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Abstract 

Background:  Multiple studies have shown the utility of transcriptome-wide RNA-seq 
profiles as features for machine learning-based prediction of response to chemother-
apy in cancer. While tumor transcriptome profiles are publicly available for thousands 
of tumors for many cancer types, a relatively modest number of tumor profiles are clini-
cally annotated for response to chemotherapy. The paucity of labeled examples and 
the high dimension of the feature data limit performance for predicting therapeutic 
response using fully-supervised classification methods. Recently, multiple studies have 
established the utility of a deep neural network approach, the variational autoencoder 
(VAE), for generating meaningful latent features from original data. Here, we report the 
first study of a semi-supervised approach using VAE-encoded tumor transcriptome 
features and regularized gradient boosted decision trees (XGBoost) to predict chemo-
therapy drug response for five cancer types: colon, pancreatic, bladder, breast, and 
sarcoma.

Results:  We found: (1) VAE-encoding of the tumor transcriptome preserves the 
cancer type identity of the tumor, suggesting preservation of biologically relevant 
information; and (2) as a feature-set for supervised classification to predict response-to-
chemotherapy, the unsupervised VAE encoding of the tumor’s gene expression profile 
leads to better area under the receiver operating characteristic curve and area under 
the precision-recall curve classification performance than the original gene expression 
profile or the PCA principal components or the ICA components of the gene expres-
sion profile, in four out of five cancer types that we tested.

Conclusions:  Given high-dimensional “omics” data, the VAE is a powerful tool for 
obtaining a nonlinear low-dimensional embedding; it yields features that retain 
biological patterns that distinguish between different types of cancer and that enable 
more accurate tumor transcriptome-based prediction of response to chemotherapy 
than would be possible using the original data or their principal components.

Keywords:  Variational auto-encoder, Transcriptome, TCGA​, Chemotherapy drug 
response classification, Cancer, Colon adenocarcinomas, Pancreatic adenocarcinoma, 
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Introduction
Background

Although chemotherapy is a mainstay of treatment for aggressive cancers, many 
agents have serious side effects [1]. Whether or not chemotherapy will provide a net 
benefit to a patient depends in large part on whether the malignancy responds to 
the treatment. Chemotherapy is often administered in cycles [2], leading to multiple 
opportunities where treatment appropriateness may be (re-)assessed [3]. Currently, 
the medical cost-benefit of chemotherapy (versus a non-pharmaceutical approach) is 
assessed in light of patient health status, expected therapeutic tolerance, and tumor 
pathological classification [4, 5]. For many cancer types, there is a broad spectrum 
of cases where the decision of whether or not to undergo chemotherapy is difficult 
[6–8]. The development of a quantitative model that could predict—based on a spe-
cific tumor’s molecular profile—whether or not the tumor will respond to chemother-
apy would have significant clinical utility. Moreover, an advance in machine-learning 
methods for the response-to-chemotherapy prediction problem [9, 10] would have 
potential benefits for other prediction problems in medicine.

Tumorigenesis is driven by alterations in the somatic genome and epigenome in 
cancer cells [11]; however, the somatic genetic or epigenetic determinants of response 
to chemotherapy also affect gene expression. Studies of various cancer types have 
demonstrated that tumor gene expression biomarkers correlate with the probability 
that a tumor will respond to chemotherapy, for example, a five-protein signature in 
breast cancer [12], a 13-gene signature in rectal cancer [13, 14], a 63-gene signature 
in liver cancer [15], and a support vector machine (SVM)-based model to predict 
survival time in breast cancer based on a 19-gene signature [16]. The findings from 
such “omics” studies suggest that RNA  sequencing (RNA-seq)-based transcriptome 
measurements of tumor samples labeled for clinical response can be used to train 
machine-learning classifiers for predicting response to chemotherapy. However, the 
accuracy of models that can be learned by fully supervised approaches is limited by 
the small number of available clinically labeled training cases, given that tumor tran-
scriptome data are high-variance and high-dimensional.

For typical cancers, most available tumor transcriptomes are not labeled for chem-
otherapeutic response; the ratio of such unlabeled to labeled tumor datasets in the 
Cancer Genome Atlas (TCGA; [17]) is in the range of 10–20, depending on the cancer 
type. Unlabeled data are a substantial resource that could—in the context of a semi-
supervised approach—reveal multivariate patterns that could ultimately improve pre-
dictive accuracy. Semi-supervised approaches that fuse unsupervised data reduction 
methods for low-dimensional embedding with supervised methods (such as deci-
sion trees) for prediction have proved beneficial in problems where large unlabeled 
datasets are available; for example, a principal components analysis (PCA)-XGBoost 
method has been previously used in finance [18], and an independent component 
analysis (ICA)-based method has been used to classify electroencephalographic sig-
nals [19].
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Previous applications of VAE in cancer

Multiple studies [20–23] have demonstrated the power of the variational autoen-
coder (VAE; [24, 25])—an unsupervised nonlinear data embedding model in which 
two deep neural networks are oppositely connected through a low-dimensional, 
probabilistic latent space—for finding useful features in high-dimensional data. In 
the context of cancer, VAEs have been variously used to (1) model gene expression 
and capture biological features using the TCGA Pan-cancer Project RNA-seq dataset 
[26, 27]; (2) find encodings that can be used to predict gene inactivation [28]; and (3) 
obtain an encoding for predicting chemotherapy resistance [29]. Way and Greene [28] 
explored VAE architectures for predicting gene inactivation in a pan-cancer dataset 
and reported biological insights obtained from the latent-space embeddings. George 
and Lio  [29] used a VAE-based, unsupervised approach to encode tumor transcrip-
tomes to obtain latent-space features associated with chemotherapy response. Dincer 
et al.  [30] used a semi-supervised, VAE-lasso approach to predict drug sensitivity of 
cancer cells in vitro. In contrast to previous efforts to model cancer cell line drug sen-
sitivity in vitro [30–33], in this work we focused on predicting therapeutic response 
in vivo, across five different cancer types (colon adenocarcinoma, pancreatic adeno-
carcinoma, bladder carcinoma, sarcoma, and breast invasive carcinoma). Specifically, 
we tested the hypothesis that a tumor transcriptome VAE would be useful for predict-
ing response-to-chemotherapy in vivo, across multiple cancer types.

Research objectives

We first asked to what extent VAE-encoding tumor transcriptomes would preserve 
characteristics that are associated with distinct cancer types. To that end, we trained a 
pan-cancer transcriptome VAE and used it to encode over 11k tumor transcriptomes 
from 33 cancer types. By comparing two-dimensional embeddings of the original tumor 
transcriptomes with embeddings of the VAE-encoded transcriptomes, we found (“VAE 
encoding preserves cancer type features” section) that the VAE preserves the clustering 
of tumors of the same cancer type. Next, we selected five cancer types based on suffi-
ciency of clinical data and trained six VAE models (three architectures and two different 
loss functions) to encode clinically-unlabeled transcriptomes of the five cancer types. 
Using TCGA clinical data, we assigned a label “responded” or “progressive” to tumors 
where the response to chemotherapy information was available (“Obtaining a labeled 
tumor transcriptome dataset” section). We then used the VAE-encoded transcriptomes 
for the clinically-labeled tumors as feature data for predicting response to chemotherapy 
using gradient boosted decision trees (XGBoost; [34]), which we found to be superior to 
kernel SVM. Using this “semi-supervised VAE-XGBoost” approach, we investigated (“L1 
loss is better than L2 loss and cross-entropy loss for this application” section) which loss 
function type is best for this VAE application.

In the main part of this work, we focused (“Chemotherapy response classification 
results” section) on the question of whether and to what extent the semi-supervised 
VAE-XGBoost (our new method, Fig.  1) approach would improve performance for 
transcriptome-based prediction of response to chemotherapy, versus a fully-super-
vised approach or versus alternative semi-supervised approaches using PCA or ICA 
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transcriptome encodings. We further investigated the relative importance of these 
approaches through the lens of XGBoost feature importance (“PCA & VAE feature 
importance scores, for COAD” section). We carried out these analyses using a com-
prehensive, five-cancer set of labeled tumor transcriptomes and obtained unbiased 
classification performance measurements using cross-validation.

Results
VAE encoding preserves cancer type features

Given reports [35, 36] that unsupervised embeddings can be used to visualize 
the grouping of cancer types based on high-dimensional molecular tumor data, 
using unsupervised methods, we investigated the extent to which VAE encod-
ing of tumor transcriptomes preserves data-space features that determine can-
cer type-specific groupings. In order to do so, we obtained RNA-seq transcriptome 
data from the TCGA data portal for 11,057  tumors labeled for 33  different cancer 
types (Figs.  2,  Additional file  1: S2,  S3). As a baseline visualization, we generated a 
two-dimensional embedding of the 11,057 tumor samples by applying t-distributed 
stochastic neighbor embedding (t-SNE) to the expression levels of the the top-20% 
highest-variance genes (threshold selected as described in “Gene expression data” 
section), yielding 33 clusters (Fig. 2A). Next, we trained a VAE (“Variational autoen-
coder (VAE), VAE model architectures” sections) with a deep architecture (VAE-1) to 
encode the expression levels of the highest-variance genes in each of 11,057 tumors 
into an equivalent number of points in a 50-dimensional latent space. An unsuper-
vised t-SNE visualization (Fig. 2B) of the VAE-encoded tumor transcriptome data was 
remarkably similar in structure to the t-SNE visualization of the 13,584-dimensional 
original dataset (Additional file 1: Fig. S1). Additionally, we compared the clustering 
of the original transcriptome data with VAE-reconstructed transcriptome data by 
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Fig. 1  Overview of the VAE-XGBoost method that we used for predicting tumor response to chemotherapy 
in vivo for five different cancer types. For each tumor t, the encoder’s input vector x t contains the levels of 
the top 20% of genes by intertumoral gene expression variance. Each network has multiple fully connected 
dense layers (“VAE model architectures” section). The encoder outputs two vectors of configurable latent 
variable dimension h ≪ m : a vector of means µ and a vector of standard deviations σ that parameterize 
the multivariate normal latent-space vector Z|x t (“Variational autoencoder (VAE)” section). The sampled 
encoding Z|x t = zt is passed to the decoding neural network (decoder), whose architecture is identical to 
(with inversion) that of the encoder network. The sampled latent-space vector zt is passed to XGBoost for 
supervised classification to predict response to chemotherapy (training label y , prediction ỹ)
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Fig. 2  Two-dimensional embedding of the 11,057 tumor transcriptomes based on t-SNE. Each mark 
represents a transcriptome, with color representing the cancer type. A Original gene expression data of the 
top-20% highest-variance genes. B VAE compressed gene expression data. Red rectangles denote the five 
cancer types selected for chemotherapy response classification
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Uniform manifold approximation and projection (UMAP), and found similar results 
(Additional file 1: Figs. S2, S3). These analyses indicated that the VAE encoding pre-
serves data-space features that distinguish individual cancer types.

Obtaining a labeled tumor transcriptome dataset

Having demonstrated that the VAE can efficiently encode tumor transcriptomes while 
preserving features that distinguish different cancer types, and to set the stage for 
implementing a semi-supervised approach for predicting response to chemotherapy, 
we obtained a five-cancer-type tumor transcriptome dataset with a significant subset 
of the tumors labeled as to whether or not the patient responded to chemotherapy, as 
described below. We obtained transcriptomes of 2,606 tumors across five cancer types 
[colon adenocarcinoma (COAD), pancreatic adenocarcinoma (PAAD), bladder carci-
noma (BLCA), sarcoma (SARC), and breast invasive carcinoma (BRCA); Table 1]. We 
selected the five cancer types based on availability of a sufficient amount of labeled data 
in TCGA and for 806 of the tumor transcriptomes, we generated binary labels corre-
sponding to “responded” or “progressive”.

The ratio of responding tumors to progressive disease tumors (i.e., the class balance 
ratio) ranged from a low of 0.77 for pancreatic cancer to a high of 8.61 for breast cancer.

L1 loss is better than L2 loss and cross‑entropy loss for this application

Having obtained 2,606 transcriptomes of tumors of five cancer types (with 806 of the 
tumors labeled by response), we next sought to determine which type of VAE recon-
struction loss function—L1, L2, or binary cross entropy—would yield transcriptome 
encodings that are most amenable to accurate XGBoost-based prediction chemotherapy 
response. On the 2,606 tumor transcriptomes, we trained three sets of cancer type-spe-
cific VAEs (“VAE model architectures” section) using L1 loss, L2 loss, and binary cross-
entropy loss respectively. We used the L1, L2, and binary cross-entropy VAEs to encode 
the 806 labeled tumor transcriptomes (the top 20% most variable genes in each cancer 
type, merged across the five cancers, for a total of 13,584 genes) spanning the five can-
cer types, yielding (for each cancer type) three feature matrices: one based on L1 loss, 

Table 1  Numbers of tumor samples that have clinical information available regarding response-to-
chemotherapy, for each cancer type (n.b., the total number of labeled tumor samples exceeds the 
total number of patients because some patients had multiple tumors)

Each cancer type’s TCGA abbreviation is shown in parentheses

Cancer type Total number of 
samples (labeled and 
unlabeled)

Number 
of labeled 
samples

Proportion of 
labeled samples

Class balance 
ratio (responding/
progressive)

Breast invasive carcinoma 
(BRCA)

1217 394 0.324 8.61

Colon adenocarcinomas 
(COAD)

512 117 0.229 1.72

Bladder carcinoma (BLCA) 430 115 0.267 0.95

Pancreatic adenocarci-
noma (PAAD)

182 115 0.632 0.77

Sarcoma (SARC) 265 65 0.245 0.82

Sum 2606 806
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one based on L2 loss, and a third one based on binary cross-entropy loss. We separately 
evaluated the three feature matrices for XGBoost prediction of the binary response-to-
chemotherapy class label. By test-set area under the receiver operating characteristic 
(AUROC), averaged across the five cancers, we found (Fig. 3) that the features that were 
generated by the L1 VAEs led to 6.2% better ( p < 10−9 , Welch’s t-test) classification per-
formance than the features generated by the L2 VAEs, 11.7% better ( p < 10−9 , Welch’s 
t-test) classification performance than the features generated by the binary cross-
entropy VAEs and thus, for all subsequent analyses, we used VAEs trained with L1 loss.

Chemotherapy response classification results

Having selected L1 reconstruction loss for training VAEs to encode tumor transcrip-
tomes for predicting response-to-chemotherapy, we developed a semi-supervised 
approach based on VAE encoding of the tumor transcriptome, for predicting chemo-
therapy response. In brief, our approach consisted of three steps: 

1.	 Training a VAE to encode clinically unlabeled tumor transcriptomes (for the top 20% 
most variable genes) for a single cancer type, into a low-dimensional space (“VAE 
model architectures” section).

2.	 Using that VAE to obtain latent-space encodings for the tumor transcriptomes that 
are labeled for a relevant clinical endpoint (in this work, response to chemotherapy).

3.	 Training and testing a supervised classifier for predicting chemotherapy response.

Because some cancer types benefited from a deeper VAE network architecture than oth-
ers for effective encoding, we used three different VAE architectures for learning fea-
tures for predicting chemotherapy response in the context of three subsets of cancer 
types (VAE-1 for breast and pancreatic; VAE-2 for colon; and VAE-3 for bladder and 
sarcoma; Table 5). For each VAE architecture, our approach was to use all of the data 
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Fig. 3  Predicting chemotherapy response using VAE-XGBoost models with different types of reconstruction 
loss for the VAE training. Marks represent AUROC values averaged over five different types of cancer, grouped 
by VAE loss function type. Squares, within-group sample mean; bars, 95% confidence intervals (c.i.)
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from the five-cancer set of 2,606 unlabeled tumors for VAE training, but for predicting 
chemotherapy response for a given cancer type, we used encodings from the VAE archi-
tecture that corresponds to the cancer type (Table 5).

To select the supervised classification algorithm for step (3) above, we used an empiri-
cal approach, comparing the AUROC performance of XGBoost, kernel SVM, and 
k-nearest neighbors for predicting sarcoma response to chemotherapy with features 
based on VAE-3 encodings (semi-supervised) or expression levels of individual genes 
(fully-supervised). We found (Additional file 1: Fig. S4) XGBoost to be superior to ker-
nel SVM and k-nearest neighbors (KNN), in both semi-supervised and fully supervised 
analyses, and thus we chose XGBoost as the classification algorithm for subsequent 
analyses.

To address the primary question of to what extent a VAE-based, semi-supervised 
(VAE-XGBoost) approach could advance the state-of-the-art for transcriptome-based 
prediction of chemotherapy response, we sought to compare VAE-XGBoost’s perfor-
mance to that of three alternative approaches: (1) a semi-supervised approach using a 
regular auto-encoder (AE) with the same architecture as the VAE; (2) a fully supervised 
approach directly using the transcriptome data; and (3)  a semi-supervised approach 
based on a traditional dimensional reduction technique (either principal component 
analysis, PCA; or independent component analysis, ICA).

VAE‑XGBoost versus AE‑XGBoost

To address alternative approach  (1) (“traditional auto-encoder”), we compared the 
performance of VAE-XGBoost to that of a model consisting of a regular auto-encoder 
combined with XGBoost (“AE-XGBoost”; Table  2 and Additional file  1: Figs.  S5–S6). 
For this four-cancer analysis, we used the VAE-1 architecture for BRCA and PAAD, 
which was the same network that we used in the t-SNE analysis and the VAE-3 architec-
ture for BLCA and SARC (Table 5). We measured performance using test-set AUROC 
and AUPRC using five-fold cross-validation. We found  (Table  2) that VAE-XGBoost 
outperformed AE-XGBoost by an average AUROC increase of 14.5% and an average 
AUPRC increase of 16.3% over the four-cancer average (breast, pancreatic, bladder, and 

Table 2  Comparison of chemotherapy response prediction performance for XGBoost models 
trained with VAE-derived features versus autoencoder (AE)-derived features, for three cancer types 
(BRCA, BLCA, and PAAD)

The p values are for row-wise difference of means tests for the two columns under “AUROC” and for the two columns under 
“AUPRC”, respectively. For each cancer type (row), the highest mean AUROC performance is shown in boldface

Cancer type Mean p (Welch’s t-test)

AUROC AUPRC AUROC AUPRC

VAE AE VAE AE VAE versus AE VAE versus AE

BRCA​ 0.674 0.575 0.192 0.137 1.61× 10
−15

5.38× 10
−10

PAAD 0.738 0.660 0.764 0.695 3.46× 10
−10 6.72× 10

−7

BLCA 0.659 0.573 0.649 0.577 7.97× 10
−12 1.23× 10

−7

SARC​ 0.704 0.611 0.736 0.654 2.78× 10
−7

1.75× 10
−6
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sarcoma), with ( p < 10−9 , Welch’s t-test) classification performance. Thus, we used the 
VAE for neural network-based unsupervised embeddings, for subsequent analyses.

VAE‑XGBoost versus fully‑supervised XGBoost

To address alternative approach  (2) (“fully supervised”), we empirically compared the 
performance of the VAE-XGBoost method to a fully supervised model in which we 
applied XGBoost directly to the tumor expression levels of the top 20% most variable 
genes (13,584 genes) as feature data. For five out of five cancer types (breast, colon, pan-
creatic, bladder, and sarcoma), in terms of test-set AUROC, the VAE-XGBoost approach 
outperformed the fully-supervised XGBoost approach (Additional file  1: Fig.  S7), by 
Welch’s t-test (Table  3). In terms of test-set AUPRC, for four out of five cancer types 
(breast, colon, pancreatic, and bladder), the VAE-XGBoost approach outperformed 
the fully-supervised approach of applying XGBoost directly to the expression levels of 
the tumors’ top 20% most variable genes (Additional file  1: Fig.  S8), by Welch’s t-test 
(Table  4); for SARC, the semi-supervised VAE-XGBoost and fully-supervised models’ 
performances were statistically indistinguishable.

Table 3  Comparison of chemotherapy response prediction performance (AUROC) for XGBoost 
models trained with original transcriptome data (“Raw data”) or transcriptome data encoded with 
PCA, ICA, or VAE. This analysis was carried out across five cancers (BRCA, COAD, BLCA, PAAD, and 
SARC)

The p values are for row-wise difference of means tests for the indicated pairs of sample groups (columns). For each cancer 
type (row), the highest mean AUROC performance is shown in boldface

Cancer type AUROC (mean) p (Welch’s t-test)

VAE Raw data PCA ICA VAE versus Raw data VAE versus PCA VAE versus ICA

BRCA​ 0.674 0.649 0.614 0.609 8.07× 10
−4

3.80× 10
−12 3.39× 10

−14

PAAD 0.738 0.694 0.710 0.685 6.99× 10
−6

5.04× 10
−3

2.41× 10
−6

COAD 0.707 0.674 0.726 0.689 1.19× 10
−3

2.81× 10
−2

5.65× 10
−2

BLCA 0.659 0.626 0.593 0.650 7.81× 10
−5

4.27× 10
−9 2.61× 10

−1

SARC​ 0.704 0.679 0.682 0.701 3.49× 10
−2

2.91× 10
−2 8.64× 10

−1

Table 4  Comparison of chemotherapy response prediction performance (AUPRC) for XGBoost 
models trained with original transcriptome data (“Raw data”) or transcriptome data encoded with 
PCA, ICA, or VAE. This analysis was carried out across five cancers (BRCA, COAD, BLCA, PAAD, and 
SARC)

The p values are for row-wise difference of means tests for the indicated pairs of sample groups (columns). For each cancer 
type (row), the highest mean AUPRC performance is shown in boldface

AUPRC (mean) p (Welch’s t-test)

Cancer type VAE Raw data PCA ICA VAE versus Raw data VAE versus PCA VAE versus ICA

BRCA​ 0.192 0.157 0.145 0.150 4.21× 10
−6

7.42× 10
−10

5.01× 10
−8

PAAD 0.764 0.729 0.746 0.713 3.38× 10
−4

9.12× 10
−2

2.02× 10
−6

COAD 0.593 0.535 0.579 0.545 6.52× 10
−4

3.91× 10
−1

1.27× 10
−3

BLCA 0.649 0.623 0.587 0.654 4.30× 10
−2 1.60× 10

−7
6.13× 10

−1

SARC​ 0.736 0.713 0.714 0.729 6.15× 10
−2 1.61× 10

−1
5.96× 10

−1
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VAE‑XGBoost versus PCA‑XGBoost and ICA‑XGBoost

To address alternative approach  (3), we empirically compared VAE-XGBoost to mod-
els in which PCA or ICA components were used as XGBoost features (i.e., “PCA-
XGBoost” and “ICA-XGBoost”). We aimed to empirically study prediction performance 
of these models for each of the five cancer types separately, using the set of cancer type-
specific labeled tumors (806 labeled tumors in all). For four out of five cancer types 
(bladder, breast, pancreatic, and sarcoma), in terms of AUROC the semi-supervised 
VAE-XGBoost method significantly outperformed the semi-supervised PCA-XGBoost 
method (Table 3 and Additional file 1: Fig. S7). Additionally, for three out of five cancer 
types (breast, colon, and pancreatic), the semi-supervised VAE-XGBoost method signifi-
cantly outperformed the semi-supervised ICA-XGBoost method (Table 3 and Additional 
file 1: Fig. S7). The five-cancer average AUROC for VAE-XGBoost was 0.688, a perfor-
mance gain of 6.3% over the five-cancer average AUROC for PCA-XGBoost (0.646), a 
gain of 6.5% over the ICA-XGBoost (0.645) and a gain of 4.5% over the fully-supervised 
model’s average (0.658). Notably, a single deep VAE architecture (VAE-1, which had a 
50-dimensional latent space and six layers in the encoder) yielded latent-space encod-
ings that outperformed semi-supervised PCA-XGBoost for two cancer types (breast and 
pancreatic); a single shallow VAE architecture (VAE-3, which had a 500-dimensional 
latent space and two layers in the encoder) yielded latent-space encodings that outper-
formed semi-supervised PCA-XGBoost for two cancer types (bladder and sarcoma).

For three out of five cancer types (breast, bladder, and pancreatic), in terms of AUPRC 
the semi-supervised VAE-XGBoost method significantly outperformed the semi-
supervised PCA-XGBoost method (Additional file 1: Fig. S8 and Table 4). Additionally, 
for three out of five cancer types (breast, colon, and pancreatic), the semi-supervised 
VAE-XGBoost method significantly outperformed the semi-supervised ICA-XGBoost 
method (Additional file 1: Fig. S8 and Table 4). The five-cancer average AUPRC for VAE-
XGBoost was 0.441, a performance gain of 9.1% over the five-cancer average AUPRC for 
PCA-XGBoost (0.403), a gain of 8.2% over the ICA-XGBoost (0.406), and a gain of 8.5% 
over the fully-supervised model’s average (0.405).

PCA & VAE feature importance scores, for COAD

Having established that the semi-supervised VAE-XGBoost outperforms the semi-
supervised PCA-XGBoost approach for tumor transcriptome-based prediction of chem-
otherapy response for four out of five cancer types, we sought to understand the basis 
for the higher performance of PCA-XGBoost over VAE-XGBoost on the fifth cancer 
type, colon adenocarcinoma (COAD). Specifically, we investigated whether the strong 
performance of PCA-XGBoost on COAD is attributable to differences in the distribu-
tions of XGBoost feature importance scores of the PCA features versus VAE latent-space 
features. We found that the distribution of feature importance scores (as a function of 
rank) was more sharply peaked at lowest-ranked features in the VAE than in the PCA 
(Fig. 4), suggesting that the performance gain with PCA reflects a broader spectrum of 
informative features for that particular cancer type.
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Discussion
As far as we are aware, this work is the first report of a multi-cancer investigation 
of the potential for a VAE-based, semi-supervised approach for predicting in  vivo 
chemotherapy response from the tumor transcriptome. Across the five cancer types 
that we studied, the ratio of responding tumors to progressive disease tumors ranged 
from a low of 0.77 for pancreatic cancer to a high of 8.61 for breast cancer, reflect-
ing a broad range of resistances to standard-of-care chemotherapy. Our results clearly 
demonstrate the utility of the VAE for compressing high-dimensional data to a con-
tinuous, low-dimensional latent space while retaining features that are essential for 
distinguishing different cancer types and for predicting response to chemotherapy. 
Nevertheless, three limitations of this work bear noting.

The first limitation concerns the type(s) of tumor “omics” data from which fea-
tures are derived for the predictive model. While in this work we focused on tumor 
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Table 5  VAE architectures used for predicting chemotherapy response (h, latent space dimension; 
“layers”, # of layers used in the encoder/decoder)

Name Cancer types h Layers

VAE-1 BRCA, PAAD 50 Six

VAE-2 COAD 400 Two

VAE-3 BLCA, SARC​ 500 Two
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transcriptome data which can be measured with high precision over a wide dynamic 
range of transcript abundances by RNA-seq, we note that TCGA datasets of tumor 
somatic mutations and copy number alteration events are also available [17]. Given 
the voluminous literature on the use of tumor somatic genomic data for precision 
cancer diagnosis [37–39], tumor DNA datasets are fertile ground for developing a 
semi-supervised, multi-omics model for predicting response to chemotherapy.

Second, for decision tree-based response-to-chemotherapy prediction, the perfor-
mance of VAE-encoded transcriptome features is somewhat sensitive to the type of nor-
malization used for the gene expression levels (data not shown). We explored various 
published normalization methods for the RNA-seq data including standardization of 
log counts and using FPKM; we ultimately chose min-max-normalized log2 total-count-
normalized counts for the gene expression levels to be used to derive features. However, 
there are additional transcript quantification methods [40] that could be explored in the 
context of finding optimal tumor transcriptome VAE encodings for precision oncology. 
A similar comment applies to the specific form of the reconstruction loss function: in 
our analysis, features from the VAE trained with L1 loss clearly (across five cancers) out-
performed those from the VAE trained with L2 or cross-entropy loss, and thus, consist-
ent with Way and Greene [28], we used L1 loss for the VAE that we used to address the 
main question of this work as well as the pan-cancer t-SNE analysis.

The third limitation relates to the VAE architecture. While it is promising that a sin-
gle deep VAE architecture (VAE-1, with a 50-dimensional latent space and six fully-
connected layers) yielded features that outperformed PCA and the original RNA-seq 
feature data for two different cancer types (breast and pancreatic), for the other three 
cancer types, it was necessary to use shallower (two-layer) VAE architectures with big-
ger latent space dimensions (400 and 500, respectively). Of the five cancer types that we 
studied, colon cancer and sarcoma had the lowest proportions of labeled samples (0.229 
and 0.245 respectively; see Table 1). Our findings suggest that for some cancers, a deep, 
low-latent-dimension VAE architecture yields optimal features for predicting response, 
while for other cancers, a shallow, medium-sized-latent-dimension VAE architecture is 
more effective. Hu and Greene  [41], based on a study employing single-cell transcrip-
tome profiling, noted substantial performance differences with hyperparameter tuning 
on VAE architectures; they further noted that in terms of the robustness of performance 
with respect to hyperparameter variation, a base VAE with two layers was better than a 
deeper VAE architecture. Lakhmiri et al. [42] reported VAE architecture hyperparame-
ter tuning as well as the training phase have a great impact on the overall precision of the 
network and its ability to generalize, and proposed �-MADS, a hybrid derivative-free 
optimization algorithm for VAE fitting. More study with larger datasets will be required 
in order to determine whether a single VAE architecture could be successfully used for 
general-purpose tumor transcriptome feature extraction for precision oncology.

While our results show promise for the VAE in the context of a semi-supervised 
approach for response-to-chemotherapy prediction, for colon cancer, the VAE-XGBoost 
method did not outperform PCA-XGBoost (though it did outperform the fully super-
vised approach of XGBoost trained on the unencoded gene expression data). One pos-
sible explanation for the colon cancer-specific superior performance of PCA features 
over VAE features for predicting response to chemotherapy may be due to the fact that 
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while (for COAD) feature importance for the VAE features is sharply peaked for the first 
few features and falls off fairly rapidly with feature rank, the PCA features have a signifi-
cantly flatter distribution of relative feature importance (Fig. 4). Follow-on studies with 
larger datasets will be required to delineate under what circumstances transcriptome 
VAE encodings will prove superior to linear principal components. Multiple groups 
have argued [43–45] that to improve current precision oncology models, significantly 
expanded training datasets are needed to overcome the challenges posed by tumor het-
erogeneity, and that models must more broadly leverage somatic genetic and epigenetic 
information. We anticipate that the performance of VAE-XGBoost could improve sig-
nificantly with more unlabeled and labeled tumor transcriptome data. Finally, we note 
a possible future extension of this work that will become feasible when larger train-
ing datasets are available: because response to chemotherapy is drug-dependent, the 
XGBoost classifier can easily include and use the chemotherapy drug type used for the 
patient (Additional file 1: Table S1) as a categorical feature.

Conclusions
For four of the five cancer types that we studied, the semi-supervised VAE-XGBoost 
approach significantly outperformed a semi-supervised PCA-XGBoost approach for 
tumor transcriptome-based prediction of response to chemotherapy, reaching a top 
AUROC of 0.738 for pancreatic adenocarcinoma. For three of the five cancer types that 
we studied, the semi-supervised VAE-XGBoost approach significantly outperformed a 
semi-supervised ICA-XGBoost approach for tumor transcriptome-based prediction of 
response to chemotherapy. For BLCA and SARC, the semi-supervised VAE-XGBoost 
and ICA-XGBoost models’ performances were statistically indistinguishable. For five 
out of five cancer types, the semi-supervised VAE-XGBoost approach significantly out-
performed a fully-supervised approach consisting of XGBoost applied to the expression 
levels of the top 20% most variably expressed genes. Given high-dimensional “omics” 
data, the VAE is a powerful tool for obtaining a nonlinear low-dimensional embed-
ding; it yields features that retain biological patterns that distinguish between different 
types of cancer and that enable more accurate tumor transcriptome-based prediction of 
response to chemotherapy than would be possible using the original data or their princi-
pal components.

Methods
We carried out all data processing and machine-learning tasks on a Dell XPS 8700 work-
station equipped with Nvidia Titan RTX GPU and running the Ubuntu GNU/Linux 
operating system version 16.04. All of the analysis code that we implemented was exe-
cuted in Python version 3.5.5 except that we used R version 3.3.3 for statistical analysis 
of AUROC and AUPRC values (“Area Under ROC Curve (AUROC), Area Under the pre-
cision-recall Curve (AUPRC)” sections), gene-level MAD calculations (“Gene expression 
data” section) and plotting (“Lower-dimensional embedding” section). We carried out all 
statistical tests using the R computing environment (version 3.3.3) and using the R soft-
ware package stats version 3.4.4.
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Gene expression data

From the Xena data portal [46], we obtained TCGA Level  3 tumor RNA-seq tran-
scriptome data of 33 cancer types (totaling 11,  057 tumors) and, for the response-to-
chemotherapy prediction problem, five cancer types [colon adenocarcinomas (COAD), 
pancreatic adenocarcinoma (PAAD), bladder carcinoma (BLCA), sarcoma (SARC), and 
breast invasive carcinoma (BRCA)] totaling 2,606 tumors. We selected the five cancer 
types based on two criteria: (1) a sufficient number (at least 65) of paired tumor-tran-
scriptome and clinical data samples available for the cancer type; and (2)  a sufficient 
number (at least 180) of tumor transcriptome samples available (regardless of the clin-
ical data availability) for the cancer type. We obtained both the RNA-seq (gene-level) 
total-read-count-normalized log2(1+ C) read counts and normalized (fragments per 
kilobase of transcript per million mapped reads, FPKM [47]) expression data for for 
60,483 human genes. To focus the machine-learning on the portion of the tumor tran-
scriptome that had the most variation from tumor to tumor, we identified the top 20% 
most variable genes as measured by the median absolute deviation (MAD) across 
tumors, of gene expression in terms of FPKM (we used FPKM for this purpose in order 
to mitigate bias due to read length and tumor-specific depth of sequencing) based on 
our preliminary results for prediction of response-to-chemotherapy for SARC, for dif-
ferent quantile thresholds of genes by variability of expression (Additional file 1: Fig. S4). 
For deriving feature-sets for XGBoost prediction directly based on transcript abun-
dances or based on VAE- or PCA encoding, the 20% criterion applied to each of the 
five cancer types yielded a set of 13,584 genes. We computed MAD using the R package 
stats version 3.4.4 [48] with default parameters. After the variance-filtering step, we 
used the log2(1+ C) of total-count-normalized count values for the top-20% highest-
variance genes (that were selected as described above) to obtain (or encode) feature val-
ues. We compared the performance—in terms of minimizing the VAE reconstruction 
loss (see “Variational autoencoder (VAE)” section)—of different feature scaling methods 
(no scaling, min-max normalization, and standardization [49]) and selected min-max 
normalization as the method that we used to rescale gene-level count data for input into 
the VAE.

Lower‑dimensional embedding

We computed t-SNE embedding components of the tumors using the func-
tion sklearn.manifold.TSNE from the python software package scikit-
learn version 0.19.1 with parameters init = “pca′′ , perplexity = 20 , 
learning_rate = 300 , and n_iter = 400 . We computed UMAP embedding com-
ponents using the function sklearn.manifold.umap.UMAP from the python soft-
ware package scikit-learn version 0.19.1 with parameters n_neighbors = 50 , 
min_dist = 0.3 , and metric = “euclidean′′ . For plotting the embeddings, we 
used the R software package ggplot2 version 3.1.1.

Variational autoencoder (VAE)

An autoencoder is a type of model that combines “encoder” and “decoder” neural net-
works to learn a low-dimensional continuous data encoding from which the input signal 
can be approximately reconstructed [50]. A key advantage of an autoencoder is that it is 
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unsupervised, i.e., it can be trained without labeled examples. Unlike classical autoen-
coders (e.g., sparse or denoising autoencoders), the variational autoencoder (VAE) is a 
generative probabilistic model which maps an input vector to a latent-space random var-
iable (r.v.). Below, we mathematically define the VAE.

Let T denote the set of tumors for which the VAE is to be fit to the tumor transcrip-
tomes (with n ≡ |T| ) and let m denote the number of genes for which transcript abun-
dances are used to represent the tumor transcriptome. After min-max transformation 
of the tumor transcriptome measurements (“Gene expression data” section), each 
tumor’s transcriptome is represented as a vector x ∈ [0, 1]m . Let X  denote the random 
variable representing the population distribution from which tumor transcriptomes 
are sampled, and let X ∈ [0, 1]m×n represent the composite matrix of all sampled 
tumor transcriptomes). We aim to learn a VAE that will comprise an encoder and 
decoder, with the encoder consisting of mean and variance functions µ : [0, 1]m → R

h 
and σ : [0, 1]m → R

h
+ , respectively. Together, µ and σ map the tumor transcriptome 

vector xt to a h-dimensional r.v. Z|xt,

where diag(m) is a matrix whose diagonal elements are the elements of the vector m . 
This equation is the same as Eq.  1 in Zemouri et  al.  [51]. The decoder is a function 
g : Rh → [0, 1]m that, for an outcome Z|xt = zt ∈ R

h , maps

the tilde on x̃t denotes that it is the decoded data for the tumor transcriptome xt . A 
good autoencoder should have low reconstruction error L, which is convenient to define 
in terms of the p-norm of the difference between the tumor transcriptome data xt and 
the reconstructed data x̃t , i.e., ||xt − x̃t ||

p
p  , where || ||p denotes the p-norm. However, 

this definition of the reconstruction error is only deterministic in the context of a spe-
cific outcome Z|xt = zt . Thus, it is conventional to define the reconstruction error as an 
expectation value over outcomes of Z|xt,

where E� represents an expectation value over a space of outcomes � . It should be noted 
the above representation of the reconstruction error is in terms of the outcome, zt , of a 
r.v. ( Z|xt ) whose distributional parameter functions µ and σ have hyperparameters (neu-
ral network coefficients) that will be fitted. This equation is similar to Eq. 3 in Zemouri 
et al. [51]. Compared to the binary cross-entropy loss used in Eq. 3 in Zemouri et al. [51], 
our Eq. 3 used L1 loss instead (see findings from an empirical study in “L1 loss is better 
than L2 loss and cross-entropy loss for this application” section demonstrating the supe-
riority of L1 over L2 or binary cross-entropy for the VAE reconstruction loss function). 
Because Eq. 3 is ill-suited to backpropagation, it is helpful to recast it in terms of a new 
random variable E t that depends on Z|xt by

It follows from Eqs. 4 and 1 that E t is standard multivariate normal,

(1)Z|xt ∼ N (µ(xt), diag(σ (xt))),

(2)g : zt �→ g(zt) ≡ x̃t;

(3)L|(X=xt) ≡ E Z|xt=zt (||xt − g(zt)||
p
p ),

(4)E t ≡ (diag(σ (xt)))
− 1

2 (Zt|xt − µ(xt)).
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where I is the h× h identity matrix, and thus, E t does not depend on µ , σ , or t. We there-
fore drop the subscript t and simply denote the rescaled latent-space random variable as 
E . Solving Eq. 4 for Z|xt and applying it to Eq. 3, the reconstruction error L|(X=xt) can 
be represented by

which is amenable to backpropagation because the only r.v. in it is E , whose distribu-
tional parameters do not depend on the neural network coefficients that we will be 
varying. In practice, rather than computing the multivariate integral over outcomes of 
E , L|(X=xt) is typically approximated by averaging over a limited number J of samples 
from E,

where 〈〉j denotes average over j ∈ {1, . . . , J } and ǫj is sample j from E . Following Way 
and Greene [28], we used a number of samples that is equivalent to the dimension of the 
transcriptome, i.e., J = m . For the case of p = 2 (i.e., L2 norm), minimizing L|(X = xt) 
as defined above is equivalent to maximizing the expectation value of the log-likelihood 
log(P(g(Z) = xt | X = xt)) . However, following Way and Greene  [28] and consistent 
with empirical evidence (“L1 loss is better than L2 loss and cross-entropy loss for this 
application” section), for our five-cancer study of the utility of a VAE-based approach 
for response-to-chemotherapy prediction, as well as for the pan-cancer t-SNE analysis 
(“VAE encoding preserves cancer type features” section), we chose to use L1 reconstruc-
tion loss, i.e., p = 1 in Eq. 3.

The reconstruction loss measures bias error, whose minimization must be balanced 
against the simultaneous goal of controlling variance error through regularization. In 
the VAE, regularization requires incentivizing (in the learning of µ , σ , and g ) the latent 
space distributions of Z|x to be close to standard multivariate normal. This is accom-
plished by assigning a penalty based on the Kullback-Leibler divergence between the dis-
tribution of Z|xt and the target distribution E , represented by DKL(P(Z|xt) ||P(E)) . This 
regularization is analytically tractable [52], and for a given tumor t yields (Supplemen-
tary Equation, Eq. S2) the following regularization function:

where log(σ t) denotes an element-wise log and || ||1 is the L1 norm.
Fitting the VAE to X requires selecting µ , σ , and g from their respective function 

spaces; in practice, we search over functions that can be represented using a neural net-
work for µ and σ (parameterized by the vector θ)1 and a neural network for the function 

(5)E t ∼ N (0, I),

(6)L|(X=xt) = EE

(∣
∣
∣

∣
∣
∣xt − g

(

µ(xt)+
√
diag(σ (xt))E

)∣
∣
∣

∣
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∣
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p

)

,

(7)L|(X = xt) ≃

〈(∣
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∣
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∣xt − g

(

µ(xt)+
√
diag(σ (xt)) ǫj

))∣
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j

,

(8)DKL

(
P(Zt |xt)

∣
∣
∣
∣ P(E)

)
= ||µ(xt)||

2
2 + ||σ (xt)||

2
2 − || log(σ (xt))||1 − 1,

1  Note, functions µ and σ are just two different outputs of the encoding neural network, differing only at the final layer, 
and thus for simplicity of notation we represent them as having a common parameter vector θ.
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g (parameterized by the vector φ ). Exploring the space of functions µθ , σθ , and g
φ
 corre-

sponds to computationally searching for the vector pair (θ̂ , φ̂) that together minimize the 
joint (over all tumors) sum of the tumor-specific reconstruction loss and the regulariza-
tion penalty,

Applying Eqs. 6, 7, and 8, and setting p = 1 as discussed above, we obtain the explicit 
formula for fitting a VAE to X,

We implemented Eq.  10 in Tensorflow version 1.4.1 with Keras version 2.1.3 as the 
model-level library. We solved Eq. 10 using the Adam optimization algorithm [53] (with 
batch normalization) from the python package keras-gpu version 2.1.3 with param-
eters learning_rate = 2× 10−3 , beta_1 = 0.9 , and beta_2 = 0.999 , to obtain 
(θ̂ , φ̂) . Then, for each tumor t, we used a single sample Z|xt = zt from the distribution 
N (µ

θ̂
(xt), diag(σ θ̂

(xt))) as the final latent-space encoding of the tumor to be used for 
supervised learning (“Regularized gradient boosted decision trees (XGBoost)” section).

VAE model architectures

We trained six transcriptome-encoding VAEs based on three VAE architectures, the 
pan-cancer VAE architecture (for the 33-cancer unsupervised analysis, “VAE encoding 
preserves cancer type features” section) and three cancer  type-specific VAE architec-
tures for response-to-chemotherapy prediction (“Chemotherapy response classification 
results” section) (VAE-1 was used for two different cancer types, BRCA and PAAD, 
VAE-2 was used for COAD, and VAE-3 was used for two different cancer types, BLCA 
and SARC). For the pan-cancer, we used the VAE-1 model with a latent space dimen-
sion h = 50 . For the cancer  type-specific VAE architectures, we again used the same 
number of fully-connected layers in the encoder as in the decoder (Table 5).

Labeling tumors based on response to chemotherapy

From Xena and cBioPortal [54, 55], we obtained and combined TCGA clini-
cal data (where available) for the patients whose tumor transcriptomes we 
acquired (“Gene expression data” section). From Xena, we extracted the variables 
submitter_id.samples , therapy_type , and measure_of_response ; from 
cBioPortal, we extracted the variables Sample_ID , Disease.Free.Status , and 
Pharmaceutical.Therapy.Indicator . We co-analyzed the Xena- and cBio-
Portal-obtained clinical data to label tumors “responded” ( y = 0 ) or ”progressive” 
( y = 1 ), by assigning y = 0 when the clinical record had Complete response or 
partial response in the measure_of_response column of the clinical data 

(9)(θ̂ , φ̂) = argmin
(θ ,φ)

∑

t∈T

[
L|(X = xt)+ DKL

(
P(Z|xt)

∣
∣
∣
∣P(E)
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.
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from Xena, or with value DiseaseFree in the Disease.Free.Status column of 
the clinical data from cBioPortal while therapy type is recorded as Chemotherapy 
in both. We assigned y = 1 to tumors whose clinical records had values 
Radiographic progressive disease , Clinical progressive disease , or 
stable disease in the Xena clinical data column measure_of_response , or had 
value Recurred / progressed in the cBioPortal data column Disease.Free.Status 
while the therapy_type is recorded as Chemotherapy in both files. This yielded 806 
labeled tumors out of 2,606 total. A total of 39 different drugs were used to treat the 794 
patients (Additional file 1: Table S1).

Regularized gradient boosted decision trees (XGBoost)

For predicting whether or not (based on its transcriptome-derived feature-set: raw, 
PCA, ICA, or VAE) a tumor would respond to chemotherapy, we used XGBoost [34], 
an efficient implementation of regularized gradient boosted decision trees. We used 
the classifier function XGBClassifier from the python software package xgboost 
version 0.80, with gamma=0. We tuned eight hyper-parameters (Table  6) by exhaus-
tive grid-search with five-fold cross-validation, using model_selection.Grid-
SearchCV from scikit-learn version 0.19.1. To obtain feature importance scores, 
we used get_score with importance_type = cover.

Principal component analysis (PCA) and independent component analysis (ICA)

For PCA, we used the function decomposition.PCA (with parameters 
svd_solver=“full′′) and n_components=0.9 (90% variance, yielding 387 com-
ponents) from the python package scikit-learn version 0.19.1. For plotting, we 
used matplotlib version 2.1.2. For ICA, we used the function decomposition.

Table 6  XGBoost classification algorithm hyperparameters and hyperparameter ranges used in 
grid-search tuning

Hyperparameter name Hyperparameter description Hyperparameter range

n_estimators Number of trees to fit (1, 2, 3, . . . , 40)

max_depth Maximum tree depth (1, 2, 3, . . . , 10)

learning_rate Boosting learning rate (0.05, 0.1, 0.2, 0.4, 0.6, 0.8)

min_child_weight Minimum sum of instance weight needed in a child (1, 2, 3, . . . , 10)

subsample Sub-sample ratio of the training instance (0.1, 0.2, 0.3, . . . , 1.0)

colsample_bytree Sub-sample ratio of columns when constructing each tree (0.1, 0.2, 0.3, . . . , 1.0)

reg_alpha Coefficient of L1 regularization for the node weights (0, 1, 2, 3)

reg_lambda Coefficient of L2 regularization for the node weights (1, 2, . . . , 100)

Table 7  SVM classification algorithm hyperparameters and hyperparameter ranges used in grid-
search tuning

Hyperparameter name Hyperparameter description Hyperparameter range

kernel Kernel type to be used (‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’)

C Regularization parameter (5, 6, 7, . . . , 50)

degree Degree of the polynomial kernel function 
(‘poly’)

(1, 2, 3, . . . , 20)
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FastICA (with parameters n_components=387 (i.e., the same number of compo-
nents as used in the PCA method) from the python package scikit-learn version 
0.19.1. For plotting, we used matplotlib version 2.1.2.

Support vector machine (SVM)

For predicting whether or not (based on its transcriptome-drived feature-set: raw or 
VAE) a tumor would respond to chemotherapy, we used SVM [56]. We used the clas-
sifier function SVC from the python software package sklearn.svm, with gamma = 
“auto”. We tuned three hyper-parameters (Table  7) by exhaustive grid-search with 
five-fold cross-validation, using model_selection.GridSearchCV from scikit-
learn version 0.19.1.

K‑nearest neighbors vote (KNN)

For predicting whether or not (based on its transcriptome-drived feature-set: raw or 
VAE) a tumor would respond to chemotherapy, we used KNN [57], an implementation 
based on the k nearest neighbors of each query point. We used the classifier function 
neighbors.KNeighborsClassifier from the python software package scikit-
learn. We tuned five hyper-parameters (Table  8) by exhaustive grid-search with 
five-fold cross-validation, using model_selection.GridSearchCV from scikit-
learn version 0.19.1.

Area under ROC curve (AUROC)

For computing the AUROC (i.e., sensitivity versus false positive error rate curve), we 
used the function metrics.roc_auc_score from the python software package 
scikit-learn version 0.19.1 with parameter average=“weighted”. We logit-
transformed AUROC values before testing (using two-tailed Welch’s t-test). For the L1 
versus L2 analysis (“L1 loss is better than L2 loss and cross-entropy loss for this applica-
tion” section), we carried out 30 replications of five-fold cross-validation; within each 
replication, across the five folds, we obtained prediction scores for each tumor from the 
fold in which the tumor was in the test set, enabling us to compute an overall AUROC 
within each replication. For each training data set, we carried out 30 replications of 
five-fold cross-validation by altering the random seed used for assigning data to folds, 
during the cross-validation. We used the same procedure for five different cancer types 
(BLCA, BRCA, COAD, PAAD, SARC) as shown in the panel names of Additional file 1: 
Figure S7.

Table 8  KNN classification algorithm hyperparameters and hyperparameter ranges used in grid-
search tuning

Hyperparameter name Hyperparameter description Hyperparameter range

n_neighbors Number of neighbors to use (1, 2, 3, . . . , 20)

weights Weight function used in prediction (‘uniform’, ‘distance’)

algorithm Algorithm used to compute the nearest neighbors (‘ball_tree’, ‘kd_tree’, ‘brute’, ‘auto’)

leaf_size Leaf sized passed to BallTree or KDTree (1, 2, 3, . . . , 20)

p Power parameter for the Minkowski metric (1, 2, 3, 4)



Page 20 of 22Wei and Ramsey ﻿BMC Bioinformatics          (2021) 22:453 

Area under the precision‑recall curve (AUPRC)

For computing the AUPRC, we used the function metrics.precision_recall_
curve and metrics.auc from the python software package scikit-learn version 
0.19.1. We logit-transformed AUPRC values before testing (using two-tailed Welch’s 
t-test). We carried out 30 replications of five-fold cross-validation; within each rep-
lication, across the five folds, we obtained prediction scores for each tumor from the 
fold in which the tumor was in the test set, enabling us to compute an overall AUPRC 
within each replication. For each training data set, we have done 30 replications of five-
fold cross-validation by altering the random seed used for assign split of data during 
cross-validation. We have conducted the same procedure for five different cancer types 
(BLCA, BRCA, COAD, PAAD, SARC) as shown in the panel names of Additional file 1: 
Figure S8.
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