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Abstract 

Background:  Time-lapse microscopy live-cell imaging is essential for studying the 
evolution of bacterial communities at single-cell resolution. It allows capturing detailed 
information about the morphology, gene expression, and spatial characteristics of 
individual cells at every time instance of the imaging experiment. The image analysis 
of bacterial "single-cell movies" (videos) generates big data in the form of multidimen-
sional time series of measured bacterial attributes. If properly analyzed, these datasets 
can help us decipher the bacterial communities’ growth dynamics and identify the 
sources and potential functional role of intra- and inter-subpopulation heterogeneity. 
Recent research has highlighted the importance of investigating the role of biological 
"noise" in gene regulation, cell growth, cell division, etc. Single-cell analytics of com-
plex single-cell movie datasets, capturing the interaction of multiple micro-colonies 
with thousands of cells, can shed light on essential phenomena for human health, 
such as the competition of pathogens and benign microbiome cells, the emergence of 
dormant cells (“persisters”), the formation of biofilms under different stress conditions, 
etc. However, highly accurate and automated bacterial bioimage analysis and single-
cell analytics methods remain elusive, even though they are required before we can 
routinely exploit the plethora of data that single-cell movies generate.

Results:  We present visualization and single-cell analytics using R (ViSCAR), a set of 
methods and corresponding functions, to visually explore and correlate single-cell 
attributes generated from the image processing of complex bacterial single-cell mov-
ies. They can be used to model and visualize the spatiotemporal evolution of attrib-
utes at different levels of the microbial community organization (i.e., cell population, 
colony, generation, etc.), to discover possible epigenetic information transfer across cell 
generations, infer mathematical and statistical models describing various stochastic 
phenomena (e.g., cell growth, cell division), and even identify and auto-correct errors 
introduced unavoidably during the bioimage analysis of a dense movie with thousands 
of overcrowded cells in the microscope’s field of view.

Conclusions:  ViSCAR empowers researchers to capture and characterize the stochas-
ticity, uncover the mechanisms leading to cellular phenotypes of interest, and decipher 
a large heterogeneous microbial communities’ dynamic behavior. ViSCAR source code 
is available from GitLab at https://​gitlab.​com/​Manol​akosL​ab/​viscar.
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Background
Each cell in a microbial community is unique. While much of this diversity is due to 
genetic differences, even isogenic cells exposed to the same environmental conditions 
exhibit remarkable variability in their phenotypic characteristics. This heterogene-
ity is linked to the inherently probabilistic nature of molecular processes not involving 
changes in the genome. For example, the production of a specific protein among clonal 
cells can differ due to stochastic fluctuations (biological “noise”) during transcription 
and translation, leading to differences in protein levels in time and space [1].

It is well established that cell-to-cell variability in isogenic microbial cultures pro-
vides the flexibility cells need to adapt efficiently to changing environments [2, 3]. For 
example, “persister” cells switch between phenotypic states of different growth rates to 
achieve tolerance to antibiotics [4]. Moreover, pathogen biofilms [5] (Salmonella, Chla-
mydia, Escherichia coli, Staphylococcus, and Streptococcus) benefit from the creation 
of variant subpopulations of dormant persisters [4, 6, 7] that can survive an extended 
period of exposure to drugs. When most of the cell population is demised, the surviving 
persister cells transit out of their dormant state, causing the infection to re-emerge after 
the drug treatment is removed.

Studying the dynamical behavior of microbial communities has been a significant chal-
lenge in the post-genomic era to uncover the interactions and mechanisms leading to 
cell phenotypes of interest for human health [8–12]. Systems microbiology research has 
contributed models to characterize microbial populations’ growth. However, the existing 
heterogeneity at the single-cell level is masked in conventional studies. Therefore, more 
recent studies emphasize monitoring single-cell microbial kinetics and developing sto-
chastic dynamical models that can provide more realistic predictions on cell community 
behavior under different conditions [1, 5–8, 11, 13–15].

With the realization that bacteria display phenotypic variability and exhibit complex 
subcellular organization critical for cellular function, optical microscopy has re-emerged 
as a primary tool for studying living cells [16, 17]. State-of-the-art microscopes and 
sensitive cameras paired with powerful genetically encoded fluorescent probes [18, 19] 
allow for high-resolution real-time observation of biological processes in vivo [20–23]. 
Time-lapse microscopy allows us today to monitor bacterial communities at a single-cell 
resolution over a period of time using phase-contrast and/or fluorescence technologies 
[24–26]. The generated videos, which from now on we will call “single-cell movies,” cap-
ture how the single-cells’ biophysical and/or gene expression properties evolve in space 
and time. Exploration of the multidimensional datasets the image analysis of single-cell 
movie videos generates is necessary to shed light on how the stochasticity (biological 
“noise”) affects essential phenomena in biology, such as cell proliferation, division, bac-
teria-host interaction, etc. [24–28].

Besides, the live-imaging of microbial consortia has the potential to uncover the sto-
chastic processes involved in critical phenomena for human health, such as the compe-
tition between pathogens and benign microbiome cells [29], dormant cells (persisters) 
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emergence under different stress conditions [5–7], etc. However, accurate, automated, 
and integrated image analysis and single-cell data analytics pipelines are lacking. They 
are required before we can harness the large body of single-cell movies created at dif-
ferent labs to generate realistic digital replicas of dynamic cell communities, also known 
as “digital twins” [30, 31]. If faithful to the physical world’s relevant aspects, such virtual 
representations can empower systems and synthetic biology research, biotechnology 
advancements, and accelerate drug discovery and therapeutic strategies development. 
Active microscopy and advanced computation of cytometry data produced in real-time, 
i.e., as we live-image interacting bacterial micro-colonies (microbial consortia) [29, 32], 
will help us uncover the “logic” of critical biological phenomena currently escaping our 
understanding.

Prerequisites for the useful analysis of single-cell movies are the accurate cell segmen-
tation and cell tracking. Segmentation identifies the individual cell regions, i.e., assigns 
pixels in an image frame to individual cells. Tracking, on the other hand, associates 
corresponding cell regions from one frame to the next. Without completing these two 
essential image analysis tasks successfully, it is impossible to characterize the cellular 
morphology and/or fluorescence levels and, therefore, convert the data emanating from 
live-cell imaging experiments into a suitable digital representation of living communi-
ties’ properties at single-cell resolution. It is the success of this transformation that can 
allow us to eventually retire the single-cell movies themselves and use their digital repli-
cas to feed powerful analytics pipelines for downstream analysis.

Single-cell movies’ analysis initially relied on a visual inspection and laborious manual 
annotation, being equally time-consuming or even more tedious than the sample prepa-
ration and imaging tasks themselves. It is undeniable that automated bioimage analysis 
pipelines [33] that routinely accomplish accurate cell segmentation, tracking, and lin-
eage trees construction are needed to exploit the abundance of single-cell movies and 
extract consistent and reliable information from them without requiring significant 
human effort. Along these lines, several computational methods and tools have been 
developed for analyzing bacterial single-cell movies. These include, among others, the 
TLM-Tracker [34], CellTracer [35], MicrobeTracker [36] and its successor Oufti [37], 
Schnitzcells [38], and more recently MicrobeJ [39], SuperSegger [40], BacStalk [41], and 
BaSCA (Bacterial Single-Cell Analytics) [42–45], a complete pipeline developed by our 
group for analyzing dense bacterial single-cell movies. The BaSCA pipeline source code 
is available from GitLab [46].

Currently, the available software tools concentrate mainly on the image analysis 
tasks, providing only rudimentary analytics capabilities to the user-researcher who 
may want to model and interpret the sophisticated cell-level dynamics of a complex 
single-cell movie with multiple interacting colonies and thousands of cells in the 
microscope’s field of view [47]. Recently, SuperSegger’s GateTool [48] and BactMAP 
[49] provide the users with advanced post-processing and analytics capabilities. Spe-
cifically, both tools mainly focus on visualizing intracellular fluorescence using infor-
mation from the image itself and subcellular localization of spots and objects, and 
subsequently on creating plots which can be used in the analysis of time‐lapse movies. 
However, no tool yet provides vertical analysis and advanced visualization that cuts 
across all levels of a cell community’s organization. To model the biological processes 
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involved, as cells grow, divide and interact in a dense bacterial community, we should 
correlate information at multiple scales, from whole cell populations to their interact-
ing colonies and down to the single-cells, and visually and flexibly explore the analyt-
ics results.

In this work we present methods for Visualization and Single-Cell Analytics that we 
developed and implemented as part of a flexible R package [50] (ViSCAR). ViSCAR 
is provided as an open-source software tool to the research community (see https://​
gitlab.​com/​Manol​akosL​ab/​viscar). A remarkable feature of ViSCAR is its flexibility. It 
can be used to analyze single-cell data sets generated either by the BaSCA bioimage 
analysis pipeline [42–45] or by other popular software packages, such as the Oufti 
[37], SuperSegger [40], or even Individual Based Modeling (IBM) tools such as the 
Cellmodeller [51] used to simulate synthetic microbial communities.

All analytics methods presented were enabled by building first an abstract repre-
sentation of an evolving cell community as a Forest of Lineage Trees (FLT), allowing 
the storage of cell attributes and the meta-analysis of complex single-cell movies with 
many interacting colonies. In essence, we transform the useful information of a com-
plex single-cell movie (video) into a hierarchical FLT digital representation and a set 
of methods, which, when combined, can act as a “digital twin” [30, 31] replica of the 
live imaging experiment captured by the movie. This rich representation allows us 
to visualize cell attribute trends easily and intuitively. It also facilitates modeling at a 
certain level, or across different levels, of community organization (whole cell popula-
tion, cell colony, generation, cell relatives in consecutive generations) and inferring 
best mathematical representations (choosing from a variety of parametric distribu-
tions) to characterize stochastic phenomena without losing sight of the interactions 
that may drive them [5–7, 15]. Users may also use ViSCAR to spot and correct inev-
itable segmentation and tracking errors introduced by image analysis pipelines. All 
these capabilities of ViSCAR empower research towards deciphering microbial com-
munity dynamic behaviors under different environmental and stress conditions.

The rest of the paper is organized as follows. In “Implementation” section, we pro-
vide an overview of the implementation of ViSCAR as an R package. In “Results” sec-
tion, we introduce the basic ViSCAR functionalities using a simple single-cell movie 
image-analyzed with SuperSegger [40]. Then, we perform a more extensive analysis 
based on an overcrowded single-cell movie [13] image-analyzed using BaSCA [42]. 
Finally, we use a very complex synthetic single-cell movie generated using the Cellm-
odeller tool [51] to demonstrate the importance of predictive analytics in character-
izing the stochasticity and investigate how it may affect a large bacterial community’s 
dynamic behavior. In “Conclusions”, we summarize our findings and point to future 
directions. In Additional file  1, we include some additional information about ViS-
CAR package functionalities and some additional results for each case study. In the 
repository https://​gitlab.​com/​Manol​akosL​ab/​viscar, we provide the ViSCAR software 
R package and the datasets, along with installation instructions and complete docu-
mentation. Moreover, in the same repository we provide three R notebooks that one 
can run after installing ViSCAR to reproduce all the results in “Results” section, and 
a tutorial video on Case Study I that one can watch in order to start testing ViSCAR’s 
capabilities.

https://gitlab.com/ManolakosLab/viscar
https://gitlab.com/ManolakosLab/viscar
https://gitlab.com/ManolakosLab/viscar
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Implementation
The ViSCAR architecture

ViSCAR is a set of methods and their R package implementation for the Visualization 
and Single-Cell Analytics of data sets derived from the bioimage analysis of complex 
time-lapse bacterial single-cell movies. It enables analytics of single-cell data sets at dif-
ferent levels of granularity (image frame, cell subpopulation, colony, generation, etc.), 
provides many ways to analyze and visually explore the spatio-temporal evolution of 
cell attributes, can be used to study trends, compute correlations, and estimate best-fit 
model parameters, such as single-cell growth and kinetic parameters, to support predic-
tive modeling for systems biology.

Figure 1 provides a top-to-bottom overview of ViSCAR’s architecture. The R imple-
mentation mainly depends on the igraph [52] package for the tree representation of the 
single-cell movie, and the ggplot2 [53] package for the majority of visualization function-
alities and utilizes functions from other R packages as well [54–63]. A full description of 
ViSCAR functions is provided in the package’s documentation (see https://​gitlab.​com/​
Manol​akosL​ab/​viscar).

Data importing

ViSCAR supports various input file formats for importing data sets of analyzed single-
cell movies. It offers functions for automatically importing the single-cell data exported 
by BaSCA [42–44], Oufti [37], and SuperSegger [40]. These functions convert the 
input file(s) into a cell list (and colony list), containing all the cell instances (and colony 
instances) of the single-cell movie. Besides, custom user-constructed cell (and colony) 
list structure(s) saved in.json file format can also be directly imported, provided that 
they have a prespecified form described in the package’s documentation (see https://​git-
lab.​com/​Manol​akosL​ab/​viscar).

The forest of lineage trees representation of complex single‑cell movies

Once the cell list of the single-cell movie is loaded (see Fig. 1), we use the createFLT 
function to transform it into a Forest of Lineage Trees (FLT) data structure, storing a 
summary of all cell’s information at all time-points (cell instances). The FLT is a set of 
lineage trees (LT), with each LT representing a different colony in the single-cell movie. 
A lineage tree node represents a cell instance, i.e., an individual cell at a specific frame (a 
time point of its lifespan). Only the FLT master root node (at the center of the circle) and 
each colony’s root nodes do not correspond to actual cell instances. Therefore, the first 
movie frame’s cell instances are the daughters of the corresponding colony’s root node 
and appear at level 3 of the FLT. So, levels n ≥ 3 of the FLT represents the actual frames 
of the single-cell movie. The FLT and colony root nodes are included to facilitate the 
movie’s abstract tree representation and colony tracking and are excluded from the data 
analysis. A typical FLT of a complex single-cell movie is shown in Fig. 2.

The life of a cell is delineated by two events: cell birth and cell division. We define as 
birth and division times, the frames (time points) at which the cell is firstly and lastly 
spotted in the single-cell movie. In bacterial image analysis, a cell division event, i.e., 
cell disappearance from the field of view, may result from an actual cell division, a cell 

https://gitlab.com/ManolakosLab/viscar
https://gitlab.com/ManolakosLab/viscar
https://gitlab.com/ManolakosLab/viscar
https://gitlab.com/ManolakosLab/viscar
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Fig. 1  Overview of the ViSCAR architecture. Orange boxes represent data structures; blue boxes correspond 
to the core functions; green boxes represent useful auxiliary functions. Analytics capabilities (blue area) are 
organized into three categories: estimation of growth curves, statistics, and scatter plots. Solid lines mark the 
input/output data structures of functions. Dotted lines are used for alternative input structures. An image 
icon output is shown for functions generating plots
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death, an exit from the microscope’s field of view, single-cell movie termination, or a 
cell tracking error. Similarly, apart from a cell division event, a cell birth event may 
arise when a cell enters the field of view or when a cell failed to be associated with 
any cell instance in the previous frame (cell tracking error). To ensure that only real 
newborn cells emanating from actual cell divisions contribute to the data analysis, 
we store the “motherless” FLT branches separately. As we will demonstrate in “Image 
analysis error spotting and correction” section, motherless branches arising from 
tracking errors can be attached by the user to the correct FLT node using the error 
correction capabilities of ViSCAR.

A segment (sequence) of LT nodes between a birth and a division event represents a 
cell’s lifespan. Suppose we reduce a LT cell segment (lifespan) down to a single node. 
In this way, we obtain the Forest of Division Trees (FDT) single-cell movie represen-
tation and data structure, capturing in a node only each cell’s division event and sum-
marizing its lifespan. Just like the FLT, the FDT also contains the master root and the 
colony root nodes. Level n ≥ 3 of the FLT represents the (n–3) generation of cells in 
the movie since the generations index starts counting from 0. The FDT of a complex 
single-cell movie is shown in Fig. 3. The data analysis can be automatically restricted 
to cells observed in the single-cell movie for their complete lifespan (i.e., from their 
birth and all the way to their division event) or for an incomplete lifespan (i.e., from 

Fig. 2  Forest of Lineage Trees (FLT) representation of the complex multi-colony single-cell movie. The colony 
ID is used to color the cell instances. Nodes that do not correspond to cells (central “root” and colony “roots”) 
are uncolored. Each tree level represents a frame of the movie (80 levels, 78 frames, 5 min frame rate)
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their birth and for at least a minimal number of frames before their division). We can 
achieve this by excluding cell trajectories terminating in leaf nodes or with a length 
less than a minimum user-defined number of frames.

The FLT and FDT are the core data structures used to represent complex single-cell 
movies and are modeled as objects of class igraph. Igraph [52] is an R library designed 
for the fast handling of large graphs with millions of vertices and edges. It provides a 
set of data types and functions suitable for the FLT/FDT representation of a single-cell 
movie, allowing the storage of node (vertices) attributes, selecting nodes based on their 
attribute values, and visualization of a tree. The importance of these facilitations will be 
clarified in the following sections.

Cell attributes

We have two categories of the single-cell attributes: cell “instance attributes” (or just 
“attributes”), which may change their value at each time point (frame), and cell “life 
attributes,” that characterize a cell’s whole lifespan.

The cell (instance) attributes are estimated by image-analysis software. For example, 
they may include the cell area, the major/minor cell axis length, the cell distance from 

Fig. 3  Forest of Division Trees (FDT) representation of the complex multi-colony single-cell movie. Subtree 
colors denote the corresponding colony. Each level of the tree represents a cell generation (13 levels, 11 
generations). Notice that colony 11 and 12 do not grow; they remain single-cells. Thus, they are represented 
by single-node branches near the FDT’s main root
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the colony’s centroid, the mean fluorescence value, whether the cell is located at the 
boundary of its colony touches other cells, etc. These phenotypic or expression, numeric 
or Boolean, attributes are loaded into the cell list and finally stored as node attributes 
in the FLT representation of the single-cell movie with the createFLT function call. 
Other features computed by ViSCAR, such as the cell age or the instantaneous rate of 
cell length change, are also cell attributes.

Cell life attributes are estimated using the createFDT function and are stored as 
node attributes in the Forest of Divisions Tree (FDT). These attributes are the birth time, 
division time, and basic statistics (min, max, mean, standard deviation) of every numeri-
cal cell attribute, characterizing the entire cell life. For instance, such life attributes are 
the average cell length (from cell birth to cell division), the division time, length at divi-
sion, area at birth, etc. Each boolean cell attribute can also be reduced to a correspond-
ing cell life attribute (with value TRUE or FALSE) based on the majority reduction of the 
collapsed LT nodes’ corresponding attribute values. In addition, given each cell’s time-
series data for a numerical attribute (e.g., the cell length), the package can estimate sin-
gle-cell growth parameters (e.g., the cell elongation rate) by fitting a linear or exponential 
model to this lifespan time series data of each individual cell (see “Case study I: Basic 
single-cell analytics workflow” section for details).

In order to support analyses at the colony or generation levels automatically, the col-
ony and generation information of each cell is stored as attribute in both the LT and DT 
nodes for the cell. Note that the “colony” attribute points to the colony from which each 
cell (instance) has emanated. This approach is necessary to keep track of a cell’s origins 
even after two colonies have merged.

Subpopulations selection

Users can isolate cell subpopulations of interest for closer analysis. Using the select_
subtree function, users can select a lineage or division tree subpopulation based on 
multiple constraints. A constraint may involve an attribute, a comparison operator, and 
a threshold value. The attribute can be any numerical or boolean cell attribute stored in 
the LT or cell life attribute stored in the DT. Selection constraints can be combined with 
logical AND operators, equivalent to sequential selections on the initial tree population. 
To connect multiple selection criteria with logical OR operators (i.e., for uniting differ-
ent subpopulations), the unite_trees function can be used.

These capabilities enhance flexibility in subpopulation selection and promote the abil-
ity to perform ad-hoc analysis. For instance, it is straightforward to limit the analysis to 
a specific subpopulation of interest, e.g., cells with average fluorescence intensity within 
a particular range, in specific colonies or generations. Note that the selected subpopula-
tion of a lineage or division tree is also considered a tree structure and can be used as 
input to other functions, even though it may ultimately become an unconnected graph. 
Selection operations are also useful in removing cell debris and identifying segmentation 
and tracking errors, as described in 2.8.

Single‑cell analytics at multiple levels of community organization

Our single-cell analytics approach enables zooming-in and extracting useful informa-
tion regarding the subpopulation characterization for any cell (life) attribute of interest. 
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Users can create scatter plots, estimate growth curves, and perform statistical analysis 
of single-cell attributes at any community organization level (all cells, subpopulation, 
selected colonies, generations, subtrees of individual colonies, etc.), in space or in time. 
The full list of the related functions is provided in Additional file 1: Table S1. These flex-
ible and insightful analytics capabilities allow users to formulate interesting new hypoth-
eses for future research.

Scatter plots

Scatter (or dot) plots are essential tools of exploratory data analysis. We offer various 
functions for generating scatter plots [64] of numerical single-cell attributes, allowing 
the user to study their correlations.

As indicated in Fig. 1 (bottom right), the name of these functions starts with the pre-
fix “plot_dot_ <  > ” followed by a string denoting the displayed variables. For exam-
ple, plot_dot_attr2 and plot_dot_attr3 create the XY or XYZ scatter plot of 
two or three attributes, respectively. plot_dot_attr2_gen2 creates the XY scatter 
plot of the same or different attributes between cells of two different cell generations. 
plot_dot_attr_fam creates the XY scatter plot of an attribute between cells derived 
from the same ancestor (i.e., siblings, cousins, mother and daughter, or grand-mother 
and grand-daughter cells). Lastly, the plot_dot_time_attr function creates several 
dot plots of a cell attribute, one dot plot per time point (movie frame) or per genera-
tion index, that are similar to box plots but with no whiskers. They can be used to visu-
ally assess how the variance of the examined cell attribute (e.g., cell length) evolves with 
time.

The data is displayed as a collection of points on XY axes. If the points are color- and/
or shape-coded, one or two additional attributes can be displayed. In some functions, 
color is also used to denote the density of the data by binning and counting the number 
of points in each bin. In this way, we can avoid overplotting (i.e., distinguish how many 
points are plotted at each location) and, at the same time, visualize a color representa-
tion of the histogram of the displayed attribute(s).

Depending on the generated scatter plot dimensions (XY or XYZ), the linear regres-
sion line or plane [64] is also drawn. The equation of the regression line/plane is 
determined using the linear least-squares method. The estimated parameters and the 
R-squared coefficient [64, 65] of the regression line/plane are returned to the user. For 
XY scatter plots, the Pearson correlation coefficient is also computed.

Growth curves

The user can also compute growth curves for the whole population, or each colony cell 
counts, by fitting the primary model of Baranyi and Roberts [66] to the data using the 
non-linear least-squares method [67]. Microbiologists commonly employ this math-
ematical model to estimate a cell population’s kinetic growth parameters in a given 
environment.

Given the values of a cell attribute at every time instance and using the add_attr_
growth_fit_pars function, we can also fit each cell trajectory (time series of an 
attribute) to a linear or exponential growth model [68, 69] using the linear or non-linear 
least-squares method [67], respectively. In this way, we can capture each cell’s growth 
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characteristics, estimate its personalized kinetic parameters, and save them as cell life 
attributes in the DLT. The root means squared error (RMSE) of the fit is also computed 
and can identify abnormal growth cells.

The package offers several functions for the visualization of the single-cell growth 
curves. For instance, we can plot the unfitted single-cell growth curves of an attribute 
from the start to the end of the movie, or the fitted single-cell growth curves of an attrib-
ute for a specified period, per colony or generation, colored by cell life attribute (e.g., 
cell division time). These capabilities allow us to observe and characterize the single-cell 
growth kinetics’ variability, which population-based experiments cannot observe.

Stochasticity analysis

In addition to computing basic statistics (mean, median, standard deviation, min, max), 
ViSCAR offers the capability to quantify the stochasticity and examine inter- and intra-
colony and inter- and intra-generation variability of single-cell attributes. We can visual-
ize the time evolution of an attribute’s mean and standard deviation, create violin plots, 
box plots, histograms, and even estimate the average fitted single-cell growth curves.

Moreover, we can compute and plot the Probability Density Function (PDF) of any cell 
(life) attribute of our choice by fitting Normal, Lognormal, or Gamma distribution mod-
els to the data using maximum likelihood estimation (MLE) [65]. The best fit parametric 
model among the ones mentioned above can also be automatically estimated based on 
the Bayesian Information Criterion (BIC). We do not limit the analysis to the normal 
distribution since many biological mechanisms may induce skewed (Gamma, Lognor-
mal) distributions (e.g., the cell division time [70, 71], cell division length [69], and the 
cell elongation rate [71]).

All these functionalities can be performed for the whole cell population in a tree, per 
colony, or per generation. Color in these plots denotes the corresponding colony or 
generation and is consistent throughout the single-cell movie dataset analysis. The axis 
range of the depicted attribute is common, allowing comparisons between the specified 
colonies or generations and assessments of the exhibited heterogeneity.

Visual analytics capabilities

Visualizations

Our methods allow the user to visualize the evolution of single-cell attribute values in 
two ways. Using the plot_tree function, we can exploit the FLT (FDT) construction 
and depict an extracted/computed cell instance (life) attribute using color on top of tree 
nodes. For example, we can map the single-cell area on a lineage tree’s nodes and visu-
ally examine how it changes during the cells’ lifespan. We can also map the cells’ division 
time on a division tree and assess how it evolves across generations. A unique feature 
that, to the best of our knowledge, no other framework provides is to use the cre-
ate_movie function and generate time-lapse movies of the segmented cells, animating 
the visualization of any selected cell (life) attribute. These visual analytics features are 
beneficial since they can help users quickly capture an attribute’s variability across cells, 
colonies, frames, or generations. We provide two animated single-cell movies, in Addi-
tional files 2 and 3, visualizing the single-cell area (a cell instance attribute) and single-
cell colony ID (a cell life attribute) of a single-cell movie.
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Figure exporting

Functions starting with the prefix “plot_ <  > ” create plots for either visualization or 
analytics purposes (see functions with an image icon in their output in Fig. 1). The plots 
are by default displayed in the Plots Pane of RStudio [72] and can be exported as images 
or PDF files through the Export option. The drawback of the RStudio export is that the 
images are screenshots of the plots, having a defined resolution. ViSCAR allows users to 
save the generated figures of each function in.png file format for external use and specify 
the width, height, and resolution of these images.

Image analysis error spotting and correction

Near perfect cell segmentation and tracking are prerequisites for obtaining correct FLT 
and FDT representations of single-cell movies and, consequently, accurate meta-analy-
sis results. However, the image analysis of complex single-cell movies is a difficult task. 
Most state-of-the-art software’s output requires a significant amount of human effort 
for manual curation due to errors caused by imperfect segmentation and tracking algo-
rithms. Even the identification and location of these errors remain tricky for the inexpe-
rienced eye.

Our method allows users to detect and correct cell tracking errors by manipulating 
the FLT, adding to and(or) removing branches, while also visualizing the questionable 
cell neighborhoods. These capabilities are offered by the add_branch and extract_
branch functions, respectively. In addition, segmentation errors can be corrected by 
merging or splitting under- or over-segmented cells, respectively. These operations of 
merge_cells and split_cell functions are performed by calling a MATLAB [73] 
executable, which should be separately installed by the user. This executable is based on 
BaSCA algorithms and requires the.mat file exported by the BaSCA image analysis pipe-
line [42–44].

Image analysis errors often lead to an unbalanced FLT (see Fig.  4). They may occur 
due to the failure of the tracking algorithm to match two cells in consecutive frames. 
This results in motherless branches that our algorithms automatically spot and store 
separately (see Fig. 5). Therefore, a first step towards correcting and extending the FLT is 
“gluing” such motherless branches to their correct position.

In Fig. 5, we present a correct FLTs (left) and an incorrect (right). Although the FLT 
may be balanced and seemingly correct, errors may still remain uncovered (see mag-
nified part of Fig. 5b). These errors can be identified by monitoring how each cell life 
evolves in the single-cell movie (see Fig. 6). The create_cell_life function offers 
this capability for a selected cell. In Figs. 5 and 6, we present how the create_cell_
life and add_branch functions can be used in combination to correct a hidden 
tracking error.

In the magnified area of Fig. 5a, we can see a red cell that evolves and eventually 
divides, giving birth to two daughter cells, a blue and a green cell. In the magnified 
area of the incorrect version, Fig. 5b, we can see that the red cell did not divide. The 
missing division event implies that the tracking algorithm failed to match the mother 
cell instance with the two daughter cell instances. An unmatched branch appears 
that must be glued to the appropriate red cell instance to recover the missed division 
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event. By inspecting selected cell lives, using the create_cell_life function, we 
can observe the green cell life in Fig. 6b, and understand that there is a missing divi-
sion event because the green cell has no mother. By checking its neighing cells, we 
can spot the red cell that should be its mother because it has an anomaly in its trajec-
tory; it grows, then its area drop abruptly, and then increases again. We can correct 
the FLT by using the add_branch function upon identifying the unmatched green 
cell and its mother, the red cell.

Methods to efficiently focus on specific cell lives and their neighborhoods are nec-
essary to support active live-cell microscopy. Spotting cell instances that present 

Fig. 4  A lineage tree a before and b after error correction. Each node represents a cell instance of a colony 
growing in a single-cell movie. Notice that in (a) there are branches that do not reach the LT’s last level (i.e., 
there exist leaf nodes at several levels). In single-cell movies with no cell death events, this tree pattern 
cannot occur. In the corrected LT of (b), all subtrees reach the last level as expected

Fig. 5  FLTs of a single-cell movie: a Correct, and b erroneous versions. Colors represent different evolving 
colonies of the time-lapse single-cell movie. a In the magnified area, we observe a red cell that divides, giving 
birth to two daughter cells, a green and a blue. b In this incorrect version, the red cell’s division event was 
missed, and an unmatched isolated branch appears to the far right. The correct FLT of (a) was recovered from 
the one in (b) by using the add_branch function to “glue” the isolated branch under the 4th red node of 
the red cell trajectory, thus recovering the missed division event



Page 14 of 34Balomenos et al. BMC Bioinformatics          (2021) 22:531 

certain anomalies allow specialists to locate cell phenotypes of interest in an over-
crowded colony near real-time.

Yet, the time required to inspect and separate all accurately segmented/tracked 
cells from inaccurately segmented/tracked ones is prohibitive, especially for com-
plex single-cell movies with thousands of cells. Since cells typically exhibit expo-
nential length growth (elongation) [68, 69], this can help us formulate an effective 
strategy for identifying cells with segmentation and tracking errors. Such cells tend 
to have length curves that either fail to fit an exponential growth model or signifi-
cantly deviate from it (i.e., have an RMSE above a specified threshold). In the latter 
case, we can choose an appropriate threshold by creating the histogram of all cells’ 
RMSE values in the movie. Therefore, we can easily spot potential errors on the FLT 
by selecting these cells and visualizing their lifespans.

Another approach for quickly spotting problematic cells is to monitor how the 
cell length or cell area changes with time. Typically, cells with a significant increase 
or decrease of these attributes from frame to frame are incorrectly segmented or 
tracked. Therefore, computing the instantaneous rate of change (roc) for the length 
(or area) makes detecting such cells easy. These descriptors can be estimated for 
every cell instance in the FLT by calling the add_attr_roc function. They can 
also be normalized to provide the change percentage.

Results
Case study I: Basic single‑cell analytics workflow

In this case study, we introduce the basic workflow of a single-cell movie dataset 
analysis using ViSCAR. We will use a dataset as input to highlight ViSCAR’s capabil-
ity to process the results produced by an image analysis software other than BaSCA.

Fig. 6  Cell life visualization. The user can monitor how a selected cell life evolves in the single-cell movie and 
detect tracking or segmentation errors. The chosen cell here is the red cell in the magnified area of Fig. 5. In a, 
corresponding to the correct FLT of Fig. 5a, the red mother cell divides between t = 15 min and t = 20 min as 
noted in a green box, i.e., the red trajectory terminates at t = 15 min and two daughter cells (green and blue) 
emerge in its space at t = 20 min. The red cell instances up to t = 15 min correspond to the 4 red nodes in the 
red subtree of Fig. 5a. After the division event, the green and blue cell instances correspond to the 9 green 
and 9 blue nodes of the respective subtrees in Fig. 5a. In b, corresponding to the FLT of Fig. 5b, we observe 
the missing red cell division (red box); the red cell trajectory continues, along with only one (green) daughter 
cell, after t = 15 min while the blue cell is missing. The red cell instances correspond to the 13 red nodes of 
the incorrect subtree in the magnified area of Fig. 5b. The green cell instances correspond to the 9 green 
nodes of the unmatched isolated branch shown in the right bottom part of Fig. 5b
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Dataset 1

This simple time-lapse phase-contrast optical microscopy single-cell movie shows the 
evolution of a single microcolony of Escherichia Coli with 12 progenitor cells. The genus 
Escherichia comprises rod-shaped bacteria with a length of ~ 2  μm and width ranging 
from 0.25 to 1 μm [74]. The single-cell movie consists of 60 frames, acquired with 1 min 
sampling period and 362 × 331 pixels resolution. The movie and its analysis are available 
on SuperSegger’s webpage [75]. The dataset needed to reproduce all results of this sec-
tion is included in https://​gitlab.​com/​Manol​akosL​ab/​viscar.

Dataset exploration

We load the dataset and create the FLT and FDT representation of the corresponding 
single-cell movie, depicted in Fig. 7a, b, respectively. Note that since SuperSegger treats 
the whole dataset as a single colony, the FLT consists of a one-colony LT. In Fig. 7a, we 
observe asynchronous divisions of the cells (i.e., change of their color). However, since 
we do not know the initial setup of the experiment (e.g., the size of each progenitor cell 
at the beginning of the movie), this observation is non-informative regarding the cells’ 
division. In Fig. 7c, d we provide the distribution of the cells across frames (LT levels) 

Fig. 7  Typical plots for a general overview of dataset 1 single-cell movie. a LT representation of the movie. 
Each level of the tree represents a frame of the movie. Cell instances are colored by generation. Main “root” 
and colony “root” nodes are uncolored. b DT representation of the movie. Each level n of the tree with n ≥ 3 
represents a cell generation. The cells of the movie are colored red. Main root and colony root nodes are 
uncolored. c The number of cell instances per movie frame (LT level). d The number of cells per generation 
(DT level)

https://gitlab.com/ManolakosLab/viscar
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and generations (DT levels). Cells that live for less than 5 frames (5 min) are automati-
cally excluded from the analysis.

Subpopulation selection

We can perform elaborate selections of cell(s) (or cell instances) and apply any desirable 
analysis and visualization on the resulting subpopulation. For example, we can select and 
visualize on the FLT the lineage tree of a progenitor cell (Fig. 8a), or the cell instances 
which are in contact with other cells and are outliers in terms of their cell area (Fig. 8b). 
As outliers, we consider here cells with an area smaller or larger than one standard devi-
ation below/above the mean, respectively (Mean and Standard Deviation Method).

Single‑cell analytics

Users can perform multiple analytics operations at the population and single-cell levels. 
Given the length of every cell at every time point (frame) (Fig. 9a), we can fit an expo-
nential model to each cell’s length trajectory (time-series) [68, 69] and estimate the cell’s 
personalized elongation rate. When in the “exp” mode, the plot_growth_attr_fit 
function fits the exponential model y = y0 · e

kt to the corresponding cell attribute y 
using the non-linear least-squares method [67] and stores in the FDT the estimated 
model parameters. When the length attribute is used, y represents the cell length, t the 
time, y0 the cell length at birth, and k is the cell (length) growth (elongation) rate. The 
IDs of the cells that failed to fit the specified model (due to lack of enough time-points) 
are returned to the user, and their raw data can be inspected (Fig. 9b). Figure 9c shows 
the exponential growth curves of each cell using the plot_growth_attr_fit func-
tion. The function also plots the average exponential growth curve of the population 
y = y0 · e

k·t (solid line in Fig. 9d), and marks the variance around it (gray area in Fig. 9d). 

Two lines define the variance; y± =

(

y0 ± s2y0

)

· e

(

k±s2k

)

·t (upper and lower dotted line). 

The estimated parameters of the lines are returned to the user. For this single-cell movie, 
the estimated parameter values are k = 0.748µm/h , s2k = 0.190 , y0 = 1.644µm and 

Fig. 8  Examples of subpopulation selection and their visualization on the lineage trees. a A subtree (red) of a 
progenitor cell (cell “6” of the dataset). b Cell instances (red) contact other cells and are also outliers in terms 
of their cell area
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s2y0 = 0.350 . We observe that the same colony cells may exhibit great variability in their 
growth kinetics, a known phenomenon masked in population-based experiments. Please 
refer to Additional file 1: Section 2 for more examples on single-cell analytics of Case 
Study I.

Case study II: Complex single‑cell movie analytics and visualization

In this case study, we present a more elaborate workflow using dataset 2. The dataset 
was produced by applying BaSCA-based image analysis to a complex single-cell movie. 
We use it here to highlight the advanced capabilities of VISCAR, and how they can be 
instrumental in characterizing how single-cell attributes vary across colonies and evolve 
along cell generations in a growing cell community.

Dataset 2

This time-lapse phase-contrast optical microscopy single-cell movie depicts multiple 
growing microcolonies of Salmonella enterica serotype Typhimurium. The genus Salmo-
nella, which is closely related to the genus Escherichia, comprises rod-shaped bacteria 
ranging in diameter from 0.7 to 1.5 μm, with a length of 2 to 5 μm [74]. The single-cell 

Fig. 9  Single-cell growth analytics. Visualization of raw single-cell length growth curves. Each jagged line 
represents the length time-series of a cell in the population (raw data). Time (x-axis) is the frame index in the 
movie. a Cells were randomly colored. b The small length red curve (upper left region) marks the only cell 
that failed to fit an exponential length growth model. Gray curves depict the rest of the cells. c Single-cell 
length exponential growth curves after model fitting. Each curve represents a cell of the population. Color 
denotes the RMSE of the exponential fit to the cell’s length. d Average and standard deviation of the 
population’s exponential length growth curve (see text for details)
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movie originally consists of 101 frames, acquired with 5  min sampling period and 
1360 × 1024 pixels resolution (see [13] for details). It shows the simultaneous growth of 
21 bacterial clones, each emanating from a single progenitor cell, which eventually are 
merging (starting from the 27th frame). We performed the image analysis using BaSCA 
since all other state-of-the-art software we tried failed to produce satisfactory results 
for this complex single-cell movie. To obtain reliable analytics results (see “Case study 
II: Complex single-cell movie analytics and visualization” section), we restricted our 
analysis to the movie’s first 78 frames and only 12 colonies. We have high confidence 
that these were correctly segmented and cell-tracked. This part of the single-cell movie 
contains overcrowded merging colonies with more than 19,000 cell instances in total, 
exceeding 1000 in the last frame. Overall, there are 1695 growing cells, with an average 
length of 2.374 μm and an average width of 0.798 μm. The dataset needed to reproduce 
all results of this section is included in https://​gitlab.​com/​Manol​akosL​ab/​viscar.

Dataset exploration

We first load the dataset and create its FLT and FDT representations. In Fig. 10, we pro-
vide the distribution of the cells across colonies and generations. Cells that live for less 
than five frames (25  min) are automatically excluded from the analysis. The FLT and 
FDT representations of the movie are shown in Figs. 2 and 3, respectively. The large dif-
ferences observed in the number of cells per colony and per generation (Fig. 10) lead to 
an unbalanced FDT (Fig. 3). These differences occur due to inter- and intra-colony and 
generation variability of the cell division time, and they are explored further below.

Estimation of colony growth curves

For each colony in the movie, we used the plot_baranyi function to fit the Baranyi 
and Roberts model [66] to the cell counts growth curve. The equation of the model is:

The model incorporates three bacterial growth stages: lag, exponential, and station-
ary (Fig. 11a). Let us call y the number of cells (in logarithmic scale) and t the time in 
hours. Then log10N0 is the starting number of cells, and log10Nmax the maximum number 

(1)y = logNmax + log
−1+ eµmax·� + eµmax·t

−1+ eµmaxt + eµmax·� · 10(logNmax−logN0)

Fig. 10  Histogram of cells included in the analysis across a colonies and b generations

https://gitlab.com/ManolakosLab/viscar
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of cells in the stationary phase (both in logarithmic (base 10) scale). The parameters of 
the model are the lag time (λ), which is the mean life (in hours) of cells of generation 0, 
and μmax, which is the maximum specific growth rate in (in 1/hour), i.e., the slope of the 
curve in the exponential phase.

The model parameters for each colony are estimated using non-linear least-squares 
[67] and provided in Additional file 1: Table S2. In Fig. 11c, we observe that colonies 7, 
11, and 12 failed to fit the Baranyi and Roberts model. Colony 7 has very few cells relative 
to the rest (Fig. 10a); it just reaches the 5th generation (Fig. 3), which implies that it is 
still in the exponential growth phase and thus fails to fit the model. On the contrary, col-
ony 2 that successfully fitted the model is transitioning to the stationary phase (Fig. 11b). 
Colonies 11 and 12 failed to fit the model since they did not grow and remained single-
cells (notice that in the bar plots of Fig. 10a, and the long linear branches in the FLT of 
Fig. 2).

Cell birth length

Cells in the dataset are born with an average length of 1.907 μm (standard deviation of 
0.522). However, a closer inspection of the cell birth length variation through successive 

Fig. 11  Colony growth curves. a The Baranyi and Roberts model [66] represents the three bacterial growth 
stages: lag, exponential, and stationary. b Raw (dots) and fitted (curve) cell counts of colony 2. c The fitted 
Baranyi and Roberts model curves per colony [64]; the parameters of the models are provided in Additional 
file 1: Table S2. Colonies 7, 11, and 12 failed to fit the Baranyi and Roberts model (see text for details)
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generations indicates that the mean birth length decreases as the generation index 
increases (Fig. 12a). Also, there is a trend towards smaller variance. These observations 
suggest that cells are getting smaller on average, and the population tends to become 
more homogeneous as time passes.

Detection of non‑proliferating cells

Entrance of cells into a dormant, non-dividing state is a common adaptive strategy that 
is largely responsible for several seemingly unrelated puzzling problems in microbiology 
and the cause of many infectious diseases [5–7]. Therefore, detecting “persisters”, i.e., 
slowly growing cells that live for many frames, is of great biological interest [6].

Slowly growing cells can be regarded as outliers in terms of their division time. To 
detect such cells, we created the histogram of the cell division time for the population 
(Fig. 12b) and selected the cells with division time > 200 min. The threshold was deter-
mined by inspecting the histogram. The selected cells’ length time-series visualization 
reveals two persister-like cells in the dataset that do not grow or divide (Fig. 12c). These 
outliers correspond to the cells of the non-proliferating colonies 11 and 12.

Single‑cell attributes variability and modeling

Single-cell analytics offer the capability to characterize the stochasticity of cell (life) 
attributes and assess their inter- and intra-colony and generation variability. For exam-
ple, we can inspect the violin plots of the cell division time, cell length at division, cell 
elongation rate, as well as their corresponding best-fit distributions. The analysis is per-
formed at three different levels of community organization using ViSCAR: population, 
colony, and generation level. This capability is offered by the plot_viobox_attr 
function that creates the violin plots and the plot_pdf_attr function that fits a dis-
tribution to the data. Since cells of different colonies in this dataset do not represent 
different strains or species, colony-level analysis is included to illustrate the inherent 
heterogeneity of a theoretically homogeneous cell population.

The plot_pdf_attr function can be used in the “auto” mode to find the dis-
tribution that best fits a cell (life) attribute. The function fits separately the Normal, 
Gamma, and Lognormal distribution to the corresponding data using maximum like-
lihood estimation (MLE) [65]. The best-fit distribution is chosen using the Bayesian 
Information Criterion (BIC) [65], i.e., the best model is the one with the lowest BIC 

Fig. 12  Detection of division time outliers (N = 1695 cells). a Variation of the mean birth length of single-cells 
in successive generations. The shaded area is one standard deviation around the mean (see Additional file 1: 
Table S3 for details). b Histogram (20 bins) of the cell division time. c Raw length time-series of cells with 
division time > 200 min (red lines) compared to the other cells of the population (gray lines)
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value. To compare the BIC estimates among different distributions, we use ΔBIC. The 
larger a ΔBIC value of distribution A compared to distribution B, the stronger the evi-
dence that the attribute follows distribution A and not B. ΔBIC values > 10 typically 
indicate a strong preference for distribution A [65].

Figure 18a presents the best distribution fitting the cell division time data for this 
complex dataset. This distribution is the Lognormal with parameters μlog = 3.905 and 
σlog = 0.388. The fit’s BIC value is 14852, and the ΔBIC is 12 and 567 compared to 
the Gamma and Normal distributions, respectively. However, in Fig. 13b, we observe 
that the cell division time distribution is actually a mixture of 2 or more unequally 
weighted models. This multimodality implies that the division time is distributed dif-
ferently among different cell subpopulations.

The best-fit distribution for the cell length at division is shown in Fig. 13c. This dis-
tribution is the Gamma with parameters α = 10.666 and β = 3.474. The fit’s BIC value 

Fig. 13  Violin plots and best-fitted distributions on single-cell life attributes for the whole population 
(N = 1695 cells). Cell division time variability. a Best-fit (Lognormal) distribution, b Violin plot; multiple modes 
are apparent in the distribution. Cell length at division variability. c Best-fit (Gamma) distribution, d violin plot 
suggests the existence of multiple modes. Cell growth rate k variability (N = 1577 cells). f Best-fit (Gamma) 
distribution and e violin plot. (See text for details)
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is 4507 and the ΔBIC is 30 and 160 compared to the Lognormal and Normal distribu-
tion, respectively. The corresponding violin plot is shown in Fig. 13d.

In Fig. 13e we provide the best distribution fitting the cell exponential elongation rate 
data, considering only the movie cells that successfully fitted the exponential growth 
model. Gamma is the best-fit distribution with α = 3.026, β = 4.520 and BIC value of 
1101. The ΔBIC value of the fit is 335 and 429 compared to the Lognormal and Normal 
distribution, respectively. These large differences indicate that the exponential elonga-
tion rate is likely to be Gamma distributed over the population. The corresponding vio-
lin plots are shown in Fig. 13d.

The high ΔBIC values of the best-fit distributions compared to the Normal distribu-
tion indicate that the three attributes mentioned above deviate significantly from a sym-
metric distribution. Moreover, the individual cells exhibit substantial variability in terms 
of their growth kinetics. Multimodality is apparent in the distribution of division time. 
These observations imply that separate subpopulation analyses are needed to under-
stand the sources of this heterogeneity better. Thus, the multimodality observed in the 
violin plots of population-level data (Fig. 13) can be attributed to generation- and(or) to 
colony-level differences for the three examined life attributes.

So, we proceed with analysis per subpopulation to unravel the heterogeneity sources 
below the population level. We chose the “dominant” best-fit distribution type over the 
groups (generations or colonies) to facilitate the visual comparison between their dis-
tributions, based on Jeffreys’ scale and ΔBIC computation between the model with the 
lowest BIC value (best fit) and the rest of the models considered. By convention, the Jef-
freys’ scale rates ΔBIC > 5 as “strong” and ΔBIC > 10 as “decisive” evidence against the 
model with the lowest BIC value. So, the most dominant distribution is considered the 
one which rates with higher frequency ΔBIC ≤ 5. Then, we fitted this distribution to all 
groups (generations or colonies).

The cell division time, cell division length, and growth rate per generation are visual-
ized in Fig. 14, respectively. The results for the cell division time, cell division length, and 
growth rate per colony are visualized in Additional file 1: Figure S5, respectively. Colo-
nies 7, 11, and 12, which failed to fit the Baranyi and Roberts model, have been excluded 
from the colony-level statistical analysis.

Fig. 14  Life attribute distributions per generation. a Lognormal distributions fitted on cell division time. b 
Gamma distributions fitted on cell division length. We observe a trend towards a lower mean and variance as 
the generation index increases. c Gamma distributions fitted on cell elongation rate (k). We observe a trend 
towards a specific mean value as the generation index increases. Color represents the different generations in 
the movie. See Additional file 1: Tables S5, S7, and S9 for the estimated parameters, respectively
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The parameters and ΔBIC values of each best-fit distribution along with the computed 
mean and standard deviation per generation (colony) are provided in Additional file 1: 
Tables S4 (S10), S6 (S12), S8 (S14) for the cell life attributes mentioned above. The mean 
is equal to μ for Normal, α/β for Gamma and e(µlog+σ

2
log/2) for the Lognormal distribu-

tion. Accordingly, the standard deviation is equal to σ for Normal, α/β2 for Gamma and 
(

e
σ
2
log − 1

)

· e
(2·µlog+σ

2
log) for the Lognormal distribution. The parameters of the finally 

chosen fitted distributions along with the BIC values of the corresponding model per 
generation (colony) are summarized in Additional file  1: Tables S5 (S11), S7 (S13), S9 
(S15) for the cell life attributes mentioned above, respectively.

The per generation fitted Lognormal distributions of the division time (Fig. 14a) follow 
a trend to lower mean and standard deviation with some fluctuations as the generation 
index increases. Moreover, there is a clear trend towards a lower mean and standard 
deviation for both the cell division length and the growth rate in the per generation dis-
tributions (Fig. 14b, c) as the generation index increases. This is also confirmed by the 
data summarized in Additional file 1: Tables S6 and S8, respectively.

The per colony fitted distributions of the three life attributes can be grouped in the 
sense that some colonies have very similar distributions for each life attribute (see Addi-
tional file 1: Figure S5 and Tables S11, S13, and S15).

The dominance of the Gamma distribution in most cases hints to multimodality even 
at the subpopulations level. So, we proceed by examining the violin plots of the sub-
populations for the three cell life attributes (division time, division length, elongation 
rate) per generation (see Fig. 15). The same results per colony are provided in Additional 
file 1: Figure S6. In Fig. 15a and in Additional file 1: Figure S6a, we observe the cell divi-
sion time’s multimodal behavior at all levels of community organization. For the cell 

Fig. 15  Violin plots per generation. a Cell division time. b Cell division length. c Cell elongation rate (k). 
Color represents the different generations. We observe that multimodality becomes more apparent as the 
generation index increases
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division length (Fig. 15b and Additional file 1: Figure S6b) and the growth (elongation) 
rate (Fig. 15c and Additional file 1: Figure S6c), we observe multimodality emerging as 
generation index is increasing.

These results suggest that as time passes, cells are getting smaller, grow at a lower 
rate, and at the same time exhibit reduced heterogeneity. This behavior is expected at 
the population level, and per the Roberts and Baranyi model, the population tends to 
become more homogeneous as it enters the stationary phase (Fig. 11a). However, only 
this kind of subpopulation analysis facilitated by ViSCAR enables us to discover high 
heterogeneity among some colonies and initial generations of the same cell population.

This type of analysis, cutting across community organization levels, demands “deep”, 
yet accurate, image analysis of large bacterial communities, with thousands of cells, 
complemented, as here, with suitable analytics to explore the results using a combina-
tion of statistical and visualization methods.

Case study III: Synthetic single‑cell movie data set analysis

BaSCA’s capability to analyze single-cell movies (videos) and produce comprehensive 
representations of the bacterial community organization down to the individual cell 
instance level, when combined with ViSCAR’s analytics and visualization capabilities 
pave the road for creating realistic “digital replicas” for studying biological phenomena 
in silico in the presence of single-cell stochasticity. Their use allows us to transition from 
the physical world of time-lapse live-cell imaging experiments in the lab to the virtual 
world of big-data analytics and simulation based on stochasticity-aware individual-
based models [31].

We demonstrate here a digital twin prototype of a live-imaging experiment to study 
the effects of single-cell stochasticity on pathogens’ virulence. To that end, the following 
pipeline was implemented. We first estimated single-cell growth parameters for S. Typh-
imurium using a single-cell movie (dataset 2) that was image-analyzed using BaSCA 
and developed mathematical models describing bacterial growth at the single-cell level 
using ViSCAR. Then, we created a community-level simulation using the CellModel-
ler (see Methods), taking into account the single-cell growth parameters’ stochasticity. 
In particular, when a mother cell divides, its daughter cells inherit their cell length and 
elongation rate by drawing samples from the gamma distributions of their generation 
(see Fig. 15). This action allows us to generate in silico synthetic, yet realistic, bacterial 
growth datasets of a very large size. We can thus study community behavior at different 
scales and under different assumptions for the underlying microenvironment. We will 
demonstrate how VISCAR allowed us to examine the plethora of big-data produced by 
an in silico proliferating S. Typhimurium community and generate new insights, thus 
closing the systems biology’s loop.

Dataset 3 (Synthetic movie)

This very extensive single-cell movie consists of 400 frames acquired with 0.8 min. sam-
pling period. Its main objective is to illustrate the impact of growth parameters’ sto-
chasticity in genetic mechanisms of microbial cells, such as quorum sensing (QS) [76, 
77] and the Type Three Secretion System SP-1 (TTSS-1) [77–79] activation. The sin-
gle-cell movie depicts the simultaneous growth of eight (8) S. Typhimurium bacterial 
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populations, each emanating from a single progenitor cell, and was created using an 
extended version of the CellModeller [51] software tool. The synthetic single-cell movie 
gets overcrowded, with more than a million cell instances in total. Its 16,964 single-
cells have an average length of 2.325 μm and reach the 11th generation. In Additional 
file 1, we describe thoroughly the scenario of the synthetic movie. In Additional file 4, 
we provide the synthetic single-cell movie produced from the simulation. Cell surface is 
colored according to the InvF expression. The dataset needed to reproduce all results of 
this section is included in https://​gitlab.​com/​Manol​akosL​ab/​viscar.

Dataset exploration

We load the synthetic single-cell movie dataset 3 (see Methods) and create its FLT rep-
resentation, see Fig. 16. The distribution of cells to the 11 generations (initial single-cells 
are counted as the 0th generation) is provided in Additional file 1: Figure S7.

Deep forest of trees

As expected for such a complex synthetic movie, the FLT and FDT data structures are 
very deep and dense due to the dataset having 1,183,630 LT nodes (cell instances). In 
Fig. 16 we present the FLT, and in Additional file 1: Figure S8 the corresponding FDT 

Fig. 16  Virulence protein expression mapped on the FLT of the synthetic single-cell movie. Cell instances 
of the movie are mapped to nodes of the FLT and colored according to InvF (virulence marker) expression 
levels. Each tree level represents a frame of the single-cell movie (402 levels, 400 frames, and 0.8 min interval 
between two consecutive frames). The FLT is very dense and deep. The stochasticity in cell growth is reflected 
in the InvF protein expression patterns among different: (i) trees (colonies), (ii) branches of a tree (cells of a 
colony), and (iii) levels of the trees (time points, frames)

https://gitlab.com/ManolakosLab/viscar
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having 17,108 nodes (cell lives). A visual inspection of the FLT reveals the heterogene-
ity immediately in this microbial community. Specifically, in the FLT nodes’ color, we 
mapped the expression level of the virulence marker, protein InvF. As a cell expresses 
more highly InvF, it becomes progressively more red (see color bar). The variability in 
virulence protein’s expression reflects the inter- and intra-subpopulation stochasticity in 
cell growth (see Additional file 1: Figure S8). In Fig. 17, we zoom into two distinct cell 
lineages and plot their LTs. We can easily observe that heterogeneity exists among LTs, 
but also among subtrees of the same LT. In Fig. 17a, we observe that InvF’s expression is 
significantly higher in some subtrees than in others. On the other hand, in Fig. 17b, the 
InvF protein is expressed more uniformly across subtrees at lower levels than in Fig. 17a. 
Due to the stochasticity in cell growth parameters, the cell state heterogeneity leads to 
different virulence protein expression patterns.

Correlation between biophysical and expression cell attributes

ViSCAR enables users to correlate biophysical with expression attributes, e.g., division 
length with protein concentration at division time at different community organization 
levels.

For example, in Fig. 18, we present a scatterplot of protein InvF expression (at division) 
vs. the cell division length for the whole cell population in the movie. We can observe 
that InvF expression is highly anti-correlated with division length. The multimodality in 
division length and protein expression is evident in each attribute’s histogram, even at 
the population level. InvF distribution becomes multimodal as a highly TTSS-1 express-
ing subpopulation emerges from the whole population.

To explain better the observed multimodality, we must deep dive and examine each 
attribute’s distribution per cell generation. In Fig. 19, we see the violin plots for division 
length and InvF expression (at division), respectively, for every cell generation (color). 
We can observe that as the generation index increases (time passes), the division length 
decreases on average, as expected in typical microbial growth experiments. On the con-
trary, the virulence protein expression increases with the generation index. It is evident 
that the higher the generation index, the higher the variance of protein expression, even 
though this is not the case for the division length, which becomes smaller and more sta-
ble with time. At generations 9 and 10, we can clearly observe the distributions’ bimodal-
ity. Bimodality in protein expression is expected because the division length distribution 
is also bimodal, and protein expression follows the cell growth pattern. In this particular 
simulation (see Methods), as cells grow, they switch to their virulence phenotype asyn-
chronously, which results in the appearance of a bimodal distribution in cell generations 
9 and 10. At the beginning of this movie (first generations), no cells express InvF, while 
towards the end of the movie (last generations), most of the cells highly express InvF. 
In the middle part of the movie, the cell population is mixed due to stochasticity in cell 
growth, which is higher in this section.

Correlations of life attributes among pairs of cell relatives

In Fig.  20, we present scatterplots and correlation plots of division length between 
pairs of related cells of the same generation, namely siblings (having the same mother) 
or cousins (having the same grandmother) in the single-cell movie. Figure 20a, b show 
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Fig. 17  Virulence protein expression patterns in two different cell lineages of the synthetic single-cell movie 
(cell 3 and cell 7). Cell instances are colored according to a virulence protein’s expression (InvF). Notice the 
inter- and intra-cell lineage stochasticity in InvF’s expression. a In this cell lineage, InvF is highly expressed in 
some branches but not in others. b In this cell lineage, InvF is expressed stochastically, but the variance across 
the different cell lineages is lower. In both cases, the InvF expression increases with time (more cells switch to 
a virulent phenotype as time progresses)
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scatterplots for siblings and cousins, respectively; color denotes the generation index. 
In siblings (cousins) the index starts from 1 (2) because siblings (cousins) exist after 
the first (second) division of cells, respectively. For siblings, it is evident that as the 
generation index increases, division length decreases, while the population’s division 
length becomes more uniform. This pattern applies to cousin pairs too; however, the 
population is less uniform. In Fig. 20c we present the correlation coefficient of divi-
sion length between sibling pairs. It is evident that after the 5th generation, the corre-
lation of division length between siblings increases and finally reaches 0.9. The same 
applies to cousins (see Fig.  20d), even though the correlation coefficient does not 
reach the same levels. Additional file  1: Tables S16 and S17 provide the correlation 
coefficients of division length for each generation and the linear regression param-
eters for the siblings and cousins, respectively. Additional file 1: Tables S18 and S19 
provide the correlation coefficients of division time and elongation rate attributes.

In Additional file  1: Tables S16 and S17 we see that siblings are more correlated 
than cousins in terms of their cell division length since the estimated Pearson’s cor-
relation coefficients are decreasing in that order. The increasing R-squared values 
assessing the regression line’s goodness-of-fit also confirm this finding. Additionally, 
the regression line’s slope values are closer to 1 for siblings than for cousins. The same 

Fig. 18  Correlations of biophysical and expression cell life attributes. Scatter plot of cell division length 
vs. InvF species at division time with regression line (black) y = − 0.991 x + 6.196. InvF expression is 
anti-correlated with division length (r = − 0.849). Color denotes the density of the (x, y) values (80 bins used 
for each attribute). Gray lines represent the diagonal of each plot area (bounding box containing all data 
points). Notice the bimodal population of expressing InvF
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trends are observed for the cell division time (Additional file 1: Tables S18 and S19). 
These observations suggest that the closer the family relationship between pairs of 
cells of the same generation, the more “synchronized” they seem to be in their divi-
sion attributes (time and length).

It seems that siblings become more correlated as the generation index increases in 
terms of their division time and length. The increase in correlation means that as the 
bacterial community grows, its local epigenetic “memory” gets better and better. Sib-
lings appear to become more synchronized in their division (time and length) charac-
teristics as the generation index increases [80].

It is worth mentioning that when we applied the same analysis to dataset 2, cor-
responding to a complex single-cell movie of S. Typhimurium, we obtained similar 
results. Specifically, we observed the same trends in correlations per generation for 
sibling and cousin pairs in cell division length (Additional file 1: Tables S20 and S21) 
and cell division time (Additional file 1: Tables S22 and S23).

Fig. 19  Violin plots of cell life attribute distributions per generation. a Cell division length. b InvF expression 
at division time. The color represents the generation index. InvF expression increases on average with the 
generation index, while division length decreases. InvF expression variance increases with the generation 
index, while division length variance decreases. Notice that in generations 9 and 10, distributions become 
clearly bimodal (see text for details)
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In https://​gitlab.​com/​Manol​akosL​ab/​viscar, we provide the notebooks to reproduce 
all the results presented in “Results” section.

Conclusions
We have developed methods and their implementation in the Visualization and Sin-
gle-Cell Analytics (ViSCAR) R package [81] enabling the transition from the physical 
world of live-cell imaging experiments (bacterial single-cell movie videos) to the digi-
tal world of big data analytics. In that world, ViSCAR can be used to reveal and char-
acterize the stochasticity of single-cell features (morphological, spatial, expression, 
etc.) allowing researchers to investigate how single-cell heterogeneity may contribute 
to emerging cellular phenotypes at different scales. These may range from the entire 
cell population in the single-cell movie, with many interacting colonies and thousands 
of cells, to flexibly selected cell subpopulations of interest, such as individual micro-
colonies, cell generations, cell relatives in consecutive generations, etc. It is worth 
mentioning, that ViSCAR can be used to perform analytics on communities of other 
cell types rather than bacterial cells as long as they can be organized on a lineage tree 
based on some criterion. Except for some ViSCAR capabilities which are specific to 
bacteria (e.g., fitting Baranyi and Roberts model), the rest of the data analysis and 
visualization functions are sufficiently general to apply to other cell types.

Fig. 20  Correlation of division length among pairs of a sibling and b cousin cells. Color denotes cell 
generation. Black is the regression (trend) line. Gray is the diagonal of the plot area (bounding box containing 
all data points). Pearson correlation coefficient of c sibling pairs, and d cousin pairs per generation. After the 
5th generation, correlation increases with the generation index for both relation types. See Additional file 1: 
Tables S16 and S17 for parameter details

https://gitlab.com/ManolakosLab/viscar
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The presented case studies demonstrated different aspects of the data analyses and 
how ViSCAR functionalities empower research towards discovering trends and epige-
netic effects among relative cells in different cell generations. The R package can be used 
to identify best models and estimate their parameters characterizing stochastic phenom-
ena (e.g., cell growth, cell division). We can then use the inferred statistical models to 
draw samples for parameters when running a multi-scale simulation of individual-based 
models accounting for single-cell stochasticity in the simulation.

There is currently no other R package aiming towards revealing, visualizing, and char-
acterizing single-cell stochasticity in bacterial single-cell movie data sets to the best of 
our knowledge.

Future work includes an extension to allow the combined analysis of groups of data-
sets using cloud computing. This will allow creating a “jungle of FLTs” representation 
of the big data extracted by the image analysis of a collection of single-cell movies cor-
responding to different live-imaging experiments conducted e.g. for the same species, or 
under similar environmental/stress conditions.

A unique functionality of ViSCAR is that it can analyze synthetic datasets with many 
cell generations produced by individual-based modeling and simulation tools, such as 
the CellModeller [51]. This allows studying in silico behavioral trends of interacting cell 
populations engineered using different genetic circuits. Such capabilities make ViSCAR 
appealing also to the synthetic biology community in designing micro-colonies targeting 
specific biomedical and biotechnological applications.

Finally, by capturing and representing bacterial single-cell movies as Forests of Lineage 
Trees, in a sense we make the cell moves “eternal.” That means we may archive the cor-
responding videos since their single-cell multidimensional data representation is fully 
captured digitally and characterized mathematically. This is a first step towards the gen-
eration of “digital twins” for studying a biological phenomenon of interest (e.g., Salmo-
nella persister-cells emergence) using datasets contributed by different labs, which can 
be shared and easily data-mined by interested researchers over the internet. Such shared 
digital resources to study cell community dynamics do not exist today because the nec-
essary tools, such as ViSCAR, to create appropriate representations and then data-mine 
them are currently lacking. We believe that their emergence will accelerate and democ-
ratize (crowdsource) science not for the benefit of not only microbial sciences, but also 
food sciences, systems microbiology, synthetic biology, etc., bringing closer life and 
computational scientists. We have learned from the ongoing pandemic how important 
this is for humanity.

Availability and requirements

Project name: ViSCAR project.
Project home page: https://​gitlab.​com/​Manol​akosL​ab/​viscar
Operating system(s): Platform independent.
Programming language: R
Other requirements: R 3.5.1 or higher.
License: GPL-2.
Any restrictions to use by non-academics: license needed.
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