG", while the sequences of S. pombe, P. pastoris and K. 

Table 2  The prediction results on test dataset

Species Method Acc (%) Sn (%) Sp (%) MCC AUC​

H. sapiens Ours 91.22 0.9153 0.9089 0.8219 0.9876

Wei et al. [9] 87.10 0.8990 0.8420 0.7420 0.9450

M. musculus Ours 89.10 0.8131 0.8430 0.6670 0.8100

Wei et al. [9] 88 0.9160 0.8440 0.7620 0.9490

A. thaliana Ours 94.20 0.9236 0.9576 0.8953 0.9678

Wei et al. 88.80 0.9010 0.8750 0.7770 0.9480

D. melanogaster Ours 90.80 0.8938 0.9221 0.8280 0.9821

Wei et al. 87.50 0.8910 0.8590 0.7500 0.9440
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Fig. 6  Cross-species validation. The graph shows the effect of cross-species prediction between different 
species

Fig. 7  Discovered Motifs by STREME. The figure shows the motif of various species found by STREME
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lactis have significantly the same motif fragment "AAA", which explains the high pre-
diction accuracy in the cross-species test between H. sapiens and M. musculus, and 
the results of sequence analysis point out the direction for further research (Additional 
file 2).

Conclusion
In this work, we studied the identification of origin of replication for seven eukaryotes. 
Three methods of PseKNC-II, Base-content and TF-IDF were utilized to extract fea-
tures, and a variety of machine learning models were compared. Our study shows that 
H. sapiens, M. musculus, and D. melanogaster are more suitable for using TD-IDF to 
extract features, indicates that the algorithm of text classification is also suitable for 
sequence classification, and deserves  further  investigation. While A. thaliana and 
other three organisms using PseKNC to extract features could achieve the best classi-
fication results. After comparing various classification models, we discovered that MLP 
has a better classification effect for most species. In addition, the models of H. sapiens, 
M. musculus, and D. melanogaster can predict each other with high accuracy, and the 
results of STREME reveals that they have a certain common motif. In the terminate, we 
opened source the code and data employed in the experiment, hoping to provide related 
study with assistance.

Methods
The benchmark dataset

For studying the origin of DNA replication in various eukaryotes, seven sample datasets 
of eukaryotes were collected, which are H. sapiens, M. musculus, D. melanogaster, A. 
thaliana, P. pastoris, S. pombe and K. lactis [5, 7, 8]. Among them, all the sequences are 
300 bp in length, the positive and negative sample sets are balanced on the whole. Stud-
ies indicates that the existing datasets of the three species of H. sapiens, M. musculus 
and D. melanogaster contain different cell types, despite the sample sequences of dif-
ferent cell types are quite different [8]. To make a distinction, we collected only one cell 
type sequence contained in these three species. As shown in the Table  3, benchmark 
datasets of H. sapiens, M. musculus, A. thaliana and D. melanogaster have more sam-
ples, consequently been divided into training set and test set in a ratio of 8:2, while data-
set of the other three organisms were treated as the training set directly.

Table 3  The benchmark dataset

Species Cell types Positive Negative Sum

H. sapiens K562 2332 2331 4663

M. musculus ES 2380 2380 4760

D. melanogaster Kc 6022 6000 12,022

A. thaliana / 1515 1515 3030

P. pastoris / 268 300 568

S. pombe / 339 350 689

K. lactis / 136 200 336
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Feature extraction

For sequence prediction, feature extraction is a necessary step, on account of almost 
all the machine learning models could only deal with numerical types [13], and it is 
also a considerably critical step. Extracting effective features could not only express 
the characteristics of the sequence in effect, but also improve the accuracy of clas-
sification using machine learning models. Since the key information extracted by dif-
ferent features is different, our experiments utilized a variety of feature extraction 
methods and carried out the comparison between TF-IDF, PseKNC-II and Base-con-
tent to capture the sequence to a variety of characteristics, raise the accuracy of the 
prediction.

TF‑DIF

TF-IDF [14–18] is a method proposed for text classification. The main idea is to find 
subject terms which appear in the text all the frequent, and these words only appear 
repeatedly in this type of article. Such as some common conjunctions "the" and "and", 
they have a higher frequency in a certain type of text, however, they are not repre-
sentative, since these words are common in all articles. In general, searching common 
motifs for sequences is similar to the text classification. On account of that the classic 
algorithm TF-IDF in text classification was applied in our experiment, we made some 
modifications to it to extract the sequence features of DNA. The specific formula is 
shown as follows.

where tfi represents the frequency of the i-th k-tuple nucleotide in the positive sample. 
The value of k is from 1 to 6, and there are 5460 nucleotides in total, the value of i ranges 
from 1 to 5460.

where |D| represents the number of all samples, |{j: ti ∈ dj}| represents the number of all 
samples containing the i-th k-tuple nucleotide, adding 1 to the denominator is to pre-
vent the denominator from being 0.

From this, the TF-IDF score corresponding to each k-tuple nucleotide could be 
obtained, and then a [5460 * 1] numerical matrix L was employed to represent each 
sequence and calculate the score of the corresponding position. The formula is as 
follows.

Among them, tf_idfi represents the TF-IDF score of the k-tuple nucleotide, and ni 
represents the frequency of this nucleotide in the sequence.

(1)tfi =
ni

∑

i ni

(2)IDF = log

(

|D|

1+ |{j : ti ∈ dj}|

)

(3)
TF-IDF = TF ∗ IDF

(4)li = tf _idfi ∗ ni
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Base‑content

Base-content extracts the base information of the sequence. Specifically, the content 
characteristics of single nucleotides (A, C, G, T) in each DNA sequence was utilized 
as features. Four base characteristics (GC-skew, GC-profile, AT-skew, AT-profile) were 
considered in this paper [3, 19–22].

Among them, mG
i  , mC

i  represent the contents of G and C in the i-th sequence, respec-
tively. mA+T

i  , mG+C
i  , mA+T+G+C

i  each represent the content of “A + T”, “G + C” and 
“A + T + G + C”. mA−T

i  , mG−C
i  represent the content of "A−T" and “G−C” individually.

PseKNC‑II

PseKNC-II, also known as the series correlation PseKNC [5, 23], which not only con-
siders the frequency information of k-tuple nucleotides, but also calculates the physical 
and chemical properties of pseudo-nucleotides. In this work, we extracted three pseudo-
nucleotides feature sets on which k = 1, 2, 3, 4, 5 and 6.

Feature selection

When using numerous features, may confront the problem of data redundancy and the 
prediction accuracy will be influenced on account of the existence of invalid features. 
Therefore, the two-step [24, 25] method was applied to perform feature selection. The 
main idea is to score all the features based on F-score, and then use IFS to select the fea-
tures to filter out effective features, which not only saves the calculation time on which 
forecasting, but also improves the accuracy of the forecast.

F-score [26] is a method of measuring the ability of a characteristic to distinguish 
between two classes. Given the training set x, set n+ and n− to represent the number of 
positive samples and the number of negative samples, respectively. The F-score of the 
i-th feature could be deduced as

(5)AT -profilei =
mA+T

i

mA+T+G+C
i

(6)GC-profilei =
mG+C

i

mA+T+G+C
i

(7)GC-skewi =
mG−C

i

mG+C
i

(8)AT -skewi =
mA−T

i

mA+T
i

(9)Fi=

(

x
(+)
i − xi

)2
+

(

x
(−)
i − xi

)2

1
n+−1

∑n+

k=1

(

x
(+)

k ,i − x
(+)
i

)2
+ 1

n−−1

∑n−

k=1

(

x
(−)

k ,i − x
(−)
i

)2
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where xi , x(+)
i  , x(−)

i  represent the average value of the i-th feature in all samples, posi-
tive samples and negative samples, respectively. x(+)

k ,i  is the i-th feature of the kth positive 
sample, and x(−)

k ,i  is the i-th feature of the kth negative sample. The larger the F-score, the 
more effective this feature is.

The second step of feature selection is incremental feature selection (IFS) [24, 27]. First 
apply a feature as the training set, and then add the extracted feature to the training set 
one by one from high to low according to the scoring order of F-score and find the num-
ber of corresponding features with the highest classification accuracy at last.

Model training

After feature selection based on SVM, the most effective feature set corresponding to 
each species was selected. In order to further improve the classification accuracy, 7 tra-
ditional machine learning classification models were utilized in our study, namely SVM, 
Decision tree, Naïve bayes [28], XGBoost, KNN and MLP. In order to compare different 
models with the principle of fairness and objectivity, the selected features were used to 
train models. Before applying different models, the vital parameters of each model need 
be adjusted to achieve superior performance which were evaluated by 100 times fivefold 
cross-validation, as shown in Table 4.

Performance evaluation

In order to better display and compare the experimental results, the fivefold cross-vali-
dation [29] was employed on calculating the experimental results, hence more accurate 
results could be obtained. Evaluation parameters include Acc, Sn, Sp, MCC [30, 31]. In 
addition, the AUC value was also calculated through the ROC curve.

where N+ represents the number of origin sequences, N− represents the number of non-
origin sequences, N+

−  represents the number of misjudged positive samples as nega-
tive samples, and N−

+ represents the number of misjudged negative samples as positive 
samples.

(10)
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Table 4  Parameters and the value range of parameter adjustment

Δ represents the step size

Model Parameter Value

SVM c, g [2−5, 215] Δ = 2, [2−15, 2−5] Δ = 2–1

Multi-layer perceptron alpha 0.001, 0.01, 0.1, 0.5, 1, 1.5

Decision tree min_sample_split, max_depth [2, 30] Δ = 2, [1, 10] Δ = 1

XGBoost n_estimators, learning_rate [10, 1000] Δ = 50, [0.1, 1] Δ = 0.1
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