
SamQL: a structured query language
and filtering tool for the SAM/BAM file format
Christopher T. Lee and Manolis Maragkakis*   

Background
The advent of high-throughput sequencing has created an unprecedented availability of
genomic data, highlighting the need for efficient storage and processing of large data-
sets. To address these requirements the Sequence Alignment Map (SAM) and its binary
equivalent (BAM) file formats were developed [1]. These file formats together with the
later developed CRAM [2], have been adopted by many bioinformatics software, includ-
ing almost all alignment programs [3–6]. Each record in the SAM format has several
descriptive fields including alignment coordinates, sequence information, sequence and
mapping quality and others.

Abstract 

Background:  The Sequence Alignment/Map Format Specification (SAM) is one of the
most widely adopted file formats in bioinformatics and many researchers use it daily.
Several tools, including most high-throughput sequencing read aligners, use it as their
primary output and many more tools have been developed to process it. However,
despite its flexibility, SAM encoded files can often be difficult to query and understand
even for experienced bioinformaticians. As genomic data are rapidly growing, struc-
tured, and efficient queries on data that are encoded in SAM/BAM files are becoming
increasingly important. Existing tools are very limited in their query capabilities or are
not efficient. Critically, new tools that address these shortcomings, should not be able
to support existing large datasets but should also do so without requiring massive data
transformations and file infrastructure reorganizations.

Results:  Here we introduce SamQL, an SQL-like query language for the SAM format
with intuitive syntax that supports complex and efficient queries on top of SAM/BAM
files and that can replace commonly used Bash one-liners employed by many bioin-
formaticians. SamQL has high expressive power with no upper limit on query size and
when parallelized, outperforms other substantially less expressive software.

Conclusions:  SamQL is a complete query language that we envision as a step to a
structured database engine for genomics. SamQL is written in Go, and is freely available
as standalone program and as an open-source library under an MIT license, https://​
github.​com/​marag​kakis​lab/​samql/.

Keywords:  Genomics, SQL, SAM, BAM, Big data

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474
https://doi.org/10.1186/s12859-021-04390-3

*Correspondence:
emmanouil.maragkakis@nih.
gov
Laboratory of Genetics
and Genomics, National
Institute on Aging, Intramural
Research Program, National
Institutes of Health,
Baltimore, MD 21224, USA

http://orcid.org/0000-0002-3158-1763
https://github.com/maragkakislab/samql/
https://github.com/maragkakislab/samql/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04390-3&domain=pdf

Page 2 of 8Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474

Along with these file formats, SAMtools and other specialized programs [7–10] were
developed to enable processing and access to the encoded data. In addition, special-
ized data formats such as ArrowSAM [11] have started to be introduced, focusing on
columnar data representations of SAM data that can allow faster data retrieval, some-
times 15 × or 2.4 × greater than existing implementations of Picard [9] and Sambamba
[8]. Despite these developments, complex queries on genomics data remain a bottleneck
and are substantially difficult to perform due to the lack of a uniform query language.
The web is flooded with related questions from investigators that usually end up using
custom Bash commands. Additionally, while SAMtools and other programs have a wide
variety of functions and options, they remain unintuitive and require the user to often
refer to the documentation leading to coding time increase and possibly inefficient or,
more importantly, error-prone software.

These limitations are now becoming even more apparent due to the rapid increase in
the size of genomic data [12] that is introducing new challenges regarding access, secu-
rity and data management [13]. Existing tools are unable to address these challenges due
to performance or query capabilities shortcomings. To address these limitations, a new
structured database engine and a supporting expressive query language that can allow
organized genomic data access is required.

Here we introduce SamQL, a command line tool and library, that allows for SQL-like
queries on top of the SAM/BAM format. SamQL has intuitive syntax allowing com-
plex queries and takes advantage of parallelizable handling of BAM files. SamQL works
on top of SAM/BAM formats to avoid data transformations to other formats and thus
simplifies adoption. However, the engine is extendable to support future, more perfor-
mant formats such as ArrowSAM as they are adopted by the community. SamQL aims
to eventually enable the development of a genomics database on top of SAM/BAM or
other more performant data structures, enabling complex queries for genomic datasets.

Implementation
SamQL aims to provide a user-friendly syntax with high expressive power to support a
parallelizable, database for genomics. SamQL was developed in the Go programming
language. Internally, SamQL uses two robust and flexible bioinformatics libraries biogo
[14] and hts [15] that provide a clean interface to the common bioinformatics file for-
mats. SamQL comprises a complete lexer that performs lexical analysis and a parser, that
together analyze the syntax and process the provided query.

We designed SamQL queries to look similar to SQL queries that are widely adopted
in computer science, to make the system intuitive to use and to substantially lower the
initial learning curve. To support SAM-specific data extraction, SamQL recognizes SAM
fields by their corresponding names defined in the SAM specification (i.e. QNAME,
FLAG, RNAME, POS, MAPQ, CIGAR, RNEXT, PNEXT, TLEN, SEQ, QUAL) and
assigns them as language keywords. These keywords are dynamically replaced by the
actual concrete values upon code execution. Additional keywords have been added to
support the SAM encoded flag field significantly simplifying access to this information
(e.g. PAIRED, SECONDARY, etc.). The SamQL model is flexible and additional keywords
can be added to support future requirements. For example, the LENGTH keyword has
been added to correspond to the alignment length and is automatically evaluated upon

Page 3 of 8Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474 	

execution. Figure 1A shows an example of the SamQL syntax and highlights the flexibil-
ity of the query system. Importantly, any query in SamQL is evaluated once at the begin-
ning of the search, making the model lightweight and reducing computation time. To
support this, SamQL builds an abstract syntax tree (AST) corresponding to the query.

Fig. 1  SamQL offers an intuitive and structured query language for SAM/BAM files. A Example of a complex
SamQL query. SamQL can support searching on any fields of interest, including optional fields and flags,
with intuitive syntax similar to standard SQL. B Schematic of the execution algorithm and the abstract syntax
tree constructed from the query. A FILTER function returns a single boolean value that encapsulates all filters
below. The whole tree is progressively replaced by a single FILTER function that is used for record filtering

Page 4 of 8Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474

The AST is then parsed, depth-first, to progressively build a function closure that encap-
sulates the whole query (Fig. 1B). The closure contains the entire filtering criteria, can
accept a SAM record for filtering, and returns a boolean value indicating whether the
record passes all criteria.

Results
Our primary aim building SamQL was flexibility and high expressivity for complex que-
ries, similar to classic SQL. Table 1 compares the expressivity of SamQL for a relatively
complex query against other widely used tools such as SAMtools, Sambamba, and naive
Bash. SamQL maintains consistency on complex queries involving coordinates. How-
ever, Sambamba and samtools separate the range query from the main filtering criteria.
This leads to less consistent syntax as highlighted in the example in Table 1.

SamQL is a complete query language with a lexer and parser specifically designed for
genomic data in the SAM/BAM format. This enables SamQL to output more informa-
tive messages for potential syntax errors. Table 2 shows a specific example for a sim-
ple syntax error involving a misplaced closing parenthesis. SamQL returns information
about the specific type of the error and the position at which the error occurred. In con-
trast, neither samtools nor sambamba provide such information.

Besides expressivity we also wished to test the computational performance of SamQL.
We compared SamQL against other widely used tools; SAMtools, Sambamba, BamTools
and naive Bash, essentially approaching daily used workflows by bioinformaticians. We
tested on three different queries, each one with varying levels of syntax complexity and
computational requirements. We repeated each query 10 times on varying input sizes
to validate the variation and accuracy of our measurements. All comparisons were run
on an Intel Xeon, 48 core, 384 Gb memory compute server. We used a publicly available

Table 1  Comparison of syntax for a reasonably complex query to keep reads on chromosome 2,
mapping at position greater than 1,000,000, on the reverse strand, with mapping quality higher than
30

Sambamba has similar expressivity to SamQL but like samtools, region queries are separated from the main filters, resulting
in less intuitive syntax. We have excluded bamtools because it requires a JSON file for advanced queries

Tool Syntax

samql RNAME = "chr2" AND POS > 1000000 AND REVERSE AND MAPQ > 30

samtools chr2:1000000 -f 16 -q 30

sambamba ’reverse_strand and mapping_quality > 30’ chr2:1000000

bash … | awk -F ’\t’ ’{if ($3 =  = "chr2" && $4 > 1000000 && and($2,16) && $5 > 30) print}’

Table 2  Comparison of the error messages of the different tools for a syntax error involving a
misplaced parenthesis

Tool Syntax Error message

samql (POS > 1 AND) (RNAME = "chr1") Filter creation from where clause failed: found),
expected identifier, string, number, bool at line 1,
char 12

samtools (pos > 1 &) (rname =  = "chr1") Couldn’t process filter expression

sambamba (position > 1 and) (ref_id =  = 0) Parsing error near line 1: expected prefix operator

Page 5 of 8Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474 	

BAM file with 3,363,576 records. To evaluate scalability in terms of input size, we ran-
domly sampled the input BAM file into sizes of 10% increments and performed meas-
urements on all subsets individually. To evaluate the query performance and decouple it
from Input/Output (IO) we measured the execution time both when printing to an out-
put file but also just counting the filtered reads. We also tested SamQL by limiting it to 2
execution threads or leaving it unbound to automatically scale to the available resources.

As a first test, we decided to compare performance on filtering against a SAM tag that
uses string matching and is supported by all methods, CC:Z. Filtering on optional tags
forces all methods to read the entire SAM record thus decoupling IO optimizations that
depend on skipping optional SAM fields. We find that SamQL performs on par with the
other methods even when bound to use just two threads, one for IO and one for com-
pute (Fig. 2A). As a next test we wished to filter on the NH:i tag that involves numerical
comparisons. This is an intuitive and straightforward query change in SamQL (Fig. 2B,
top) and Sambamba. However, for SAMtools we had to use the newly added -e option
instead of the -d to support numeric comparisons. As expected, the naive Bash imple-
mentation becomes substantially more complex also raising the possibility for coding
mistakes. Again, we find that SamQL execution time is on par or faster than other meth-
ods and that execution time again increases linearly with time (Fig. 2B). Overall, we find
that most methods perform similarly, except BamTools that is substantially slower than
others. We also notice that SamQL multithreading does speed up execution time but

Fig. 2  SamQL performance. A–C From left to right, the plots correspond to runtime for printing and
counting SAM entries on increasing subsets of the input data for different queries. The used queries are: A
string query on tag “CC:Z” (A); a numeric query on tag NH:i (B); A range query (C). The corresponding SamQL
query is shown at the top. D Parallelization performance for BAM output for a range query (left) and the
NH:i tag (right) on a large BAM dataset of approximately 900 million reads. For NH:i only 10% of the file was
processed to keep the execution times reasonable. SamQL is inherently concurrent and cannot be limited to
less than 2 threads which is why performance is equivalent at 1 and 2 threads. Colors correspond to SamQL
using all threads (dark blue), SamQL bound to 2 cores (green), SAMtools (light green), naive Bash/Awk (cyan),
BamTools (yellow) and Sambamba (red). The raw data for the plots can be found in Additional file 1: Table S1.

Page 6 of 8Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474

only modestly. Importantly, we find that execution time increases linearly with the input
size which is a key feature that allows SamQL to be used for large datasets.

Next, we evaluated the SamQL performance for a reasonably complex range query.
Range queries on genomic or transcriptomic coordinates are among the most used
query types in bioinformatics analyses. Therefore, BAM files are usually indexed to
achieve fast retrieval of alignments that overlap a given region [16]. SamQL can execute
range queries on indexed and not indexed BAM or SAM files, albeit much faster when
indexing exists. Our data show that SamQL performs on par with the other software and
orders of magnitude faster than a Bash approach (Fig. 2C).

The file that we used for evaluating performance although it serves for micro-bench-
marks and we have seen linear scalability with size, it does not necessarily simulate real-
world usage that might involve tens or hundreds million reads. Therefore, we performed
similar benchmarks for a publicly available file of much larger size, approximately 900
million reads. Our results again show that range queries for all tools are executed much
faster than naive Bash (Additional file 1: Fig. S1A) and comparable with each other. To
gain more insight as to the scalability of the tools to very large datasets and to meas-
ure parallelization performance more accurately, we used this larger dataset to run all
tools at different parallelization settings, progressively increasing the thread usage. We
scaled the tools from 1 to 32 threads to monitor how efficiently the tools use the avail-
able resources. We tested a range query on the full file and the filter on the NM:i tag on a
smaller, 10%, subset of the file due to very high runtimes for all tools. Initially we focused
on SAM output. Interestingly we found that SamQL does not scale as well as the other
tools reaching a performance plateau at approximately 4 threads (Additional file 1: Fig.
S1B). However, we find that when BAM output is requested the scalability of the tool
improves similarly to SAMtools and Sambamba. This indicates that BAM parallelization
at the output provides substantial benefits. As expected, we find that the runtime of all
tools reduces but with diminishing returns at they get close to 32 threads. Overall, all our
tests indicate that SamQL offers high expressivity for complex queries while also achiev-
ing high performance and being able to utilize and take advantage of parallel computing.

Conclusions
Compared to existing tools SamQL offers intuitive and simpler syntax and is closer to
traditional SQL that most scientists are familiar with. It can therefore be easier to adopt
and use by bioinformaticians and non-bioinformaticians. SamQL can replace most
one-liners used by bioinformaticians, thus helping to reduce errors. Also, SamQL can
support complex queries that are straightforward to express and are orders of magni-
tude faster than naive Bash implementations when range queries are involved. Finally,
it is the only one from the tested tools, that can seamlessly query more than one files.
While SamQL can utilize and benefit from multicore systems, we find that performance
improvement plateaus at approximately 4 threads when SAM output is requested,
indicating that there is room for more optimization. Interestingly, no such plateau is
observed for BAM output which benefits from parallelization of the output layer. Poten-
tial future optimizations can include parallelization of subexpressions similar to other
database engines or extending the underlying data storage to a columnar format such

Page 7 of 8Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474 	

as ArrowSAM [11] which has been shown to increase processing speed substantially.
The future goal for SamQL would be to act as a query language for the development of
a complete, genomic database, that can be adopted the same way that SQL was adopted
for relational databases in computer science. We envision a database running on top
of existing SAM/BAM files where investigators would be able to easily search through
every file source for reads of interest.

Abbreviations
AST: Abstract syntax tree; BAM: Binary SAM; IO: Input/output; SAM: Sequence alignment/map format specification; SQL:
Structured query language.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04390-3.

Additional file 1. Figure S1. (A) From left to right, the plots correspond to runtime for printing and counting SAM
entries for a range query shown at the top on increasing subsets of a large input dataset of approximately 900 mil-
lion reads. (B) Parallelization performance for SAM output for a range query on the same file as in (A)

Additional file 2. Table S1. Raw runtime data of query methods used to create Fig. 2.

Acknowledgements
Not applicable.

Authors’ contributions
MM conceived the study. CTL and MM developed the code, performed the analysis, and wrote the manuscript. All
authors read and approved the final manuscript.

Funding
Open Access funding provided by the National Institutes of Health (NIH). This research was supported by the Intramural
Research Program of the National Institute on Aging, National Institutes of Health (Z01AG000696). The funding body did
not play any roles in study design, handling of data, or writing this manuscript.

Availability of data and materials
The datasets analyzed during the current study are available in http://​hgdow​nload.​cse.​ucsc.​edu/​golde​npath/​hg19/​
encod​eDCC/​wgEnc​odeCa​ltech​RnaSeq/​wgEnc​odeCa​ltech​RnaSe​qGm12​878R1​x75dS​plice​sRep1​V2.​bam and ftp://​ftp-​
trace.​ncbi.​nlm.​nih.​gov/​Refer​enceS​amples/​giab/​data/​Ashke​nazim​Trio/​HG002_​NA243​85_​son/​NIST_​Illum​ina_​2x250​bps/​
novoa​lign_​bams/​HG002.​GRCh38.​2x250.​bam.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 March 2021 Accepted: 22 September 2021

References
	1.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools.

Bioinformatics. 2009;25:2078–9.
	2.	 Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high throughput DNA sequencing data using

reference-based compression. Genome Res. 2011;21:734–40.
	3.	 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-

matics. 2013;29:15–21.
	4.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics.

2009;25:1754–60.
	5.	 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat Biotechnol. 2019;37:907–15.

https://doi.org/10.1186/s12859-021-04390-3
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeCaltechRnaSeq/wgEncodeCaltechRnaSeqGm12878R1x75dSplicesRep1V2.bam
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeCaltechRnaSeq/wgEncodeCaltechRnaSeqGm12878R1x75dSplicesRep1V2.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/novoalign_bams/HG002.GRCh38.2x250.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/novoalign_bams/HG002.GRCh38.2x250.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/novoalign_bams/HG002.GRCh38.2x250.bam

Page 8 of 8Lee and Maragkakis ﻿BMC Bioinformatics (2021) 22:474

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	6.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​bty191.

	7.	 Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. BamTools: a C++ API and toolkit for analyzing and
managing BAM files. Bioinformatics. 2011;27:1691–2.

	8.	 Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformat-
ics. 2015;31:2032–4.

	9.	 Picard toolkit. Broad Institute; 2019. https://​github.​com/​broad​insti​tute/​picard. Accessed 24 Jul 2020.
	10.	 Herzeel C, Costanza P, Decap D, Fostier J, Reumers J. elPrep: high-performance preparation of sequence alignment/

map files for variant calling. PLoS ONE. 2015;10:e0132868.
	11.	 Ahmad T, Ahmed N, Peltenburg J, Al-Ars Z. ArrowSAM: In-memory genomics data processing using Apache arrow.

In: 2020 3rd international conference on computer applications & information security (ICCAIS). IEEE; 2020. https://​
doi.​org/​10.​1109/​iccai​s48893.​2020.​90967​25.

	12.	 Wong K-C. Big data challenges in genome informatics. Biophys Rev. 2019;11:51–4.
	13.	 Navarro FCP, Mohsen H, Yan C, Li S, Gu M, Meyerson W, et al. Genomics and data science: an application within an

umbrella. Genome Biol. 2019;20:109.
	14.	 Daniel Kortschak R, Bleecher Snyder J, Maragkakis M, L Adelson D. bíogo: a simple high-performance bioinformatics

toolkit for the Go language. JOSS. 2017;2:167.
	15.	 Daniel Kortschak R, S Pedersen B, L Adelson D. bíogo/hts: high throughput sequence handling for the Go language.

JOSS. 2017;2:168.
	16.	 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC.

Genome Res. 2002;12:996–1006.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://github.com/broadinstitute/picard
https://doi.org/10.1109/iccais48893.2020.9096725
https://doi.org/10.1109/iccais48893.2020.9096725

	SamQL: a structured query language and filtering tool for the SAMBAM file format
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Results
	Conclusions
	Acknowledgements
	References

