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Abstract 

Background:  Cumulative evidence from biological experiments has confirmed 
that miRNAs have significant roles to diagnose and treat complex diseases. However, 
traditional medical experiments have limitations in time-consuming and high cost so 
that they fail to find the unconfirmed miRNA and disease interactions. Thus, discover-
ing potential miRNA-disease associations will make a contribution to the decrease of 
the pathogenesis of diseases and benefit disease therapy. Although, existing methods 
using different computational algorithms have favorable performances to search for 
the potential miRNA-disease interactions. We still need to do some work to improve 
experimental results.

Results:  We present a novel combined embedding model to predict MiRNA-disease 
associations (CEMDA) in this article. The combined embedding information of miRNA 
and disease is composed of pair embedding and node embedding. Compared with 
the previous heterogeneous network methods that are merely node-centric to simply 
compute the similarity of miRNA and disease, our method fuses pair embedding to 
pay more attention to capturing the features behind the relative information, which 
models the fine-grained pairwise relationship better than the previous case when each 
node only has a single embedding. First, we construct the heterogeneous network 
from supported miRNA-disease pairs, disease semantic similarity and miRNA func-
tional similarity. Given by the above heterogeneous network, we find all the associated 
context paths of each confirmed miRNA and disease. Meta-paths are linked by nodes 
and then input to the gate recurrent unit (GRU) to directly learn more accurate similar-
ity measures between miRNA and disease. Here, the multi-head attention mechanism 
is used to weight the hidden state of each meta-path, and the similarity information 
transmission mechanism in a meta-path of miRNA and disease is obtained through 
multiple network layers. Second, pair embedding of miRNA and disease is fed to the 
multi-layer perceptron (MLP), which focuses on more important segments in pairwise 
relationship. Finally, we combine meta-path based node embedding and pair embed-
ding with the cost function to learn and predict miRNA-disease association. The source 
code and data sets that verify the results of our research are shown at https://​github.​
com/​liuba​ilong/​CEMDA.

Conclusions:  The performance of CEMDA in the leave-one-out cross validation and 
fivefold cross validation are 93.16% and 92.03%, respectively. It denotes that com-
pared with other methods, CEMDA accomplishes superior performance. Three cases 
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with lung cancers, breast cancers, prostate cancers and pancreatic cancers show that 
48,50,50 and 50 out of the top 50 miRNAs, which are confirmed in HDMM V2.0. Thus, 
this further identifies the feasibility and effectiveness of our method.

Keywords:  MiRNA and disease interactions, Meta-path, Pair embedding, Node 
embedding, Combined embedding

Background
Microribonucleic acids (miRNAs), a small non-coding RNA molecule which contains 
about 21–22 nucleotides, have an important effect on the post-transcriptional level and 
cell processes [1]. Experiments have confirmed that miRNAs participate in the diagno-
sis and medical treatment of heart conditions [2], cardiovascular diseases, malignancies, 
mental disorders and diabetes. For instance, medical experiments exhibit that mir-33 
controls cholesterol homeostasis [3]. Hence, it is essential for medical scholars to find 
out miRNAs which are related to diseases. Many medical technologies, e.g., microarrays 
and PCR, have been utilized to explore miRNA and disease associations [4]. Though, 
traditional medical experiments have their limitations in high cost and time-consuming. 
Therefore, many researchers are devoted to devising computational methods to find uni-
dentified miRNA and disease interactions, so that they can recompense the drawbacks 
[5, 6] of traditional experimental methods.

Many innovational computational approaches have been developed to discovery 
miRNA and disease interactions recently. Among them, those methods can be approxi-
mately classified into two categories: similarity-based methods and machine learning-
based methods. With the presumption that miRNAs with similar functions are closely 
associated with similar diseases, many kinds of measurements apply similarity-based 
methods. For instance, Jiang et  al. proposed the first method which combines disease 
phenotype information with miRNA information to predict miRNA and disease interac-
tions [7]. Nevertheless, this approach also had some shortcomings. It was unreasonable 
to regard the number of overlapping target genes of two miRNAs as the criterion for 
calculating the miRNA functional similarity score, which proved that it was inadequate 
because it ignored the indirect neighbors. According to functional similarity, miRNA 
clusters, and miRNA families, Xuan et  al. scored unlabeled miRNAs. However, the 
miRNA similarity network they utilized restrained their experimental performance [8]. 
Chen et al. applied the random walk algorithm to the prediction of miRNA and disease 
associations [9]. However, this method had some limitations in constructing miRNA 
functionally similar networks, which made it unable to predict new diseases without the 
confirmed related miRNAs. Then, Chen et  al. integrated within-scores and between-
scores to rank the unverified miRNA and disease associations [10]. Besides, without 
using any known miRNA-disease associations, Zhao et  al. innovatively constructed a 
miRNA-lncRNA-disease network(DCSMDA), which integrated the miRNA-lncRNA 
associations and lncRNA-disease associations to indirectly predict miRNA-disease 
intearctions [11]. In summary, the subject of the similarity calculation method is to 
construct a network model, and different methods are used to measure the similar-
ity between nodes in the network to predict miRNA and disease interactions, most of 
which are limited by the quality of the constructed network model and the incomplete 
relationship between nodes.
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Except methods based on similarity measures, exploring potential miRNA-disease 
interactions with machine learning algorithms is also a significant academic method in 
this field. Different from the methods based on similarity to directly calculate the simi-
larity between nodes in the network, researches based on machine learning are com-
mitted to extracting inherent features and devising effective classification algorithms to 
find miRNA and disease associations. For example, Jiang et al. offered negative samples 
randomly from the unverified miRNA-disease pairs and applied SVM as prediction clas-
sifier [12]. Different from above approach, Chen et al. designed a semi-supervised clas-
sification, which demanded no negative samples [13]. In order to solve data insufficiency 
and data noise, Liang et al. devised an objective function based on L1-norm [14]. Chen 
et  al. chose the discriminative features in view of occurrence frequency [15]. Further, 
Zhao et al. combined multiple weak classifiers with boosting to strengthen classification 
[16]. In addition, matrix decomposition [17, 18] and collaborative filtering [19] are both 
useful in revealing miRNA-disease relations. For instance, Mao et al. devised the method 
based on genomic data fusion, which employed the Bayesian Probabilistic Matrix Factor-
ization model to fuse data from multiple sources(MDBPMF). They innovatively offered 
a great approximation to the matrix and were able to generalize it by assessing its per-
formance on invisible data [20]. Also, there are enormous efforts on predicting miRNA 
and disease association motivated by promising development of autoencoder [21], node 
embedding [22], deep learning and structural deep network embedding (SDNE) [23].

Though, current approaches have favorable performances to predict the unconfirmed 
miRNA and disease interactions. We still have to do some work to improve experimen-
tal performance. On the one hand, many papers have shown that previous node-centric 
methods simply compute the similarity by applying a similarity metric, such as inner 
product or Euclidean distance [24], ignoring hidden relative information between two 
nodes. On the other hand, some methods limit in obtaining intrinsic information and 
discriminative features from miRNA-disease associations, to a large extent. Moreover, 
some methods are not suitable for new diseases without the confirmed miRNAs.

Node-centric methods fall short of considering the hidden relative information 
between two nodes. Thence, we introduce the concept of “pair”. We deem that “pair” 
can better capture the hidden relative features between two nodes. In order to obtain 
effictient relative features between two nodes, it is necessary to transform the feature 
them simultaneously which we call “pair embedding”. For instance, Fig. 1 demonstrates 
a visualization of embeddings of miRNA and disease, where each miRNA is assigned 
a single embedding. Names of most diseases contain keywords related to body organs, 
which can be their feature representing their disease type. We assume that miR-21 clus-
ter has related to multiple disease types, such as Pancreatic cancers [25], Breast can-
cers. Whereas miR-17 cluster [26], regarded as oncogene, is solely overexpressed in lung 
cancers. Since every miRNA has a single embedding, it has to be embedded to a best 
single point among all the various disease types. Thus, lung cancers are regarded to be 
associated with miR-17, rather than miR-21 when predicting. However, in fact, miR-21 
has confirmed to be related to lung cancers in clinical trials [27]. On the other hand, as 
shown in Fig. 2, if we can embed each miRNA-disease pair such that each pair indepen-
dently captures its associated features. (“Target disease”, miR-21) pair may be associated 
more closely with the valid pairs related to “lung cancers” than (“Target disease”, miR-17) 
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pair is. To sum up, the pair embedding could capture the hidden features behind the 
pairwise relationship more precisely than the node embedding.

Meta-paths are some links formed by a series of nodes, which can be employed to 
preserve associations between nodes and explore the structure information in hetero-
geneous networks. Shi et al. offered an algorithm to reveal relationships by performing 
random walk [28]. They used the miRNA-target associations and disease-gene interac-
tions to identify potential miRNA-disease. However, the model strongly depended on 
the previous nodes to predict the next node in the network [29], ignoring that each node 

Fig. 1  Node embedding

Fig. 2  Pair embedding
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had a different contribution to the meta-path and could not optimize it step by step. 
Different from Shi’s work, we develop a novel Combined Embedding model for MiRNA 
and Disease Associations prediction to learn the similarity feature of miRNAs and dis-
eases. We deem that the pair embedding can better capture the features between two 
nodes. Then, the MLP enables us to construct the fine-grained pairwise relationship 
in confirmed miRNA and disease pair. We construct heterogeneous network from the 
identified miRNA-disease pairs, disease semantic similarity and miRNA functional simi-
larity. According to the above heterogeneous network, we find all the associated context 
paths of each confirmed miRNA and disease in the miRNA-disease heterogeneous net-
work. Then, the associated context paths are linked by nodes, and we propose to employ 
meta-path based nodding embedding to obtain features which are high contributions 
to meta-paths during model training. The parameters are optimized to get better pre-
diction through iterative training. To incentivize associated meta-paths, the multi-head 
attention mechanism is applied to weight the hidden state of each sequence and com-
pensate for the dependency loss of the meth-paths in model training. In this way, the 
similarity information transmission mechanism in a meta-path of miRNA and disease is 
obtained through multiple network layers. Finally, we combined the pair embedding and 
node embedding, which predicts the fine-grained relationship in heterogeneous network 
better than single embedding. At the same time, CEMDA is suitable for new diseases 
with unknown miRNA information. Our method outperforms other state-of-the-art 
methods, with the power of the combination of pair embedding of miRNA-disease and 
meta-path based node embedding. The results of global LOOCV and 5-folds cross val-
idation illustrate that CEMDA achieves the AUCs of 93.16% and 92.03%, respectively. 
Furthermore, three kinds of case researches with breast cancers, lung cancers, pancre-
atic cancers, prostate cancers and colorectal cancers illustrate our approach obtains a 
remarkable performance.

Results
Firstly, we present the experimental methods and evaluation criteria. Secondly, com-
pared with five classical methods, the results of CEMDA are analyzed. Finally, we imple-
ment three kinds of case researches to verify the experimental performance of our 
approach.

Experimental approaches and evaluation criteria

5430 experimental identified miRNAs-diseases interactions are collected from HMDD 
V2.0 [30] to regard as the dataset in the predicting work. We apply global LOOCV and 
fivefold cross validation strategies in experiments. Then, every one verified miRNA and 
disease pair is acted as the testing samples, and the other pairs are view as the train-
ing samples in global LOOCV. At the same time, the miRNA and disease associations 
are divided into five equal-size groups randomly in fivefold cross validation. Then, four 
groups are regarded as the training set and the other one left acts as the testing set. We 
repeat fivefold cross validation 50 times to reduce randomness, and then calculate the 
averaged results. All the meta-paths, the length of which is less than 4, are extracted, 
because we find that too long meta-paths contribute little to improve the performance 
and increase too much in computing resources.
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We consider area under the curve as AUC, which is regarded as the standard to evalu-
ate the following compared approaches’ performance.

Comparisons with state‑of‑the‑art methods

In order to verify our experimental results, we compared CEMDA with ICFMDA [19], 
IMCMDA [18], WBSMDA [10], RLSMDA [13] and KATZBNRA [31]. The five com-
pared state-of-the-art approaches in global LOOCV and fivefold cross validation are dis-
played in Figs. 3 and 4, respectively. Besides, we compare with DCSMDA [11] in global 
LOOCV and MDBPMF [20] in fivefold cross validation. Since these two methods have 
only one result, it is not shown in the following figures. As depicted in Fig. 3, CEMDA 
has the highest AUC of 93.16% in global LOOCV, revealing that it has remarkable per-
formance compared with the other five approaches. Moreover, the AUCs of ICFMDA, 
IMCMDA, WBSMDA, RLSMDA, KATZBNRA and DCSMDA are 90.67%, 83.87%, 
88.95%, 87.47%, 90.98% and 81.55%, respectively. In addition, Fig. 4 shows that CEMDA 
also achieves the best prediction performance for fivefold cross validation experiments. 

Fig. 3  Experimental results of CEMDA, ICFMDA, IMCMDA, WBSMDA, RLSMDA, and KATZBNRA in global 
LOOCV

Fig. 4  Experimental results of CEMDA, ICFMDA, IMCMDA, WBSMDA, RLSMDA, and KATZBNRA in fivefold cross 
validation
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The AUCs of CEMDA, ICFMDA, IMCMDA, WBSMDA, RLSMDA, KATZBNRA and 
MDBPMF are, 92.03%, %90.45%, 81.09%, 80.05%, 83.39%, 89.72% and 87.55%, respec-
tively. Therefore, the performance demonstrates that CEMDA is reliable in discovering 
the unverified miRNA and disease associations.

Comparisons of CEMDA with pair embedding and without pair embedding

We compared CEMDA with pair embedding and without pair embedding upon Global 
LOOCV and fivefold cross validation. The results depicted in Figs.  5 and 6, demon-
strate that the pair embedding enhances the effect in global LOOCV and fivefold cross 
validation strategies, which means that the pair embedding takes an important role in 
CEMDA. First, the pair embedding helps model the fine-grained pairwise relationship 
better than the previous when each node only has a single embedding. Second, pair 
embedding generates incentives to the associated nodes in the meta-path. The feature 
information of miRNA-disease pair is obtained by multi-layer perceptron to enhance the 
similarity information transmission.

Fig. 5  Experimental results of CEMDA with pair embedding and without pair embedding with global LOOCV

Fig. 6  Experimental results of CEMDA with pair embedding and without pair embedding with fivefold cross 
validation
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Comparisons with different meta‑path length of CEMDA

Parameter meta-path length is a critical element for information extraction in 
CEMDA. Different parameter values result in different information scales. The exper-
imental performance is compared with the different meta-path length upon global 
LOOCV and fivefold cross validation. Figures 7 and 8 illustrate Experimental results. 
We find that it’s the better performance when meta-path length increases. More rela-
tive nodes are contained when the length of meta-path increases, which brings rich 
information and abundant features in meta-paths to model training. In other word, 
the method can integrat more long-term dependency between nodes. Figures 7 and 8 
show that the meta-path length increases, but the performance of CEMDA falls dis-
tinctly. Because the length of meta-path is longer, the information repeats more in 
segments that it contains, which contributes less to the performance. After many tri-
als, we decided 3L as the max length of meta-path in our method below.

Fig. 7  Experimental results of CEMDA with different length of meta-paths in global LOOCV

Fig. 8  Experimental results of CEMDA with different length of meta-paths in fivefold cross validation
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Influence of projection dimensions

We respectively compared the influence of several projection dimensions Z in For-
mula (11) on the result of CEMDA under global LOOCV and fivefold cross-validation. 
Figure 9 shows the AUC values of CEMDA under different projection dimensions Z 
upon global LOOCV and fivefold cross-validation. In the Formula (11), we used five 
different projection dimensions, 32, 64, 128, 256 and 512, respectively. It illustrates 
that the AUC with the increase of projection dimensions values display an upward 
trend slightly. Besides, we also tested experiment on the projection dimensions of 
512, the effect was diminished slightly in training process because of huge amount of 
calculation and data noise. Thence, we finally selected the projection dimensions of 
256.

Cases studies

Three kinds of case researches are carried out to further validate miRNA and disease 
interactions. In the first case research, we utilized lung cancers and breast cancers with 
HDMM V2.0 as data set to discovery the associated unverified miRNAs for. Finally, we 
compare the found candidate miRNAs with two public databases, dbDEMC [32] and 
PhenomiR [33] to validate its accuracy.

It has been reported that lung cancers are overwhelming deadly diseases that led to 
a wide range of deaths worldwide [34]. Biomedical finds that a person discovers lung 
cancers as soon as possible, he may have a high survival rate. Medical experiments have 
proven that miRNAs have a huge effect on the diagnosis and cure of lung cancers [35]. 
Depicted in Table 1, the first column contains the top 50 and the second column lists 
the top 26–50. Among them, 48 of the top 50 candidates are proved to be related to 
lung cancers by biological experimental results that are supported from the two public 

Fig. 9  Flow chart of CEMDA
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databases. There are only 2 unconfirmed miRNAs. For instance, hsa-mir-421 ranking 1st 
in the Table  1, has been illustrated to promote proliferation in non-small cell cancers 
[36]. Thence, the performance of our prediction model offers a novel view for researches.

Breast cancers are widespread neoplasms with high mortality in women around the 
world. The deaths of breast neoplasm will up to three million in the future [37]. Evidence 
that miR-142-3p is related to breast cancers, has been validated in biological experi-
ments. We adopt CEMDA to verify the related miRNAs for breast cancers and chose the 
top 50 related miRNAs contained in Table 2. It has been shown that all the top 50 miR-
NAs were supported by the above-mentioned databases. Hsa-mir-140, which ranks 1st, 
has been validated to promote the spread of breast neoplasm cell [38]. Thence, the novel 
findings illustrate that CEMDA offers strong evidence for breast neoplasm predictions.

Then, in the second case research, we want to verify whether this approach is suit-
able for new diseases without the confirmed related miRNA in biological experiments. 
We first selected prostate cancers because it is the most universal cancers in men in the 
world. It is said that over one hundred thousand men die from prostate diseases in a for-
eign country in 2018 [39]. Firstly, we set all miRNA-disease associations that are associ-
ated with prostate cancers from HMDD 2.0 to zero and then perform CEMDA to verify 
the related miRNAs for prostate cancers. The results shown in Additional file 1: Table S1 
indicates that all the top 50 miRNAs were verified by dbDEMC and PhenomiR. Second, 

Table 1  The top 50 miRNAs associated with lung cancers

miRNA Evidence miRNA Evidence

hsa-mir-421 dbDEMC, PhenomiR hsa-mir-92 dbDEMC, PhenomiR

hsa-mir-189 dbDEMC hsa-mir-105 dbDEMC, PhenomiR

hsa-mir-17 dbDEMC, PhenomiR hsa-mir-34c dbDEMC, PhenomiR

hsa-mir-99a dbDEMC, PhenomiR hsa-mir-187 dbDEMC, PhenomiR

hsa-mir-20b dbDEMC, PhenomiR hsa-mir-149 dbDEMC, PhenomiR

hsa-mir-92 dbDEMC, PhenomiR hsa-mir-124a dbDEMC

hsa-mir-302d dbDEMC, PhenomiR hsa-mir-320a dbDEMC, PhenomiR

hsa-mir-28 dbDEMC, PhenomiR hsa-mir-92b dbDEMC, PhenomiR

hsa-mir-141 dbDEMC, PhenomiR hsa-mir-23b dbDEMC, PhenomiR

hsa-mir-329 dbDEMC hsa-mir-15a dbDEMC, PhenomiR

hsa-mir-320e dbDEMC hsa-mir-107 dbDEMC, PhenomiR

hsa-mir-378 dbDEMC, PhenomiR hsa-mir-122 dbDEMC, PhenomiR

hsa-mir-15b dbDEMC, PhenomiR hsa-mir-422a dbDEMC, PhenomiR

hsa-mir-371 dbDEMC, PhenomiR hsa-mir-377 dbDEMC, PhenomiR

hsa-mir-153 dbDEMC, PhenomiR hsa-mir-383 dbDEMC, PhenomiR

hsa-mir-663 PhenomiR hsa-mir-141 dbDEMC

hsa-mir-374b dbDEMC, PhenomiR hsa-mir-342 PhenomiR

hsa-mir-584 dbDEMC, PhenomiR hsa-mir-425 dbDEMC, PhenomiR

hsa-mir-202 dbDEMC, PhenomiR hsa-mir-377 dbDEMC, PhenomiR

hsa-mir-10a dbDEMC, PhenomiR hsa-mir-423 PhenomiR

hsa-mir-16 dbDEMC, PhenomiR hsa-mir-130b dbDEMC, PhenomiR

hsa-mir-181d dbDEMC, PhenomiR hsa-mir-328 dbDEMC, PhenomiR

hsa-mir-129 dbDEMC, PhenomiR hsa-mir-515 Unconfirmed

hsa-mir-147b dbDEMC, PhenomiR hsa-mir-320d dbDEMC

hsa-mir-410 PhenomiR hsa-mir-323b Unconfirmed
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to access more new diseases further, we carried out the research on pancreatic cancers. 
The results of the case of pancreatic cancers are contained in Additional file 1: Table S2. 
All of the top 50 predicted miRNAs were also included in HMDD, dbDEMC and Phe-
nomiR. Therefore, the case indicates that CEMDA is suitable for new diseases without 
the confirmed related miRNAs.

Finally, we implemented the third case research to identify whether CEMDA trained 
with data from an older version of HMMD could verify new imported miRNA and dis-
ease pairs in a new version of HMDD. We use HMDD 3.0 [40], dbDEMC and PhenomiR 
to identify the outcomes. The findings of the case research in colorectal cancers are con-
tained in Additional file 1: Table S3. All of the top 50 miRNAs are supported by HMDD 
3.0, dbDEMC and PhenomiR.

In view of the outcomes of three case researches, we summarize that, our approach is 
effective when predicting unverified miRNA and disease interactions.

Discussion
Compared with five classical approaches upon global LOOCV and fivefold cross vali-
dation, experimental results indicate that CEMDA has better prediction performance. 
Moreover, three kinds of case researches with five diseases also support our approach’ s 
result. Firstly, we take out all meta-path instances of the confirmed miRNA and disease 

Table 2  The top 50 miRNAs associated with breast cancers

miRNA Evidence miRNA Evidence

hsa-mir-140 dbDEMC, PhenomiR hsa-mir-125b dbDEMC, PhenomiR

hsa-mir-18a dbDEMC, PhenomiR hsa-mir-611 dbDEMC

hsa-let-7c dbDEMC, PhenomiR hsa-mir-372 dbDEMC, PhenomiR

hsa-mir-208a dbDEMC, PhenomiR hsa-mir-513c dbDEMC

hsa-mir-525 PhenomiR hsa-mir-181d dbDEMC, PhenomiR

hsa-mir-369 dbDEMC, PhenomiR hsa-mir-15b dbDEMC, PhenomiR

hsa-mir-95 dbDEMC, PhenomiR hsa-mir-32 dbDEMC, PhenomiR

hsa-mir-15b dbDEMC, PhenomiR hsa-mir-500a dbDEMC

hsa-mir-181c dbDEMC, PhenomiR hsa-mir-382 dbDEMC, PhenomiR

hsa-mir-302e dbDEMC hsa-mir-455 PhenomiR

hsa-mir-329 dbDEMC, PhenomiR hsa-mir-224 dbDEMC

hsa-mir-337 dbDEMC, PhenomiR hsa-mir-361 PhenomiR

hsa-mir-30a dbDEMC, PhenomiR hsa-mir-520b dbDEMC, PhenomiR

hsa-mir-186 dbDEMC,PhenomiR hsa-mir-663 dbDEMC, PhenomiR

hsa-mir-33a dbDEMC, PhenomiR hsa-mir-659 dbDEMC

hsa-mir-28 dbDEMC, PhenomiR hsa-mir-451 dbDEMC, PhenomiR

hsa-let-7f dbDEMC, PhenomiR hsa-mir-135 dbDEMC, PhenomiR

hsa-mir-16 dbDEMC, PhenomiR hsa-mir-193b dbDEMC, PhenomiR

hsa-mir-330 dbDEMC, PhenomiR hsa-mir-222 dbDEMC, PhenomiR

hsa-mir-346 dbDEMC, PhenomiR hsa-mir-199b dbDEMC, PhenomiR

hsa-mir-371 dbDEMC,PhenomiR hsa-mir-101 dbDEMC, PhenomiR

hsa-mir-451 dbDEMC, PhenomiR hsa-mir-510 dbDEMC

hsa-mir-484 dbDEMC, PhenomiR hsa-mir-105 dbDEMC, PhenomiR

hsa-mir-492 dbDEMC hsa-mir-183 dbDEMC, PhenomiR

hsa-mir-504 dbDEMC hsa-mir-33b dbDEMC, PhenomiR
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pair in miRNA and disease heterogeneous network to obtain complicated associations 
from miRNA and disease interactions. Meta-paths are linked by noeds and then input to 
GRU to learn more accurate similarity measures between miRNA and disease. Consid-
ering that there are different nodes with different contribution values in the meta path, 
the multi-head attention mechanism is used to weight the hidden state of each mate-
path, and the similarity information transmission mechanism in a meta-path of miRNA 
and disease is obtained through multiple network layers. Second, the MLP is utilized to 
obtain the relative information in confirmed miRNA and disease pair. By applying pair 
embedding that captures the features behind the pairwise relationships, we can obtain 
the fine-grained associations. Finally, meta-path based node embedding and pair embed-
ding are devised to integrate node and edge information from meta-path instances. In 
conclusion, CEMDA achieves an excellent prediction in modeling the fine-grained pair-
wise relationship and considering contributions of different nodes in the miRNA and 
disease heterogeneous network.

Methods
The framework of predicting miRNA and disease associations by CEMDA is presented 
in Fig.  9. Firstly, many similarity methods are utilized to compute miRNA integrated 
similarity and disease integrated similarity. Secondly, we build the heterogeneous net-
work from experimentally certified miRNA and disease associations, miRNA integrated 
similarity and disease integrated similarity. Thirdly, we develop a novel Combined 
Embedding model to extract associated information to predict the unidentified miRNA 
and disease associations. The model is composed of pair embedding of miRNA-dis-
ease, meta-path based node embedding and predicting miRNA-disease associations 
with combined embedding. Pair embedding employs the MLP to pay more attention to 
important segments in pairwise relationship. Then, the initial representations of miR-
NAs and diseases with different dimensions are projected into the same vector space. 
The associated context paths are serialized based on nodes, and then GRU is used to 
learn node features which are high contributions to meta-paths. The multi-head atten-
tion mechanism is used to weight the hidden state of each sequence, and the entire 
meta-path information is obtained through multiple network layers. We define the loss 
function to obtain the ultimate representations of miRNAs and diseases by combining 
pair embedding and meta-path based node embedding.

Structure of MiRNA and disease heterogeneous network

MiRNA and disease association network structure

HMDD V2.0 is composed of supported experimentally miRNA-disease interactions, 
which is a universal database. In this article, we employ the adjacency matrix A ∈ Rm×n 
to express the supported miRNA and disease associations. Where, m and n stand for 
the number of miRNAs and diseases, respectively. The element Aij is equal to 1, which 
means miRNA ri is associated with disease dj . Otherwise, Aij equals to 0 in the matrix. 
We utilize the datasets with HMDD v2.0 to construct the matrix. As illustrated in the 
datasets, there are 5430 associations between 495 miRNAs and 383 diseases. We define 
that m = 495 and n = 383 . Overall, the adjacency matrix A is adopted to construct 
miRNA and disease association network.
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Disease integrated similarity network construction

In order to make the experimental model more accurate and reliable, we investigated 
Wang et  al.’s work [41] and then utilized Medical Subject Headings (MeSH) [42] to 
calculate the semantic similarity of diseases. We calculate disease integrated simi-
larity network SD by aggregated disease semantic similarity SS and disease Gaussian 
interaction profile kernel similarity GD as follows:

where GD
(

di, dj
)

 represents disease Gaussian interaction profile kernel similarity.
Assuming that if two diseases have more the same ancestor subject headings, they 

will be more similar in semantics. In the above Formula (1), SS
(

di, dj
)

 represents the 
combined semantic similarity of diseases di and dj . For the first disease semantic simi-
larity method, we take disease semantic similarity based on MeSH which defined by 
Wang et  al. For any kind of disease D , it can be represented by a Directed Acyclic 
Graph (DAG(D)) , which contains the set of ancestor disease nodes and the edges of 
each parent node pointing to the child node. They define the contribution of disease d 
in DAG(D) as follows:

where � is the semantic attenuation contribution factor (0 < ∆ < 1). This article refers to 
Xuan et al.’s study [8] and set factor � to 0.5. Then, the semantic value of disease D is the 
sum of the semantic contribution values of D and its all ancestor nodes as follows:

where T (D) means all ancestor nodes of disease D including itself in the DAG graph.
Eventually, they calculate the first disease semantic similarity between disease di 

and disease dj as follows:

Xuan et al. [8] defined the second method to provide the semantic value of disease 
D . Supposing that some special diseases may have higher contributions to disease D , 
they have another definition of the semantic contribution of disease d as follows:

When, the semantic similarity SS2
(

di, dj
)

 between di and dj is calculated as the 
percentage of the contribution of themselves and their common ancestor nodes as 
follows:

(1)SD
(

di, dj
)

=

{

SS
(

di, dj
)

di and dj has combined sematic similarity

GD
(

di, dj
)

otherwise

(2)D1D(d) =

{

1 if d = D
max{� ∗ D1D

(

d′
)

|d′ ∈ childrenofd} if d �= D

(3)DV 1(D) =
∑

d∈T (D)

D1D(d)

(4)SS1
(

di, dj
)

=

∑

d∈T (di)∩T(dj)

(

D1di(d)+ D1dj (d)
)

DV 1(di)+ DV 1
(

dj
)

(5)D2D(d) = −log
the number of DAGs inluding d

the numbuer of diseases
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Eventually, the first disease semantic similarity calculation method and the second dis-
ease semantic similarity calculation method are arithmetically averaged as the disease 
semantic similarity SS

(

di, dj
)

 as follows:

Finally, according to the Formula(1), we calculated disease integrated similarity net-
work SD

(

di, dj
)

.

MiRNA integrated similarity network structure

According to Wang et  al.’ study, miRNAs with similar functions are often associated 
with diseases with similar semantics [42]. We calculated miRNA similarity by merging 
miRNA functional similarity FSand Gaussian interaction profile kernel similarity GM as 
follows:

where FS
(

ri, rj
)

 ( i ∈ [1, 495], j ∈ [1, 383]) represents miRNA functional similarity 
between ri and rj. GM(ri, rj) represents Gaussian interaction profile kernel similarity of 
miRNAs ri and rj . Benefit from Wang’s task, the miRNA functional similarity FS

(

ri, rj
)

 is 
downloaded from their study.

Besides, Zhao et al. calculated the Gaussian similarity calculation between miRNA ri 
and miRNA rj  as follows [16]:

where IV (ri) , IV (ri) is the i-th and j-th row of matrix A , respectively. Parameter αr con-
trols the kernel bandwidth as follows:

where initial kernel bandwidth parameter αr0 is set to 1.
Finally, we can provide miRNA integrated similarity network SM as Formula (8).
To sum up, we combine miRNA and disease association network, miRNA integrated 

similarity network, disease integrated similarity network to construct miRNA and dis-
ease heterogeneous network. We define MiRNA and Disease heterogeneous network as 
an undirected graph G = ( V, E), including miRNAs ( M ) and diseases ( D ). V is composed 
of miRNA and disease nodes. E represents an edge set containing three edge types, for 
example, M → D or D → M indicates a miRNA is correlated with a disease, M → M 
suggests two miRNA nodes are similar and D → D reveals us there is an edge between 
two disease nodes.

(6)SS2
(

di, dj
)

=

∑

d∈T (di)∩T(dj)

(

D2di(d)+ D2dj (d)
)

DV 2(di)+ DV 2
(

dj
)

(7)SS
(

di, dj
)

=
SS1

(

di, dj
)

+ SS2
(

di, dj
)

2

(8)SM
(

ri, rj
)

=

{

FS
(

ri, rj
)

ri and rj has functional similarity

GM
(

ri, rj
)

otherwise

(9)GM
(

ri, rj
)

= exp
(

−αr IV (ri)− IV
(

rj
)2
)

(10)αr =
αr0

1
m

∑m
i=1 IV (ri)

2
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Meta‑path instances extraction from MiRNA and disease heterogeneous network

There are one or multiple paths between a miRNA and a related disease in miRNA 
and disease heterogeneous network. Meta-paths mean that the indirect and compos-
ite connections between miRNA and disease, which help to understand information 
and complicated structure in miRNA and disease associations. There are different 
meta-path instances between the confirmed miRNA and disease association in its 
sequence. For convenience, we explain meta-path instance below.

Firstly, we define that meta-path P with L-Length as a sequence is in form of 
m → N1 → · · ·Ni → · · · d . Where, m and d  is from the verified miRNA and disease 
pair with HMDD2.0, Ni ∈ {M,D} . Different types of meta-path can help understand 
the season why two nodes are closely related to each other. Because the paths from 
one node to another can also be associated with multiple types, which construct 
the different semantics of the paths. For example, a meta-path type of D → D → M 
shows that if a disease is associated with a miRNA, then other disease who is simi-
lar to the disease will be potential associated with the miRNA. A meta-path type of 
D → M → M shows that if a miRNA is associated with a disease, then other miRNA 
who is similar to the miRNA will be potential associated with the disease. There are 
different mete-path instances with L-Length between the identified m and d as shown 
in Fig. 10. For example, the confirmed m2and d2 pair have different instances with dif-
ferent length, one meta-path instance P7 = m2 → m2 → d3 → d2 is a 3-Length and 
P2 = m4 → d1 → d4 is a 2-Length.

Finally, all meta-path instances of the confirmed miRNA and disease in network are 
extracted.

Fig. 10  Example of meta-paths with different Length
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Pair embedding of MiRNA‑disease

Linear transformations of MiRNAs and diseases

We take the i-th row in the miRNA similarity matrix SM as the initial features of the 
i-th miRNA. In the same way, we regard the j-th row in the disease similarity matrix 
SD as the feature of the j-th disease. Then, the initial features of miRNAs and diseases 
projected into the same vector with linear transformations because of the difference 
of dimensions.

We project the feature of a miRNA r into the Z-dimensional space as follows:

Similarly, the initial feature of disease d is projected into the Z-dimensional space as 
follows:

where hr ,hd is the projected feature of miRNA r and disease d, respectively. xr and xd 
are the initial feature of miRNA r and disease d. W R ∈ R

Z∗m is a linear transformation 
matrix to project the 495-dimensional matix into Z-dimensional space and WD ∈ R

Z∗n 
is a linear transformation matrix to project the 383-dimensional matix into Z-dimen-
sional space.

In Fig. 9, the nodes with shadow are the transformed representation of the initial 
miRNA and disease.

MLP encoder of miRNA‑disease interactions

Given a miRNA embedding hr ∈ R
Z and a disease embedding hd ∈ R

Z as 
Com(hr ,hd) ∈ R

4Z , we use a m-layer multi-layer perceptron (MLP) to embed miRNA-
disease interaction ( hr ,hd ) into Z-dimensional vector. The pair embedder is g(r, d) . 
Firstly, miRNA embedding and disease embedding is combined to form the initial 
input of MLP.

where ° denotes element-wise vector multiplication, ReLU(x ) denotes max(0, x) and 
g(r,d) ∈ R

X . We employ dropout on the hidden layers and regarded the last layer out-
put of MLP as the pair embedding. We take g(·) as a 2-layered MLP, which each layer has 
100 hidden units.

(11)hr = W R · xr

(12)hd = WD · xd

(13)h(0) = Com(hr ,hd) = [hr;hd;hr ◦ hd;hr + hd]

(14)h(l) =

{

ReLU
(

W (l) · h(l−1) + b(l)
)

, 0 < l < m

W (l) · h(l−1) + b(l), l = m

(15)g(r,d) = h(m)
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Validity of pair embedding

Recall that one of the limitations of node embedding is that it inadvertently makes a 
miRNA and a disease similar to each other if they frequently appear together within 
the meta-path, whether or not the miRNA is associated with disease. Then, we pre-
sent a pair validity classifier π : RX → R to discriminate whether the miRNA-disease 
pair is a valid pair or not, which is formulated by binary cross-entropy loss as follows:

π(·) is a 2-layered MLP with ReLU activation.

Meta‑path based node embedding

Multi‑head attention embedding of meta‑path

Meta-paths are linked by a series of nodes, which can be employed to preserve the 
important structure information in heterogeneous networks. According to a meta-path 
instance p connecting the confirmed miRNA r with disease d , the measurable features 
of the connection are implied in the sequences of p . The sequence of p is represented as 
{X1,X2, · · ·Xn−1,Xn} , where, X1 = hr , Xn = hd . Considering that different nodes in the 
meta path have different importance to the meta path, GRU can learn important nodes 
with the contributions to the sequence, which is suitable for sequential data learning. We 
use a GRU to generate a Z-dimensional vector for p . GRU calculates the hidden state ht  
with ht−1 and X t as input, t ∈ [1, n] , which is shown as follows.

where σ is a sigmoid function, and Wzx∈ R
X×Z , Wrx∈ R

X×Z ,  Whx∈ R
X×Z , 

Wzh ∈ R
X×X , Wrh ∈ R

X×X , Whh ∈ R
X×X ,  bz ∈ R

X , br ∈ R
X , bh ∈ R

X.
We apply dropout to the hidden state update vector as gt follows:

where d(·) is the dropout function defined as follows:

where q is the dropout rate and mask is a vector, which is got from sampling from the 
Bernoulli distribution with success probability 1− q.

(16)LossN = yr,dσ [π(g(r, d))]+
(

1− yr,d
)

(1− σ [π(g(r, d))])

(17)yr,d =

{

1, miRNAr is associated with disease d
0, miRNAr is not associated with disease d

(18)zt = σ(Wzx · Xt +Wzh · ht−1 + bz)

(19)rt = σ(Wrx · Xt +Wrh · ht−1 + br)

(20)gt = tanh[Whx · Xt +Whh · (rt ◦ ht−1)+ bh]

(21)ht = zt ◦ ht−1 + (1− zt) ◦ gt

(22)ht = zt ◦ ht−1 + (1− zt) ◦
(

d
(

gt
))

(23)d(X) =

{

mask ◦ X if train phase
(1− q)X otherwise
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We obtain an embedding matrix h∈ R
n×Z after GRU training of meta-path instance p . 

Z-dimesnional vector is extracted by aggregating h with attentive pooling. The contribu-
tion of each node in the meta-path instances is measured as follows:

where M ∈ R
Z is a trained attention parameter vector, i ∈ [1, n], j ∈ [1, n].

The extracted vector is formed by a weighted sum of the vectors from the matrix h as 
follows:

To make the learning of attention parameter stable, we extend attention mechanism 
to multi-head attention, conduct attention K times independently and average their out-
puts as follows:

where ΣΣ indicates concatenation, αk
i are normalized attention coefficients in the K-th 

attention.

Attention‑aware fusion of multiple meta‑path instances to represent miRNA‑disease 

associations

For meta-path instances connecting the confirmed miRNA r and disease d , the meta-
path instances may have different length. The meta-path instances with the same 
meta-path length exhibit diverse contributions to the connection between ri and dj as 
the difference of nodes in the sequences, which we call meta-path type. For example, 
m2 → m4 → d3 → d4 and m → m4 → d1 → d4 are listed in Fig. 10. Since the related 
information involved in two meta-path instances are not the same. To merge the global 
information of different meta-path instances with the same length to indicate the con-
nection between r and d, we joint into an attention.

where attp ∈ R
Z is the parameter in meta-path instance p . ep indicates the contribution 

of meta-path instance p of ri and dj . (e
′
)
p
 is normalized with the softmax function among all 

(24)αi =
exp(M · hi)

∑n
j=1 exp

(

M · hj
)

(25)h
p
r,d =

n
∑

i=1

αi · hi

(26)h
p
r,d =

1

K

(

K
∑

k=1

n
∑

i=1

α
k
i · hi

)

(27)ep = ReLU
(

attp · h
p
r,d

)

(28)
(

e′
)p

=
exp (ep)

∑

q∈P exp (e
q)

(29)hPr,d = sigmoid





�

p∈P

�

e′
�p

· h
p
r,d




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meta-path instances with meta-path type P . For all p ∈ P , the comprehensive representa-
tion the connection between ri and dj can be obtained by the weighted sum of all meta-path 
instances as shown in Formula (29).

Attention‑aware fusion of multiple meta‑paths to represent miRNA‑disease associations

We define meta-path type as Pi , i ∈ [1,N ] and the features of the confirmed miRNA ri and 
disease dj association by different meta-path type as hPi∈ R

Z . Supposing the different con-
tributions of different types and length, attention mechanisms are employed to obtain the 
ultimate representation.

where attPi∈ R
Z is the parameter with different path length Pi . wPi indicates that the 

contribution of meta-path type Pi to the connection. w′Pi is normalized with the softmax 
function of all the meta-paths. So, hpr,d∈ R

Z represents all math-path with path length 
attention.

Finally, the representations of miRNA r and disease d interactions with significant infor-
mation of meta-paths are modeled by the above-mentioned mechanisms.

Predicting MiRNA‑disease associations with combined embedding

Finally, we get the ultimate representation of miRNA and disease hPu , including the total 
information of miRNA and disease associations. The parameters of W R,WD,attp and 
attpi are trained in order to gain features as correct as possible. The primary purpose for 
training our model is to make distance between two nodes who are related in miRNA and 
disease heterogeneous network as small as possible. Meanwhile, we want to make pair 
embedding and meta-path based node embedding similar. Thence, we predicting miRNA-
disease associations with combined embedding.

We obtain the cross entropy for meta-path based node embedding as follows:

where P is the set of positive pairs with the supported relationships. The parameters can 
be learned by minimizing the following loss function. We combine the above two loss 
functions to gain the ultimate loss function as follows:

(30)wPi = ReLU
(

attPi · h
Pi
r,d

)

(31)w′Pi =
exp

(

wPi
)

∑

Pi∈P
exp

(

wPi
)

(32)hPr,d =
∑

Pi∈P

w′Pi · h
Pi
r,d

(33)LossM =
∑

(r,d)∈P

log sigmoid(h(r, d))−
∑

(r,d)/∈P

log sigmoid(−h(r, d))

(34)Loss = LossN + �LossM − (1− �)Lossreg
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LossReg is the regularization to prevent overfitting. We analyzed the AUC with the value 
of � from 0 to 1 with the interval of 0.1. It denotes that When � is set to 0.5, CEMDA 
achieved the better result. Thus, we set � to 0.5.
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