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Background
Computer simulation has come to play an increasingly critical role in various popula-
tion genetic studies, such as estimating summary statistics of sequencing-level data, 
evaluating the robustness of mathematical inference frameworks, and understanding 
current genetic diversity underlying different demographic histories. A number of simu-
lation tools have been developed, and some reviews have comprehensively covered the 
works in which they were used [1–6]. The available simulation tools can be divided into 
two distinct classes: backward-time, also called coalescent-based, and forward-time. 
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Backward-time simulation tools are based on the idea of tracing back to the most recent 
common ancestor of currently surviving individuals and then attributing genetic infor-
mation to each individual on the coalescent tree. These tools are very efficient and 
memory-saving because only existing individuals are considered. However, they are not 
powerful in complex demographic scenarios. Coalescent-based methods are not suit-
able for cases involving questions of interest that require complete ancestral information 
since only the ancestral information of currently surviving individuals is saved. Unlike 
coalescent-based methods, forward-time approaches start from some initial reference 
populations and then implement specific evolutionary events generation by genera-
tion, such as recombination, de novo mutation, natural selection, and migration. Many 
efficient forward-time tools have been developed recently. The National Cancer Insti-
tute’s Genetic Simulation Resources (GSR) website (https://​surve​illan​ce.​cancer.​gov/​
genet​ic-​simul​ation-​resou​rces/​packa​ges/) listed 178 simulators. These tools were ini-
tially designed for various modeling emphases and objectives, so that they have been 
widely applied to different genetics studies, such as the human epidemiology (simuPOP 
[7, 8]), the ecology of wild species (Nemo [9]), and the genome-wide association studies 
(genomeSIM [10], genomeSIMLA [11]). Among forward-time simulators, some possess 
functions to simulate a process of population admixture directly, such as admix’em [12], 
SELAM [13], SLiM [14–16], simuPOP, fwdpp [17], and forqs [18]. They are flexible and 
computationally efficient in fields of their respective designing objectives and also work-
able on other demographic scenarios. In particular, admix’em focuses simulations on 
two-way admixture. SELAM is especially useful in simulating admixture resulted from 
a founding population with all subpopulations being co-existing throughout the simula-
tion. SLiM and forqs are both powerful in simulating the evolution of quantitative traits 
when assuming various demographic histories. simuPOP and fdwpp are especially suit-
able for users who are good at Python or Cpp programming. In addition, SLiM 3.3 [16], 
GeneEvolve [19], simuPOP, and AdmixSim [20] also support real genomic data as input, 
this feature is helpful in many applications, especially when mutation-drift equilibrium 
is to be approached which can be time-consuming. Taken together, there is room for 
developing tools specifically for modeling complex population admixture. Here, we 
introduce a highly flexible and user-friendly forward-time simulation tool called Admix-
Sim 2. It allows simulating real sequence data in a series of complex admixture processes 
with various evolutionary driving forces including de novo mutation, drift, recombina-
tion, and natural selection. Notably, AdmixSim 2 can also be applied in admixture sce-
narios for sex chromosomes and non-human species. The source code of AdmixSim 2 
is freely available at https://​www.​picb.​ac.​cn/​PGG/​resou​rce.​php or https://​github.​com/​
Shuhua-​Group/​Admix​Sim2.

Implementation
The data structure of AdmixSim 2 can be mainly divided into five layers: segment, chro-
mosome, individual, single-generation population, and multiple-generation population. 
AdmixSim 2 begins with a set of individuals from ancestral populations, corresponding 
sex settings, chromosome information, and a user-defined demographic model. Each 
Individual is a diploid and constituted by two chromosomes. In the founding generation, 
each chromosome of ancestral individuals is assigned with a unique integer-type label 

https://surveillance.cancer.gov/genetic-simulation-resources/packages/
https://surveillance.cancer.gov/genetic-simulation-resources/packages/
https://www.picb.ac.cn/PGG/resource.php
https://github.com/Shuhua-Group/AdmixSim2
https://github.com/Shuhua-Group/AdmixSim2
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ranging from 0 to 2N − 1

(

N =

k
∑

i=1

Ni

)

 , Ni is the number of individuals of the ith ances-

tral population, i = 1, 2, …, k). Chromosomes of a certain population take consecutive 
labels. Following the demographic model settings, for each population, the probability of 
being sampled to be a parent of newly generated individuals is proportional to the cor-
responding admixture proportion. More specifically, when there are three ancestral pop-
ulations, i.e., pop1, pop2, and pop3, their admixture proportions are 0.2, 0.1, and 0.7 
respectively. To make new individual data, we first generate a random number between 
0 and 1. One individual of pop1 is selected if the random number is less than 0.2, while 
one individual of pop2 is selected if the random number is larger than 0.2 and less than 
0.3, otherwise, one individual of pop3 is selected. Within each population, the probabil-
ity of being sampled for each individual is proportional to the corresponding fitness. 
Each chromosome of newly generated individuals consists of a list of segments. Each 
segment is identified by the start physical position, the end physical position, and the 
label it originates from. The new generated individual inherits corresponding segments 
from parents with additional segments resulted from recombination. Asides from the 
ancestral segments, each chromosome has two additional lists recording the recombina-
tion breakpoints and de novo mutation points, respectively, and one map recording the 
physical positions under selection and corresponding states of the allele. The generation 
of new recombination and mutation points can be modeled as the Poisson process and 
assigned along the chromosome based on the user-defined recombination rate and 
mutation rate, respectively. Each population in AdmixSim 2 is constituted by individuals 
spreading several generations specified in the demographic model.

Next, we provide a brief description of the workflow of AdmixSim 2. Detailed informa-
tion can be found in the user’s manual. AdmixSim 2 follows the extended Wright-Fisher 
(WF) model, which includes diploid individuals and non-overlapping, discrete genera-
tions. Unlike the strict WF model, the population size over generations can fluctuate and 
can be defined by users. Figure 1 illustrates the general flow chart of AdmixSim 2. Briefly, 
four input files are required for ancestral haplotype data, individual information, single 
nucleotide variation (SNV) information, and model description. The model descrip-
tion file defines the overall simulation processes by combining a series of modules of 
a standard format for every single process. Even though it is possible to use models in 
combination for extensive admixture scenarios, modifications of a single model are also 
applicable and flexible. With the input of these four files, AdmixSim 2 implements the 
whole simulation process defined in the model description file across generations. At 
the end of the simulation, haplotype data of individuals of specified populations are pro-
vided, and users can flexibly sample a certain number of individual data for output. Out-
put data of any generation are available for all of the simulated populations. The output 
individual information file, haplotype data file, and updated SNV information file are in 
a similar format as the input file, which provides convenience and flexibility for subse-
quent simulations across different demographic models. Moreover, the haplotype data 
as provided by AdmixSim 2 are helpful for follow-up analysis and revealing the prop-
erties of real genomic data, which are not available in many other simulation tools. In 
addition to the aforementioned output files, AdmixSim 2 also generates three additional 
outputs, frequency of alleles under selection, ancestral track information, and a log file.
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Admixture, de novo mutation, and natural selection are the evolutionary events 
that we mainly considered in AdmixSim 2. Corresponding parameters can be set in 
input files or using the command-line interface. Initial settings for sex in the indi-
vidual information file define monoecious and dioecious individuals for simulation. 
In the case of monoecious individuals, we logically sample two different individuals 
as parents of each offspring in the next generation. The probability that samples an 
individual out is proportional to the individual’s fitness. The fitness of an individual is 
calculated as one plus the sum of selection coefficients of all selection conditions sat-
isfied. The negative value is rescaled to zero. Each parent contributes one gamete to 
the offspring with mutations and recombination. The recombination rate and muta-
tion rate can be set as uniform or nonuniform (locus-specific) in either the command 

Fig. 1  General simulation flow chart of AdmixSim 2. Colors indicate different ancestral populations, squares 
represent males, circles represent females. Red spots represent mutations and red crosses represent 
recombinations. AdmixSim2 requires four input files separately recording ancestral haplotype data, individual 
information, SNV information, and demographic model. During the simulation, each individual in the current 
generation undergoes mutation and is then sampled to be a parent of offspring in the next generation. The 
probability of being included in this sample is proportional to the individual’s fitness. Each parent contributes 
one gamete to the offspring after recombination. At the end of the simulation, there are six output files. The 
first three take nearly the same format as the corresponding input, and they can be used for subsequent 
simulations with a new demographic model
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line or the SNV information file. For selection, AdmixSim 2 can simulate the case 
of a single locus, multi-locus (continuous or discrete), population-specific, and sex-
specific selection. Here, the sex-specific selection is incorporated by assigning differ-
ent selection coefficients for two sexes. Sex-specific population sizes and sex-specific 
admixture proportions are supported as well. The selection coefficients are allowed 
to change over generations. Users can also simplify the simulation by using a single 
parameter setting to avoid complex evolutionary processes with recombination, de 
novo mutation, and natural selection, respectively.

We implemented some features for the efficiency of run time and memory usage. First 
of all, we record the recombination segments rather than the whole haplotype data, 
which is much more memory-efficient as stated in forqs. The time consuming is insen-
sitive to the number of simulated SNVs and remains relatively small even with a large 
recombination rate and mutation rate. Second, we discard the population information of 
the previous generation after simulating the current generation unless it is specified to 
be output. Generally speaking, there are data of two generations existing simultaneously 
in the simulation process. Finally, we record the haplotype data of ancestral populations 
into memory after simulating all the generations instead of at the beginning. The ances-
tral haplotype data are used to extract the segmental sequence based on the segment 
information carried by each output haplotype. We compared the basic features and abili-
ties of AdmixSim 2 with QuantiNemo 2 [21], SLiM 3.3, simuPOP, GeneEvolve, SELAM, 
forqs, and admix’em (Table 1). The results showed that AdmixSim 2 is an irreplaceable 
tool for simulating population admixture with real genomic data.

Results
Admixture, recombination, and mutation

To validate the basic functions of our simulator, we used admixture models of three typi-
cal admixed populations (African Americans, Mexicans, and Uyghurs) which are of 2, 
3, and 4 distinct ancestral originations, respectively (Additional file  4: Table  S1). The 
simulation model of each population is shown in Additional file  1: Figure S1 [22, 23]. 
To simulate African Americans, we chose populations European and African from the 
1000 Genomes Project (KGP) as reference. Totally 6,196,135 SNVs on chromosome 1 
were used for simulation. We performed principal component analysis (PCA) with flash-
pca [24] (Fig. 2A) and supervised admixture analysis with ADMIXTURE [25] (Fig. 2C) 
of both simulated and empirical data. The results of PCA and admixture analysis were 
largely concordant between simulated data and empirical data, indicating the simulated 
data by AdmixSim 2 are a satisfactory alternative on a global level. We further calculated 
the segment length proportion of each ancestral population to validate the function of 
sampling patterns and recombination. The variation of these proportions was largely 
stochastic without significant deviation from the expected value as set in the admixture 
model (Fig. 2B). To validate the function of adding mutations, we set the mutation rate 
as 10–8 per generation per site and compared the distribution of mutation counts of each 
output haplotype to the Poisson distribution (Fig. 2D). The results show that the two dis-
tributions were extremely close (p = 0.69, chi-square goodness of fit test). These results 
further demonstrated the simulated data by AdmixSim 2 are a satisfactory alternative 
on the level of local genomic regions. For the other two admixed populations, Mexicans 
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and Uyghurs, the aforementioned features of simulated data were confirmed (Additional 
file 2: Figure S2 and Additional file 3: Figure S3).

Recombination and length distribution of segments of distinct ancestry in the analysis of X 

chromosome and autosomal data

The main difference is the recombination pattern in simulating X chromosome and 
autosome data. While simulating X chromosome data, we assume that recombination 
only occurs in females. Thus, the number of recombination events of the X chromosome 
is expected to be two-thirds of that of autosome theoretically. We simulated an admixed 
population with a population size of 5000 using pseudo data of 3 Morgan. The simula-
tion was based on hybrid isolation (HI) model with the initial ancestral contribution of 
4:1 for two ancestral populations (hereafter refers to Anc1 and Anc2, respectively) and 
ended at generation 50. The recombination rate was set as 10–8 Morgan per base pair. 
There are differences between the numbers of recombination breakpoints of autosomes 
and those of X chromosome under the identical simulation model and parameter set-
tings (Fig. 3A). The mean numbers of breakpoints of autosome and X chromosome were 
149.66 and 100, respectively, thus satisfied the two-thirds ratio as expected. Next, we 
examined the consistency between length distribution of ancestral segments in simula-
tion and that in the theoretical deduction based on the method proposed in MultiWaver 

Table 1  Comparison of the features

a Generate new admixed populations

A Absent, BS Balancing Selection, ES Epistatic Selection, DS Directional Selection, GS Generation Specific, KA k-Allele Model, 
ML Multi-locus, N No, NU Nonuniform, PHS Phenotype Specific, POS Population Specific, SL Single-locus, SM Stepwise 
Mutation Model, SS Sex Specific, U Uniform, Y Yes

Simulator 
features

AdmixSim 
2

quantiNemo 
2

SLiM 3.3 simuPOP GeneEvolve SELAM forqs Admix’em

Admixturea Y, SS N Y Y, SS N Y Y Y

Real 
sequence 
data input

Y N Y/N Y/N Y N N N

Genomic 
data 
output

Y Y Y Y Y N Y N

Recombi-
nation

U, NU, A U, NU, SS U, NU U, NU U, NU U U, NU U, NU, SS

Mutation U, NU, A U, NU, KA, 
SM

U, NU, KA, 
SM

U, NU, KA, 
SM

U, NU, A U U, NU, A U, NU

Selection SL, ML, 
POS, SS, 
GS, DS, A

SL, ML, POS, 
DS, GS, BS, 
ES

SL, ML, 
POS, DS, 
BS, ES, 
PHS, A

SL, ML, 
POS, BS, 
DS, ES

SL, ML, 
POS, DS, 
BS, PHS, A

SL, SS, 
POS, DS, 
ES

SL, ML, 
DS, A

SL, ML, POS, 
SS, DS, GS, 
ES, PHS

X chromo-
some

Y Y Y Y N Y Y Y

Program-
ming 
language

C++, 
Python

C++ C++ C++ C++ C++ C++ C++

Interface Com-
mand-
line, 
configu-
ration files

Command 
line, con-
figuration 
files

Edios 
program-
ming

Python 
program-
ming

Command-
line, con-
figuration 
files

Com-
mand-
line, con-
figuration 
files

Com-
mand-
line, con-
figuration 
files

Command-
line, con-
figuration 
files



Page 7 of 15Zhang et al. BMC Bioinformatics          (2021) 22:506 	

[22]. The statistical significance was determined by the Kolmogorov–Smirnov test. As 
expected, the two distributions did not show statistical significance, which again demon-
strated a fundamental capacity of AdmixSim 2 to simulate X chromosome data (Fig. 3B).

Natural selection

To verify the frequency variation tendency of alleles under selection, we simulated a two-
locus segment under a selection amenable to the additive model with an initial freqncy 
of 5% and a selection coefficient of 0.1. Under the additive model, the fitness is 1, 1 + s, 
and 1 + 2 s for individuals carrying 0, 1, and 2 selected haplotypes, respectively, where s 
denotes the selection coefficient. During each simulation of 500 repeats, we recorded the 
selection frequency at each generation. Using xt to denote allele frequency at generation 
t, we have the theoretical frequency at generation t + 1 as

Given the condition of x0 = 0.05 and s = 0.1 , the mean value of allele frequencies 
across 500 repeats was compared to the expected value at each generation (Fig. 4A). The 
results of simulation and theoretical expectation are consistent regarding the frequency 
of allele under selection (p = 0.999, Kolmogorov–Smirnov test).

To test the number of generations of an allele being fixed under selections with dif-
ferent initial frequencies and coefficients, we simulated 1 centiMorgan chromosome 

xt+1 =
(1+ 2s)x2t + xt(1− xt)(1+ s)

(1+ 2s)x2t + 2xt(1− xt)(1+ s)+ (1− xt)
2
.
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Fig. 2  Simulation of African American admixture pattern. A PCA results. The left is the result of empirical data 
and the right is the result of simulated data. The patterns of these two results are quite similar. B Segment 
length proportion. The proportion of each ancestry was calculated based on the sum of the corresponding 
segment length. The average proportions of European and African were 0.225 and 0.775, which is in broad 
agreement with proportions set in the admixture model (European: 0.246, African: 0.754). C Supervised 
admixture analysis results at K = 2. The left is the result of empirical data and the right is simulated data. 
There is no marked difference between these two results. D Mutation number counts. The green histogram 
represents the simulation value and the red curve is derived from the theoretical Poisson distribution. The 
p-value was calculated using the chi-square goodness of fit test. The chromosome length was approximate 
2.49 Morgan and the mutation rate was set as 10–8 per generation per site. Thus, after simulating 11 
generations, the average mutation number of each haplotype is about 27
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and used the HI model with an initial contribution of 1:1 from two ancestral pop-
ulations. Each ancestral population had 100 individuals in the founding generation 
and the population size of the admixed population was 5,000 throughout the simula-
tion. Recombination rate (Morgan per base pair) and mutation rate (per generation 
per site) were both set as 10–8. We considered four distinct initial frequencies of the 
segment under selection, 5%, 10%, 15%, and 20%. The selection coefficient varied in 
the change of 0.01–0.1, taking 0.01 as a step (Additional file  5: Table  S2). For each 
combination of initial frequency and selection coefficient setting, we performed 100 
replications, and then calculated the average of fixation time with standard error 
(Fig. 4B). As expected, the fixation time decreased with the increase of selection coef-
ficients. Besides, there was a negative correlation between the initial frequencies 
and the time in generations taken to reach a fixation state. These results revealed a 
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Fig. 3  Recombination and length distribution of segments of distinct ancestry in the analysis of X 
chromosome and autosomal data. A Recombination breakpoint counts. The histogram represents the 
simulated value of recombination breakpoints and the red curve is the theoretical Poisson distribution. Under 
identical simulation models and parameter settings, the average number of recombination breakpoints 
of the X chromosome is approximately two-thirds of that of autosomes. B Segment length distribution. 
The histogram represents the simulated segment length distribution and the red curve is the theoretical 
exponential distribution. The theoretical distribution fits quite well with the simulated one. Moreover, X 
chromosomes possess a smaller effective recombination rate compared to autosomes
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powerful performance of AdmixSim 2 in terms of simulating natural selection during 
admixture.

Time and memory cost

Further, we evaluated the time cost of AdmixSim 2 using a HI model with equal contri-
bution from the two ancestral populations. Six distinct factors were considered in the 
evaluation by varying values of one and holding the rest constant, including chromo-
some length, recombination rate, mutation rate, admixed population size in simula-
tion, end generation, and a number of loci under selection (Additional file 6: Table S3). 
The time cost exhibited an approximately linear increase with the value of the condi-
tion rising and was relatively low (Fig. 5). Later, we compare the runtime and memory 
cost of AdmixSim 2 and SLiM 3.3 [16] using the population Yoruba in Ibadan, Nige-
ria (YRI) from the KGP dataset (Fig. 6). Here, for simplicity, we simulated the case that 
YRI evolves for a certain number of generations without gene flow from other popula-
tions. Totally 1,055,452 SNVs on chromosome 22 were used for simulation. The simu-
lated chromosome length was about 50 Mb. The uniform recombination and mutation 
rate were set as 10−8 Morgan per base pair and 10−8 per generation per site. We record 
the runtime and peak memory usage in changing the population size (1000, 2000, 3000, 
4000, 5000, 6000, 7000, 8000, 9000, 10,000) and simulated generation (50, 100, 150, 200, 
250, 300, 350, 400). All tests were conducted on 96-core Intel Xeon Platinum 9242 CPU 
2.30 GHz computer servers. SLiM 3.3 was compiled under the release build. The runtime 
and memory cost for both simulators are approximately linear functions of generations 
or population size. Notably, the memory cost of AdmixSim 2 is almost constant, while 
for SLiM 3.3, it is much higher and growing faster. These results indicate that AdmixSim 
2 is feasible and efficient in massive simulations.

Fig. 4  Selection Test of AdmixSim 2. A The variation trend of allele frequency. The grey curve represents 
each repeat. The red curve is the average of 500 repeats and the blue one is the theoretical value. The 
p-value was calculated using the Kolmogorov–Smirnov test and the average of 500 simulations was quite 
indistinguishable from the theoretical one. The pie chart on the right shows the statistical analysis of each 
repeat and the theoretical value. More than 95% of tests did not show statistical significance. B Allele fixation 
time under different combinations of initial frequency and selection coefficient. The fixation time reasonably 
decreased with the increase of selection coefficients. Moreover, the higher initial frequencies were, the fewer 
generations were cost to reach a fixation state
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Discussion
Since AdmixSim 2 was designed to focus on simulating the admixture process, the 
pre-admixture data can be generated from different strategies. In human genetics, 
users can use the genetic data from public data sets like the KGP, the Estonian Bio-
centre Human Genome Diversity Panel (EGDP), the Simons Genome Diversity Pro-
ject (SGDP), and the International HapMap Project. Since AdmixSim 2 can simulate 
the scenario that the ancestral populations evolve same generations as the admixed 
population, it is practical to use the populations from these public datasets as ances-
tral populations. Besides, populations from these datasets could be used as proxy 
populations in local ancestry inference. With the advance of genotyping and tech-
nologies, the ability to generate large amounts of sequence data in a relatively short 
amount of time is helping to enable a wide range of genetic analysis applications. 
Therefore, the pre-admixture genetic data can be more easily obtained in the future 
owing to advanced sequencing technologies. More generally, users can use coalescent 
approaches like msprime [26] or forward-in-time methods like SLiM 3.3 to simulate 
the pre-admixture data. This approach can be applied to both human and non-human 
species. For instance, the documentation of msprime (https://​tskit.​dev/​mspri​me/​
docs/​stable/​demog​raphy.​html) gave the code to simulate African, European, and East 
Asian individuals based on the Out of Africa model developed by Gutenkunst et al. 
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[27] from the HapMap Project data. Besides, the manual of SLiM 3.3 (page 99) imple-
mented a model of human evolution presented by Gravel et al. in 2011 [28] based on 
the KGP data. Last but not least, the output haplotype data of AdmixSim 2 can also be 
used as the input of further simulations. The first three output files (haplotype data, 
individual information, and updated SNV information) of AdmixSim 2 take the same 
format as the corresponding input, and they can be used for subsequent simulations 
with a new demographic model.

AdmixSim 2 record the recombination segments rather than the whole haplotype data, 
which brings a proportion of efficiency for the simulation. The way of segment repre-
sentation in AdmixSim 2 is similar to that implemented in forqs, but there is some slight 
difference. Each haplotype chunk in forqs is represented by two numbers (position, id): 
the position where it begins, and the identifier of the founding haplotype from which it 
is derived. For AdmixSim 2, each segment is identified by the start physical position, the 
end physical position, and the ancestral label it originates from. Despite this difference 
is not seemly substantial, we believe specify an ending physical position is more con-
venient to calculate the selection fitness and extract segmental sequence data without 
indexing the next segment. Besides, we noticed that forqs is mainly used to simulate the 
scenarios that recombination and/or natural selection on polygenic quantitative traits 
within a relatively small number of generations, while the emphasis of AdmixSim 2 is 
on simulating complex population admixture events more flexibly. Previous studies have 
demonstrated that a segment-based simulator is not as efficient as array-based simula-
tors (like SLiM) when involving demographic events taking place over thousands of gen-
erations [18]. Nevertheless, we here mainly focus on the studies of modern humans, and 
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the history usually much less than 1000 generations for typical admixed populations of 
modern humans.

The previous version, AdmixSim, has been used in many evolutionary and population 
genetic studies, including those exploring the genetic history of Xinjiang’s Uyghurs [23], 
validating statistical tool CAMer [29], MultiWaver series software [22, 30], and Libgdrift 
[31]. We summarized the similarities and differences between AdmixSim and AdmixSim 
2 (Table  2). We expect AdmixSim  2 to be widely used in population admixture stud-
ies, such as modeling complicated demographic history, validating methods for local 
ancestry inference, and dating population admixture. In addition, autosomal and sex 
chromosomal data are both supported. This is particularly useful in studying sex-biased 
admixture.

Nevertheless, there is still room for improvement in AdmixSim 2. As in many other 
programs, we here also assume non-overlapping and discrete generations, which may 
have some limitations in practical applications. It is possible to consider overlapping and 
continuous generations in future versions. In addition, de novo mutation is not consid-
ered for determining individual fitness during simulation of natural selection, and the 
potential effect on admixture inference is to be further evaluated. Furthermore, the tree 
sequence recording (TSR) algorithm [32] implemented in SLiM 3.3 provides the nec-
essary information to detect coalescence events and construct the genealogical tree at 
each chromosome position, although applying the TSR algorithm has a large impact on 
the performance of models, in terms of both runtime and memory usage (page 40 of 
SLiM 3.3 manual). The TSR algorithm has also been applied into many other simula-
tors like msprime and inference methods like tsinfer [33]. Nonetheless, there is no single 
simulation tool is ideal for all cases and some other simulation tools are suitable for a 
few special scenarios. For example, in the framework of selection, SLiM 3.3, SELAM, 
and admix’em consider the cases including phenotypic selection, epistatic selection, or 
balancing selection. Although AdmixSim 2 does not cover the comprehensive scenarios 
of mate choice as some other simulators, it implements sex-biased admixture (different 
admixture proportions for two sexes) and sex-specific selection (different selection coef-
ficients for two sexes).

Table 2  Comparisons between AdmixSim and AdmixSim 2 

a Different rows in the feature descriptions can be realized simultaneously in a single simulation process. Terms in a row 
separated by ‘/’ are mutually exclusive
b All terms with ‘multiple’ support the corresponding scenarios of ‘single’
c The first four features are allowed to be absent

Featuresc AdmixSim AdmixSim 2

Admixture One admixed population Multipleb admixed 
populationsa

Sex-biased

Recombination Locus-specific/ constant Locus-specific/constanta

Mutation No Locus-specific/constanta

Natural selection No Multipleb-locusa

Multipleb regions

Population-specific

Sex-specific

Chromosome type Autosome Autosome/X chromosomea
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Conclusions
In summary, AdmixSim 2 is an individual-based, forward-time simulator based on the 
extended WF model, which can be used to efficiently simulate one or more admixed 
populations under complex demographic scenarios. AdmixSim 2 is highly flexible and 
it can implement combinations of multiple parameter settings to simulate admixture, 
recombination, mutation, and natural selection. Furthermore, AdmixSim 2 can be used 
to simulate admixture scenarios for sex chromosomes and non-human species.
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