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Background
As a common occurrence in the body, protein-translational modification (PTM) plays an 
important role in regulating various physiological processes and functions. PTM refers to 
the process of covalent modification of individual amino acid residues on a protein after the 
mRNA has been translated into a protein [1]. However, insufficient information restricts 
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the analysis of PTMs to delve deeper. In the past few decades, the advancement of pro-
teomics technology and the development of “Big Data” on protein sequences shed light 
on the substantial study of protein nature. Although high-throughput biological technol-
ogy has made tremendous achievements in protein PTM identification and analysis, the 
conventional approaches require expensive labor but get an unsatisfactory understanding 
of the relationship between structures and functions. Therefore, it is of paramount signifi-
cance to develop reliable and efficient computational methods for predicting and analyzing 
modifications.

Alternatively, protein lysine modifications (PLMs), prevalent PTM types, which occur 
at active ε-amino groups of specific lysine residues in proteins and are critical for orches-
trating various biological processes. So far, a series of computational prediction tools have 
been developed. These predictors firstly employed feature construction methods includ-
ing sequences and physicochemical properties. Then, machine learning algorithms were 
adopted to train models. The published predictors about seven types of lysine modified 
sites are as follows: (1) Acetylation: NetAcet [2], PAIL [3], BRABSB-PHKA [4], PSKAceP-
red [5], LAceP [6], N-Ace [7], ASEB [8], ProAcePred [9] and DeepAcet [10]; (2) Glycation: 
GlyNN [11], PreGly [12], Gly-PseAAC [13], Glypre [14], BPB_GlySite [15], and iProtGly-
SS [16]; (3) Succinylation: SucPred [17], iSuc-PseAAC [18], iSuc-PseOpt [19], SuccFind 
[20], SuccinSite [21], pSuc-Lys [22], SSEvol-Suc [23], and PSuccE [24]; (4) Ubiquitination: 
UbPred [25], CKSAAP_UbSite [26], UbiProber [27], UbiNet [28] and DeepUbi [29]; (5) 
SUMO: SUMOpre [30], SUMmOn [31] and seeSUMO [32]; (6) Methylation: AutoMotif 
Server [33], MASA [34], and PSSMe [35]; (7) Malonylation: MaloPred [36] and Mal-Lys 
[37]. However, these tools cannot implement classification of all potential lysine modified 
PTMs, only focusing on a single type, which limits the possibility of mining more informa-
tion and ignores the interconnections of multiple PTMs.

The data imbalance issue was characterized by prediction bias across widely divergent 
categories, therefore minimizing the bias is essential for downstream exploration in the 
prediction of PTMs. Here, we aim to harness deep generative methodology to solve the 
issue. In 2014, Goodfellow et al. first proposed the Generative Adversarial Nets (GAN) [38]. 
GAN achieved a great success and directly inspired researchers’ interests in image genera-
tion and restoration. Later, it was widely used in various fields, especially image process-
ing and natural language processing [39]. The common generative models based on deep 
learning ideas include VAE (Variational Auto Encoding), GAN, and variant models of GAN 
(conditional generative confrontation network (CGAN) [40]: adds the label information as 
well as Wasserstein Generative Adversarial Network WGAN [41]: completely solved the 
problem of unstable GAN training). To leverage both advantages, we integrated the CGAN 
and WGAN to construct the CWGAN for powerful ability of processing data-imbalance in 
this paper.

To further study the underlying mechanisms and the relationship of features and some 
specific modifications, Random Forest was utilized as a classifier and explain feature impor-
tance. The whole pipeline MultiLyGAN is shown in Fig. 1a.
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Results
Cross‑validation results

Among the multiclassification problems, Accuracy (Acc), Confusion Entropy (CEN), 
Matthews Correlation Coefficient (MCC) and Cross-validation error rate (EC) and inde-
pendent test error rate (EI) can be measured to evaluate statistical model performance 
(Details are shown in Additional file: S4). In this work, 4/5 of all samples were used as 
training samples (for training the model and cross-validation measurement), and the 
other 1/5 was utilized as an independent test set. There were 2359 features after eight 
kinds of sequence-encoding schemes and five structural-encoding schemes. High cor-
relations within the features may weaken the prediction performance, resulting in low 
prediction accuracy, increase training difficulty and over-fitting risk. Thus, Pearson cor-
relation coefficient (PCC) was calculated between each feature and labels, and further, 
we discarded features with an absolute value of the PCC greater than 0.5.

In the tenfold cross-validation of training samples, after PCC, the Acc increased by 
5%; the MCC increased by 0.057; CEN and EC decreased significantly (Table  1). The 
remaining features after PCC played a more effective role, implying the deleted features 
have a negative effect on the prediction results. Moreover, the performance was clearly 
improved after CGAN where MCC reached 0.8114, and EC was reduced by nearly 2 
times after CGAN in Table 1.

Compared with CGAN in Table  1, the indicators after the CWGAN were all 
improved, which demonstrated that the prediction performance of the generative 
network model was better after adding Wasserstein distance. Acc reached 0.8589; 

Fig. 1  a The pipeline of identification of multiple protein modified sites. b Sample size distributions 
within seven types of PTMs, including Acetylation (S1), Glycation (S2), Malonylation (S3), Methylation (S4), 
Succinylation (S5), Sumoylation (S6) and Ubiquitination (S7)

Table 1  Comparisons of tenfold cross-validation results after PCC, CGAN and CWGAN

Acc MCC CEN EC

Before PCC 0.6448 0.5663 0.4229 0.3552

After PCC 0.6906 0.6237 0.3859 0.3094

After CGAN 0.8365 0.8114 0.2500 0.1635

After CWGAN 0.8589 0.8376 0.2219 0.1411
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MCC was 0.8376; CEN and EC were the smallest compared with other schemes, 
which suggested the strong ability of balancing data in CWGAN. Alternatively, 
we analyzed there might be similar sequence characteristics or structural features 
among divergent lysine modification types. Table 1 in Additional file: S3 and Fig. 2 
showed the confusion matrix of the tenfold cross-validation results. Samples within 
S1 (Acetylation) were easily predicted to be S7 (Ubiquitination); samples within 
S2 (Glycation) were prone to classified into S7 and S1; some samples labelled as S3 
(Malonylation) were wrongly predicted as the S1, S7 and S5 (Succinylation); samples 
labelled as S4 (Methylation) were specifically mis-predicted as S1; samples labelled as 
S5 were easily incorrectly predicted as S1; samples in S6 (SUMO) were mispredicted 
to S1 and S7; and S7 is easily mispredicted as S1. Therefore, acetylated sequences har-
bor the largest similarity with other modifications, indicating its function may be 
interconnected with other types. Sumoylation (S6) and ubiquitination (S7) were eas-
ily confused, further demonstrating the sequence or functional correlations between 
the two processes.

Table 2 and 3 showed the prediction results in each category before and after CWGAN. 
Strikingly, after CWGAN, the values of Sn were significantly increased, and the false 
negative rate of prediction was largely reduced. For the balanced AUC value of each 
category, there was a substantial increase and CWGAN reflected best prediction per-
formance. Figure 3 demonstrated the comprehensive performance of each modification 
using PCC, CGAN and CWGAN in the training data. To testify whether the prediction 
AUCs based on different methods are significant, we used DeLong test, one nonpara-
metric test which can compare AUC of two correlated ROC curves. From Table  2 in 
Additional file: S3, we underscored that PCC + CWGAN + RF was significantly better 

Fig. 2  Real-predictive label-bubble chart in tenfold cross validation. The bubble sizes depict the predicted 
numbers of actual samples. (Python 3.8)
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than RF and PCC + RF, and for S1, S2, S4, and S6, PCC + CWGAN + RF performed sig-
nificantly better than PCC + CGAN + RF. No statistically better performance in S3, S5, 
and S7 was shown compared PCC + CWGAN + RF with PCC + CGAN + RF.

Table 2  Evaluation of each modification in tenfold cross-validation before CWGAN

Acc Sp Sn MCC AUC​

S1 0.8510 0.8396 0.8867 0.6583 0.9682

S2 0.9169 0.9643 0.5327 0.5421 0.9080

S3 0.9177 0.9827 0.2891 0.3912 0.8693

S4 0.9362 0.9857 0.4372 0.5435 0.9185

S5 0.9140 0.9545 0.6411 0.6096 0.9300

S6 0.9390 0.9885 0.4510 0.5723 0.9206

S7 0.9065 0.8981 0.9326 0.7749 0.9829

Table 3  Evaluation of each modification in tenfold cross-validation after CWGAN

Acc Sp Sn MCC AUC​

S1 0.9289 0.9347 0.8939 0.7485 0.9859

S2 0.9625 0.9851 0.8253 0.8408 0.9830

S3 0.9593 0.9912 0.7703 0.8274 0.9749

S4 0.9711 0.9937 0.8362 0.8786 0.9857

S5 0.9658 0.9811 0.8743 0.8602 0.9897

S6 0.9730 0.9957 0.8345 0.8848 0.9848

S7 0.9572 0.9539 0.9771 0.8507 0.9964

Fig. 3  ROC curves of seven modification types with random forest in the tenfold cross-validation after PCC, 
CGAN and CWGAN. True positive rate (sensitivity) as the ordinate, false positive rate as the abscissa. The 
performance of random forest (RF) classification (baseline), RF with PCC screening, RF with PCC screening 
and CGAN augmentation, RF with PCC screening and CWGAN augmentation are visualized by green, yellow, 
purple and red, respectively. Acetylation (S1), Glycation (S2), Malonylation (S3), Methylation (S4), Succinylation 
(S5), Sumoylation (S6) and Ubiquitination (S7). (Python 3.8)
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Independent test results

Profiling the independent dataset which is orthogonal to training set, the results in 
Table 4 were consistent with the training results (Table 1), which illustrated the robust-
ness of our predictor. Additionally, the realistic and predicted lysine modification 
types elucidated the similar mechanisms constant with cross-validation results, which 
provided an effective way to inform the possibly functional connections among differ-
ent types (Fig. 4, Table 3 in Additional file: S3). The value of Acc was 0.8549, MCC was 
0.8330, CEN was 0.2250 and EI was 0.1451 after CWGAN in the independent cohort. 
Table 5 and 6 demonstrated the better predictive performance after CWGAN for each 
modification type compared without CWGAN. Figure  5 enumerated ROC curves for 
each modification and the high AUCs suggested that MultiLyGAN harbored excellent 
predictive ability for the unseen data. In contract to only RF and RF without augmented 
data, there was a significant improvement in PCC + CWGAN + RF (Table  4 in Addi-
tional file: S3). For S1 and S3, PCC + CWGAN + RF harbored more precise prediction 
than PCC + CGAN + RF. The CWGAN and CGAN showed no discriminative difference 
in the remaining types.

Table 4  Comparisons of independent test results after PCC, CGAN and CWGAN

Acc MCC CEN EI

Before PCC 0.6391 0.5553 0.4185 0.3609

After PCC 0.6946 0.6251 0.3856

After CGAN 0.8208 0.7937 0.2654 0.1792

After CWGAN 0.8549 0.8330 0.2250 0.1451

Fig. 4  Real-predictive label bubble chart for independent test. The bubble sizes indicate the predicted 
numbers of actual samples. (Python 3.8)
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We investigated one case study on distinguishing two confusing modifications easily 
to be misclassified, which was illustrated in our paper. For example, Ubiquitination and 
Acetylation (Fig. 2) were reported they had a direct competition [42], and the opposing 
role between the two PLMs was successfully supported by mass spectrometric profiling 
[43]. Additionally, recent papers proposed that more complicated crosstalk mechanism 

Table 5  Evaluation of each modification in independent test before CWGAN

Acc Sp Sn MCC AUC​

S1 0.8674 0.8563 0.9022 0.6924 0.9723

S2 0.9101 0.9598 0.4794 0.4780 0.9049

S3 0.9058 0.9759 0.2780 0.3513 0.8695

S4 0.9403 0.9856 0.4444 0.5445 0.9192

S5 0.9233 0.9603 0.6550 0.6312 0.9439

S6 0.9411 0.9864 0.4667 0.5701 0.9270

S7 0.9012 0.8939 0.9216 0.7689 0.9815

Table 6  Evaluation of each modification for independent test after CWGAN

Acc Sp Sn MCC AUC​

S1 0.9264 0.9314 0.8970 0.7443 0.9868

S2 0.9601 0.9863 0.8125 0.8386 0.9828

S3 0.9592 0.9865 0.7862 0.8193 0.9769

S4 0.9711 0.9945 0.8278 0.8761 0.9845

S5 0.9610 0.9776 0.8587 0.8375 0.9863

S6 0.9686 0.9955 0.8186 0.8741 0.9856

S7 0.9634 0.9592 0.9902 0.8672 0.9974

Fig. 5  ROC curves of seven modification types in independent test. True positive rate (sensitivity) as the 
ordinate, false positive rate as the abscissa. The performance of random forest (RF) classification (baseline), 
RF with PCC screening, RF with PCC screening and CGAN augmentation, RF with PCC screening and CWGAN 
augmentation are visualized by green, yellow, purple and red, respectively. Acetylation (S1), Glycation (S2), 
Malonylation (S3), Methylation (S4), Succinylation (S5), Sumoylation (S6) and Ubiquitination (S7). (Python 3.8)
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was revealed referring to cell cycle regulation [44]. Therefore, the signaling pathways 
regulated by the two PLMs might affect the function of proteins, possibly leading to dif-
ficult identification. Therefore, it is essential to detect the true label. According to Fig. 1 
of Additional file: S3, we showed the detailed mis-prediction results, and the thickness of 
each line was proportional to the number of misclassified samples. Aided by CWGAN, 
there was an apparent improvement on that fragments labelled as Ubiquitination were 
wrongly classified into Acetylation.

Data augmentation results

In addition to the improvement of predictive performance, we evaluated CGAN and 
CWGAN on loss variations in neural network training. This paper adopted the average 
distance to evaluate simulation data after GAN training. Firstly, the mean of all real data 
was calculated. Secondly, the Euclidean distance was calculated between the mean value 
of the simulated data and the real data for each category (modification) as the distance 
(Fig. 6a). CGAN’s distances were all above 0.1, while CWGAN’s distances of 6 categories 
were below 0.03, which indicated that CWGAN’s synthetic data were more similar to the 
original real data. Distances of CGAN fluctuated, while CWGAN’s was stable in differ-
ent categories.

We calculated the loss of the generator (Gloss) and the loss of the discriminator 
(Dloss) during 50,000 iterations to compare the advantages and disadvantages of the 
two algorithms. The Gloss and Dloss in training CGAN and CWGAN on the acetyla-
tion modification (S1) was depicted in Fig. 6b, where the upper subgraph is an enlarged 
graph of CWGAN’s loss coordinate. In the early iterations, the loss of Gloss and Dloss of 
CGAN tended to be highly changed within 500 iterations. However, it showed long-time 
fluctuations in the later iterations and eventually showed no convergence. In contrast, 
the Gloss and Dloss of CWGAN were relatively even and showed no longer changed 
after 25,000 iterations. Collectively, we confirmed that more stable and convergent aug-
mented data can be accessed in CWGAN training process. Six other modifications had 
similar results as acetylation.

To testify whether CWGAN had superb performance in comparison to traditional 
oversampling methods, we applied the Synthetic Minority Oversampling Technique 
(SMOTE) to conduct the same steps for comparable results. The tenfold cross-validation 
and independent matrices of SMOTE were lower than CWGAN, and higher than no-
augmentation (Table 7, 1 and 4), implying imbalanced data types literally led to worse 
results and CWGAN gave the more precise predictions compared with SMOTE.

Discussion
Feature analysis

RF gave the order of importance for the 1497-dimensional features. According to the 
importance degree, the first nine most important features were from the PWM-encoding 
scheme. The frequency of different amino acids appearing in different positions of the 
sequence fragment was significantly different, which provided important information. 
The cumulative importance of different encoding schemes is summarized in Fig. 7. The 
importance of FoldAmyloid is 0, which provides no identification information; CKSAAP, 
PWM and structure features are the three most important indicators (Fig. 7a). Figure 7b 
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shows the margin of the three most important amino acids in CKSAAP. Y**A, D**Q and 
V*A play key roles in the fragments, indicating that there is a significant difference. Fig-
ure 7c shows the position information of the top five amino acids in PWM. The amino 
acid frequency information at + 4, + 7, + 2, − 1 and − 4 positions also differs significantly 
during different categories. Figure 7d shows the cumulative importance of the structural 
information of five amino acids. CN showed no contribution, whereas angles showed the 

Fig. 6  a Distance comparisons of 6 categories between CGAN and CWGAN. The Euclidean distance was 
calculated between the mean value of the simulated data and the real data. Distances using CGAN are 
all above 0.1, while distances with CWGAN of 6 categories are below 0.03, indicating that simulation data 
aided by CWGAN are more similar to the original real data. P value was calculated by two-sided Mann–
Whitney U test. b Loss vs iterations graph of CGAN and CWGAN. The loss iteration graph reflects the stability 
of the iterative process of different algorithms, which proves that the CWGAN-training process is more even. 
(Python 3.8)

Table 7  Performance of SMOTE in tenfold Cross-validation and independent test

Acc MCC CEN EC

Tenfold 0.8048 0.7730 0.2942 0.1952

Independent test 0.7948 0.7614 0.3044 0.2052
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largest cumulative contribution. After analysis, it was found that the top three features in 
structure-encoding schemes were all from secondary structure (SS), indicating that the 
SS plays an important role in identification.

Comparison with other existing methods

To validate the performance of MultiLyGAN, the comparison of our models with the 
MusiteDeep [45] was performed. MusiteDeep, a deep-learning based predictor, pro-
vided identification for multiple PTMs, including 13 PTMs of which five are lysine-based 
modifications (Comparisons of number of enrolled proteins and modification sites were 
in Table 5 of Additional file: S3). We tested four PLMs which are also discussed in Mus-
iteDeep. Using the same independent dataset illustrated above, we analyzed their per-
formance in Table  8. Our method outperformed the MusiteDeep for identification of 
all four types of PLMs. In MusiteDeep, the Sp in each modification type was obviously 
higher than Sn, suggesting the lower detection ability for true positive modification 
types, which was improved by our method.

Conclusions
In this work, we propose a new pipeline to predict the seven types of modified sites, 
where the GAN was utilized to solve the data imbalance problem. We translated the 
multilabel prediction problem into a multiclass prediction problem. Overall, 2340 
dimensional features were constructed by combining eight different sequences and 

Fig. 7  a Ranking chart of feature importance summarized by different feature-construction methods. a 
shows that CKSAAP, PWM and Structure coding are the three most informative methods; the importance of 
FoldAmyloid coding is 0, which provides no identification information. The remaining three images are the 
three most important amino-acid-space combination in CKSAAP (b), the position information of the top five 
amino acids in PWM (c), and the cumulative importance of the structural information of five signatures (d) 



Page 11 of 17Yang et al. BMC Bioinformatics          (2021) 22:171 	

five structural information-encoding schemes. Finally, 1497 dimensional features were 
obtained after PCC feature extraction. Through CWGAN, the generated simulation 
data were closer to the real data. CWGAN yielded Acc of 0.8549, MCC of 0.8330, CEN 
of 0.2250, and EI of 0.1451 by independent test, which were better scores than those 
obtained by CGAN. Meanwhile, CWGAN performed better in each of the seven modifi-
cations than CGAN.

Methods
Method overview

As illustrated in Fig. 1a, we proposed an integrated protocol including data preprocess-
ing, feature construction, dimensionality reduction, sample augmentation and classifica-
tion, which implemented stratifications of seven lysine modification types. Preparation 
of peptide fragments, followed by discarding homologous sequences, was finished in 
data preprocessing module. Subsequently, substantial sequential and structural signa-
tures were exacted for each sample in feature construction module, after which we used 
Pearson correlation coefficient (PCC) to acquire principal features in a lower dimen-
sional subspace. To minimize the influence of imbalanced problem that the minor-
ity class is prone to incorrectly classified, Conditional Generative Adversarial Network 
(CGAN) and Conditional Wasserstein Generative Adversarial Network (CWGAN) were 
carried out. Finally, we built Random Forest (RF) classifiers to identity the seven sub-
types, and model performance of multiclass classification was measured by Accuracy 
(Acc), Confusion Entropy (CEN), Matthews Correlation Coefficient (MCC), Cross-val-
idation error rate (EC) and independent test error rate (EI) (Details are shown in Addi-
tional file: S4). MultiLyGAN consisted of PCC, CWGAN and RF.

Data preprocessing

We collected 18 kinds of lysine modification samples from the CPLM2.0 database 
[46], involving a total of 284,780 modification sites from 53,501 proteins. The types of 
modifications were Ubiquitination, Acetylation, Succinylation, Malonylation, Sumoyla-
tion, Glycation, Methylation, Glutarylation, Propionylation, Crotonylation, Pupylation, 
Butyrylation, Formylation, Phosphoglycerylation, Hydroxylation, 2-hydroxyisobutyryla-
tion, Neddylation, and Carboxylation. Peptide fragments were obtained through a sliding 
window technique, with length ξ = 8 in the upper and lower lysine amino acid (window 

Table 8  Comparisons of performance between MusiteDeep with MultiLyGAN

PLMs Acc Sp Sn MCC AUC​

MusiteDeep Ubiquitination 0.6641 0.8078 0.2261 0.0365 0.5255

Sumoylation 0.6668 0.6863 0.4723 0.0972 0.6125

Acetylation 0.5039 0.4818 0.5730 0.0471 0.5512

Methylation 0.8386 0.9093 0.1135 0.0224 0.4773

MultiLyGAN
Our method

Ubiquitination 0.9634 0.9592 0.9902 0.8672 0.9974

Sumoylation 0.9686 0.9955 0.8186 0.8741 0.9856

Acetylation 0.9264 0.9314 0.8970 0.7443 0.9868

Methylation 0.9711 0.9945 0.8278 0.8761 0.9845
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size L = 17). To reduce redundancy and bias, fragments with high sequence similar-
ity (40% or more pairwise sequence identity) were removed. After deleting homology, 
we obtained 46 2-hydroxyisobutyrylated, 3273 acetylated, 38 butyrylated, 16 carboxy-
lated, 29 crotonylated, 143 formylated, 402 glutarylatd, 1454 glycated, 19 hydroxylated, 
1467 malonylated, 1208 methylated, 37 neddylated, 108 phosphoglycerylated, 223 pro-
pionylated, 169 pupylated, 1855 succinylated, 1302 sumoylated and 3468 ubiquitinated 
lysine-centered fragments. These data totally contained 18 different modification types.

We merged the data with the same ID, site and fragments. Eighteen types of modifica-
tions contribute to theoretically 218 types of labels for each fragment. After data integra-
tion, there were a total of 58 schemes, encompassing 18 for one label, 28 for two labels, 
and 12 for three labels. The labels with less than 500 samples were deleted. The remain-
ing samples are single-label data, including Ubiq (3253), Ace (3194), Succ (1692), Glyca 
(1416), Malon (1253), Sumo (1213) and Meth (1172). Since the feature construction con-
sisted of the structural information of each amino acid, we discarded fragments with 
the length less than 17. Finally, we attained Ubiq (3185), Ace (3114), Succ (1645), Glyca 
(1399), Malon (1224), Sumo (1174) and Meth (1147). The detailed data of each type are 
shown in Fig. 1b and Table 6 in Additional file: S3.

In alphabetical order, S1 was set as Ace, S2 as Glyca, S3 as Malon, S4 as Meth, S5 as 
Succ, S6 as Sumo, and S7 as Ubiq. Thus, the total dataset S can be defined as:

Feature construction
Sequence feature

AAindex [47, 48]

Fourteen specific physical and chemical properties were selected to construct features. 
A 14-dimensional vector was obtained for every amino acid (L is the length of the 
fragment):

CKSAAP [49]

The margin K is 0, 1, and 2 between the amino acid pair. If the pair was AA, CKSAAP 
is “AA,” “AXA,” and “AXXA,” where X is any amino acid. The number 1, 2, 3, …, denotes 
amino acids according to alphabetical order A, C, D, …, Y. The sample is encoded as:

There are 400 dimensions for each margin k (0, 1, and 2) value, and a 1200-dimen-
sional vector was obtained.

PWM [50, 51]

The position weight matrix was calculated by category to obtain the frequency informa-
tion of the amino acids at each position. According to the above description, the total 

(1)S = S1 ∪ S2 ∪ S3 ∪ S4∪S5 ∪ S6 ∪ S7

(2)
(

f (1), f (2), . . . . . . , f (14L)
)

.

(3)
(

f (1, 0, 1), . . . , f (20, 0, 20), f (1, 1, 1), . . . , f (20, 1, 20), f (1, 2, 1), . . . , f (20, 2, 20)
)

.
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length of the sample fragment is L, thus, each sample can be encoded as L-dimensional 
vector:
(

f (1), f (2), . . . . . . , f (L)
)

 . (4).

Reduced Alphabet [52, 53]

A reduced-letter code 8 is selected, and each amino acid is encoded as an 8-dimensional 
vector by acid, basic, aromatic, amide, small hydroxyl, sulfur, aliphatic 1 and aliphatic 2. 
Therefore, a sample of length L is encoded as a vector of 8 × L:

FoldAmyloid [54]

Using http://​antar​es.​protr​es.​ru/​fold-​amylo​id/ to predict the amyloidogenic region of the 
sample and finally obtain the L-dimensional vector:
(

f (1), f (2), . . . . . . , f (L)
)

 . (6).

BE [5, 55]

Under BE (Binary Encoding), each amino acid is encoded into a 20-dimensional binary 
vector, resulting in a 20 × L-dimensional vector:

PC‑PseAAC [56, 57]

Select λ = L-1 = 17–1 = 16, ω = 0.05, physicochemical properties = [‘Hydrophilic’, 
‘Hydrophobic’, ‘Quality’]. Each peptide fragment ultimately obtained a (20 + L-1)-dimen-
sional vector:

SC‑PseAAC [57, 58]

Select λ = L-1 = 17–1 = 16, ω = 0.05, physicochemical properties = [‘Hydrophilic’, 
‘Hydrophobic’]. Each protein fragment ultimately obtained the characteristics of a 
(20 + 2(L-1))-dimensional vector:

Structure feature
SPIDER3-Single [59] applies LSTM-BRNN to predict Accessible Surface Area (ASA), 
secondary structure (SS), backbone torsion angles (φ, ψ, θ, τ), Half Sphere Exposure 
(HSE) and Contact Number (CN), which had a total of 19 outputs. The first was ASA; 
the next 3 nodes (SS, Q3) were helix (H), strand (E) and coil (C); the next 8 (SS, Q8) were 
310-helix (G), α-helix (H), π-helix (I), β-bridge (B), β-strand (E), β-turn (T), bend (S) and 
coil(C); the next 4 were φ, ψ, θ, and τ; the next 2 were HSEα-up and HSEα-down, and 
the last output code was CN. SS yields an 11-dimensional vector; ASA is 1-D; φ, ψ, θ, 

(5)
(

f (1), f (2), . . . . . . , f (8L)
)

.

(7)
(

f (1), f (2), . . . . . . , f (20L)
)

(8)
(

f (1), f (2), . . . , f (20), f (20+ 1) . . . , f (20+ L− 1)
)

.

(9)
(

f (1), f (2), . . . , f (20), f (20+ 1) . . . , f (20+ 2(L− 1))
)

.

http://antares.protres.ru/fold-amyloid/
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τ are 4-D; HSE is 2-D (HSEα-up, HSEα-down); and CN is 1-D. Therefore, we collected 
a 19 L-dimensional vector for each protein fragment. Combining sequence and struc-
tural features, each peptide was translated into a 2359-dimensional vector (see Table 7 in 
Additional file: S3).

Sample augmentation

CGAN

GAN has shown its excellent performance in training a generative model. However, 
there is no control on generative models in GAN and the data being generated are com-
pletely random without any information of categories, making it impossible to deal with 
the imbalance issue. Fortunately, the CGAN model was proposed to direct the data 
generation process by conditioning the model on additional information, such as class 
labels. An easy way to extend a GAN to a conditional model is conditioning both the 
generator and discriminator on some extra information y. The optimization function of 
CGAN as follow:

CWGAN

We used CWGAN (Conditional Wasserstein Generative Adversarial Network, CGAN 
under Wasserstein’s method) model, which integrates CGAN and Wasserstein’s distance. 
The objective of GAN is to learn best parameters for generator so as to minimize the JS 
divergence between the real distribution Pdata(x) and the simulated distribution PG(x) . 
However, these two distributions usually have no overlap in sample space, which make 
their JS divergence always equal to log2 and lead to 0 gradient for parameters of genera-
tor. It is difficult for GAN to improve the performance of generator because of the 0 gra-
dient. Therefore, a better method has been proposed to measure the divergence between 
distributions, which is called as Wasserstein’s distance. When Wasserstein’s distance was 
used in Conditional GAN, CWGAN can start training even if Pdata(x) and PG(x) have no 
intersection. The optimization function of CWGAN as follow:

For the generator, the input includes the prior noise distribution z and the categorical 
label y embedded as a seven-dimensional vector by one-hot encoding method. There are 
several main improvements in the network. CWGAN deleted the sigmoid function of 
the last layer of D. The loss function for G and D no longer used logarithmic transfor-
mation. Instead, it used the clip function to update the function and replace Adam with 
the RMSProp optimization method. Different from common WGAN that outputs the 
divergence of generative samples in comparison to realistic samples, the discriminator 
in CWGAN further adds the estimation of whether generative samples are matched to 
the conditional information. Therefore, CWGAN can generate samples with a specific 
category.

Using the sample amount of the seventh type of data as a reference, the CWGAN sim-
ulation was performed on the other six types, and the simulation data were consistent 

(10)L = max
D

(Ex∼Pdata(x)

[

logD
(

x|y
)]

+ Ez∼PG(z)[log(1− D(G
(

z|y
)

))])

(11)L = max
D

(Ex∼Pdata(x)D
(

x|y
)

− Ez∼PG(z)D(G
(

z|y
)

)
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with the seventh type of data generated. The parameters tuning of CWGAN and the fin-
ial parameters of CWGAN are shown in Table 8 and Table 9 of Additional file: S3. Our 
training data for CWGAN was integrated samples with seven types after PCC screening, 
including 12,888 samples with 1497 features. After CWGAN, 71 first-class, 1786s-class, 
1961 third-class, 2038 fourth-class, 1540 fifth-class, and 2011 sixth-class simulation data 
were generated. In total, 9407 simulated sample datasets were generated.

Random forest (RF) is a prevalent bagging approach of machine learning. The param-
eters of RF are shown in Table 10 of Additional file: S3.

Measurements of performance

Two-classification and Multiclassification system indicators are in Additional file: S4.
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