
Artificial intelligence classification model 
for macular degeneration images: a robust 
optimization framework for residual neural 
networks
Wen‑Hsien Ho1,2, Tian‑Hsiang Huang3, Po‑Yuan Yang4, Jyh‑Horng Chou1,5,6, Hong‑Siang Huang6, 
Li‑Chung Chi7,8, Fu‑I Chou6* and Jinn‑Tsong Tsai1,9*   

From International Conference on Biomedical Engineering Innovation 2019 Kaohsiung, Taiwan. 15-19 
November 2019

Abstract 

Background:  The prevalence of chronic disease is growing in aging societies, and 
artificial-intelligence–assisted interpretation of macular degeneration images is a 
topic that merits research. This study proposes a residual neural network (ResNet) 
model constructed using uniform design. The ResNet model is an artificial intelligence 
model that classifies macular degeneration images and can assist medical profession‑
als in related tests and classification tasks, enhance confidence in making diagnoses, 
and reassure patients. However, the various hyperparameters in a ResNet lead to the 
problem of hyperparameter optimization in the model. This study employed uniform 
design—a systematic, scientific experimental design—to optimize the hyperparam‑
eters of the ResNet and establish a ResNet with optimal robustness.

Results:  An open dataset of macular degeneration images (https://​data.​mende​ley.​
com/​datas​ets/​rscbj​br9sj/3) was divided into training, validation, and test datasets. 
According to accuracy, false negative rate, and signal-to-noise ratio, this study used 
uniform design to determine the optimal combination of ResNet hyperparameters. The 
ResNet model was tested and the results compared with results obtained in a previous 
study using the same dataset. The ResNet model achieved higher optimal accuracy 
(0.9907), higher mean accuracy (0.9848), and a lower mean false negative rate (0.015) 
than did the model previously reported. The optimal ResNet hyperparameter combina‑
tion identified using the uniform design method exhibited excellent performance.

Conclusion:  The high stability of the ResNet model established using uniform design 
is attributable to the study’s strict focus on achieving both high accuracy and low 
standard deviation. This study optimized the hyperparameters of the ResNet model 
by using uniform design because the design features uniform distribution of experi‑
mental points and facilitates effective determination of the representative parameter 
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combination, reducing the time required for parameter design and fulfilling the 
requirements of a systematic parameter design process.

Keywords:  Residual Neural Network, Uniform experimental design, Hyperparameter 
optimization, Macular degeneration classification

Background
The macula is located at the center of the retina and is responsible for vision and color 
identification. Its full name, macula lutea, originates from its dark-yellow color (visible 
under an ophthalmoscope), which is attributable to its high lutein content. Macular 
degeneration comprises two forms, dry and wet. Choroidal neovascularization (CNV) 
and diabetic macular edeman (DME) are wet forms, whereas drusen is the dry form. 
Only 10% of patients with macular degeneration are diagnosed as having a wet form. 
Because the deterioration of vision is often mistaken as a sign of presbyopia, the symp-
toms are easily overlooked, which can lead to serious results such as vision loss [1, 2].

The diagnosis of retinal abnormalities requires an examination of the retina by a 
trained medical professional and retinal image data obtained through optical coherence 
tomography (OCT). However, determining the form of macular degeneration through 
medical imaging is a time- and labor-consuming process. Ophthalmologists receive pro-
fessional training and engage in repeated inspections and discussions. In remote areas 
or areas with insufficient medical resources, medical technologists are the only front-
line medical professionals, and they may not have the diagnostic capacity or confidence 
to make such a diagnosis. Accordingly, patients usually wait for weeks for the diagnos-
tic result, which delays treatment and involves an enormous amount of labor and social 
resources [3, 4]. Artificial intelligence (AI) exhibits potential in quick, automatic classi-
fication of medical images, acceleration of diagnoses, and reduction of labor [5]. Appro-
priate applications of AI can greatly accelerate the examination of macular diseases and 
reduce the costs involved.

Various applications of AI in the diagnosis of eye diseases have been researched. For 
example, Sambaturu et al. [6] employed a convolutional neural network (CNN) to auto-
matically delineate exudate and hemorrhage in fundus images in DME. In the following 
year, Gleryz and Ulusoy [7] used a CNN to segment retinal vessels and extract relevant 
vessel features (e.g., tortuosity, width, and length) for the diagnosis, treatment, and 
screening of diabetes and vascular diseases such as hypertension. The present study used 
a residual neural network (ResNet) for modeling, with the aim of distinguishing between 
macular diseases of various types.

Despite increasing applications of AI in the medical domain, scholars and researchers 
have predominantly focused their discussion and analysis on the accuracy of models but 
failed to consider model stability. Accordingly, with consideration of both model accu-
racy and stability, the present study aimed to construct an AI model with high accuracy 
and a stable recognition rate. It employed a systematic uniform design method to iden-
tify the optimal hyperparameter combination and thus determine the AI model optimal 
for relieving the diagnostic burden on medical personnel, reassuring patients, and maxi-
mizing patient satisfaction.

The uniform experimental design (UED) method developed by Wang and Fang [8–10] 
uses space filling designs to construct a set of experimental points uniformly scattered 
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in a continuous design parameter space. Because it only considers uniform dispersion 
and not comparable orderliness, UED minimizes the number of experiments needed to 
acquire all available information. Therefore, the UED is very suitable for solving prob-
lems involving multiple factors with multiple levels.

To verify the AI retinal-disease classification model established using a ResNet, the 
model was compared with CNN, an artificial neural network proposed by Najeeb et al. 
[11].

Methods
For the diagnosis of macular degeneration, a ResNet model was constructed with hyper-
parameters optimized using uniform design. With a focus on model accuracy and low 
standard deviation, this study proposed a method for establishing an accurate, low-
standard deviation AI classification model and applied the model in prediction based 
on actual medical images to test its performance. The following describes the data col-
lection process and design focus of the proposed method, focusing on the experimental 
design used to optimize the classification model.

The modeling was conducted using an OCT image dataset published by Kermany 
et  al. [12], which comprised four categories of data: CNV, DME, drusen, and normal 
data. Figure  1 presents data for the categories, and Table  1 illustrates the numbers of 
data points in each data category. A total of 83,484 images were used for modeling, with 
37,205 CNV, 11,348 DME, 8616 drusen, and 26,315 normal images; 968 images were 
employed for model testing, with 242 images for each of the categories.

ResNet

ResNets—developed by He et al. [13], a Microsoft team—feature a higher number of lay-
ers than previous networks. The deepening of neural networks is crucial to improving net-
work performance; however, deepening the number of network layers in the learning stage 
of deep learning often hinders the learning process and hence undermines performance. By 

Fig. 1  OCT image data [9]

Table 1  Number of images for macular degeneration modeling and testing

Type of macular degeneration Number of modeling data points Number of 
test data 
points

CNV 37,205 242

DME 11,348 242

Drusen 8616 242

Normal 26,315 242

Total 83,484 968
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contrast, the incorporation of an identity mapping structure into a ResNet creates a direct 
proportion between the number of layers and the level of performance. Table 2 provides the 
levels of a ResNet’s six hyperparameters: number of kernel (X1), kernel size (X2), pooling 
size (X3), layer (X4), activation function (X5), and optimizer (X6).

Note that the learning rate (η) and a very small constant (ε) of optimizer Adam in Table 2 
were set up to 0.001 and e−8 respectively. In addition, a constant was equal to 1.050 and a 
regulated parameter was set up as 1.6732 for activation function SELU. A gradient param-
eter (λ) was set up as 0.03 for activation function Leaky ReLU.

Uniform design

Scientific research usually involves multiple experiments, which can be costly and time-
consuming. Uniform design improves experimental quality and reduces production time 
and cost. Uniform design is a multifactor and multilevel experimental design method that 
features uniform scattering of design points, which enhances the representativeness of 
each experimental point [8–10, 14]. In this design, a suitable uniform layout is determined 
for experiments, and a regression analysis is used to obtain the optimal parameters and 
solution.

A uniform layout is denoted using Un(ns), where U refers to uniform layout, n is the num-
ber of levels (equal to the number of experiments), and s is the number of hyperparameters. 
A uniform layout has (n − 1) rows if n is a prime number. An even-number uniform lay-
out is constructed by first establishing an odd-number uniform layout and then removing 
the last row of the layout. Table 3 describes the U12(126) uniform layout established in this 
study.

Signal‑to‑noise ratio and model assessment

To maximize the AI model’s accuracy and minimize its standard deviation, signal-to-noise 
ratio (SNR) was adopted as an indicator of measurement quality. An SNR for robust design 
is obtained only by repeating each hyperparameter combination three or more times, with 
a high SNR indicating high quality. Equation (1) was used to calculate an SNR with consid-
eration of variance and the difference between predicted and actual values.

(1)SNRi = −10 log
[

(

ti −m
)2

+ σ 2
i

]

,

Table 2  Levels of a ResNet’s hyperparameters

Hyperparameter Level

1 2 3 4

Number of Kernel (X1) 8 16

Kernel size (X2) 3 5

Pooling size (X3) 4 8 16 32

Layer (X4) 14 20

Activation function (X5) Tanh SELU Leaky ReLU ReLU

Optimizer (X6) SGD Adam
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where SNRi is the SNR of ith hyperparameter combination; ti and σi are respectively the 
mean and standard deviation of accuracy for the ith hyperparameter combination; and m is 
the targeted accuracy (m = 1), i = 1, 2, . . . , 12.

 and

where tij is the jth accuracy testing of the ith hyperparameter combination, and 
p = 1, 2, 3 . Therefore, the optimal objective is to maximum Eq. (1). A confusion matrix can 
be used to calculate indicators such as accuracy, sensitivity, and false negative rate in assess-
ing model performance [15]. Therefore, this study employed a confusion matrix for model 
assessment (Table 4). As depicted in (4), ACC is the overall accuracy of the model; high 
ACC indicates good model performance.

(2)ti =

∑p
j=1 tij

p

(3)σ 2
i =

∑p
j=1

(

tij − ti
)

p− 1
,

(4)ACC =

∑q
i=1 Tii

∑q
i=1

∑q
j=1 Tij

(q = 1, 2, 3, 4)

Table 3  U12(126) uniform experiment layout

Number of 
experiences

Hyperparameter

X1 X2 X3 X4 X5 X6

1 8 5 8 20 Tanh Adam

2 16 5 32 14 Tanh SGD

3 8 5 4 14 Tanh Adam

4 16 5 16 20 SELU SGD

5 8 5 32 14 SELU SGD

6 16 5 8 14 SELU Adam

7 8 3 16 20 Leaky ReLU SGD

8 16 3 4 20 Leaky ReLU Adam

9 8 3 8 14 Leaky ReLU Adam

10 16 3 32 20 ReLU SGD

11 8 3 4 20 ReLU Adam

12 16 3 16 14 ReLU SGD

Table 4  Confusion matrix

Actual values Predicted values

Category 1 Category 2 Category 3 Category 4

Category 1 T11 T12 T13 T14

Category 2 T21 T22 T23 T24

Category 3 T31 T32 T33 T34

Category 4 T41 T42 T43 T44



Page 6 of 9Ho et al. BMC Bioinformatics          (2021) 22:148 

Results and discussion
In the U12(126) uniform experiment layout (Table 3), each hyperparameter combina-
tion was used for three rounds of random data grouping to construct three ResNet 
models; the mean and standard deviation of accuracy of each were obtained and 
the SNR calculated using (1). Subsequently, the performance of all hyperparam-
eter combinations listed in Table  3 was assessed to determine the optimal combi-
nation. Table 5 presents the uniform experiment result based on the training data. 
Table 6 provides the SNR result of the uniform experiment based on the training and 
validation data. To achieve an accurate, stable model, the SNRs of the training and 
validation data were summed for each hyperparameter combination to identify the 
combination with the highest accuracy and stability. Combination 4 had the optimal 

Table 5  Accuracy of uniform experimental results obtained using training data

Hyperparameter 
combinations

Results

Accuracy in the 
1st experiment

Accuracy in the 
2nd experiment

Accuracy in the 
3rd experiment

Mean Standard deviation SNR

1 0.9340 0.9338 0.9378 0.9352 0.002254 23.76

2 0.9586 0.9463 0.9602 0.9550 0.007606 26.81

3 0.9388 0.9365 0.9398 0.9383 0.001692 24.20

4 0.9678 0.9780 0.9805 0.9754 0.006728 31.87

5 0.9567 0.9551 0.9541 0.9553 0.001312 26.99

6 0.9404 0.9398 0.9418 0.9406 0.001026 24.53

7 0.9557 0.9557 0.9558 0.9557 0.000058 27.07

8 0.9487 0.9544 0.9449 0.9493 0.004782 25.86

9 0.9408 0.9406 0.9408 0.9407 0.000116 24.54

10 0.9528 0.9722 0.9710 0.9653 0.010871 28.79

11 0.9536 0.9527 0.9556 0.9539 0.001484 26.73

12 0.9725 0.9761 0.9662 0.9716 0.005011 30.80

Table 6  SNRs of the uniform experiments

Hyperparameter 
combinations

Results

SNRs obtained using training 
data

SNR obtained using validation 
data

Summed SNR

1 23.76 18.48 42.24

2 26.81 24.01 50.83

3 24.20 18.35 42.56

4 31.87 24.31 56.19

5 26.99 22.30 49.30

6 24.53 22.39 46.93

7 27.07 23.96 51.04

8 25.86 22.74 48.62

9 24.54 22.06 46.61

10 28.79 23.68 52.48

11 26.73 24.39 51.13

12 30.80 23.42 54.22
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hyperparameter combination, with an SNR of 31.87 for the training data and 24.31 
for the validation data for a total of 56.19, the largest sum among all combinations 
(Table 6).

Hyperparameter combination 4 was tested thrice using the 968 test data points 
specified in Table 1. Table 7 lists the test results. The mean accuracy was 0.9848 and 
the mean false negative rate 0.0150. The results verified the excellent performance of 
the hyperparameter combination obtained using the proposed method.

This study subsequently compared a ResNet model with the CNN model proposed 
by Najeeb et al. [11]. The CNN model had 32 kernels, a kernel size of 3, and a stride 
of 1 in the convolutional layer; a pooling size of 2 in the pooling layer; a 20% drop-
out; a ReLU activation function; and two fully connected layers, with one comprising 
256 neurons and the other comprising 4. Najeeb et al. [11], who employed the same 
dataset used in the present study to test their CNN model, obtained an accuracy of 
0.9566 and a false negative rate of 0.043.

Ultimately, the present study’s ResNet model compared with an AlexNet model 
[16]. Refer to [16], there are 4096, 4096 and 4 neurons for three fully connected lay-
ers respectively, and extra 50% dropout was added for the first two fully connected 
layers and all activation functions were set up as ReLU, and optimizers were SGD. 
Three experiments of the AlexNet model with the same test dataset resulted a mean 
accuracy of 0.9803 and a mean false negative rate of 0.0188.

Table 8 summarizes the evaluation outcomes for the present study’s model, CNN 
model of Ref. [11] and AlexNet model of Ref. [16]. In comparison with the CNN 
model and AlexNet model, the present study’s ResNet model had superior perfor-
mance, with a mean accuracy of 0.9848 and a mean false negative rate of 0.0150.

Table 7  Test results for hyperparameter combination 4 (test data)

Experiment number Results

Accuracy False negative rate

1 0.9907 0.0092

2 0.9824 0.0175

3 0.9814 0.0185

Mean 0.9848 0.0150

Table 8  The experimental results of tree neural network models (test data)

Model Result

Best accuracy Mean accuracy Standard deviation Mean false 
negative 
rate

ResNet 0.9907 0.9848 0.0051 0.0150

AlexNet 0.9876 0.9803 0.0063 0.0188

CNN 0.9566 – – 0.0430
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Conclusions
The ResNet model established using uniform design exhibited high stability, which is 
attributable to the study’s strict focus on achieving both high accuracy and low standard 
deviation in the model establishment process. Uniform design was used to optimize the 
ResNet model’s hyperparameters because this design method—with its uniform distri-
bution of experimental points—facilitates effective identification of the representative 
hyperparameters, reduces the time required for hyperparameter design, and fulfils the 
requirements of a systematic hyperparameter design process.

To verify the performance of the proposed method in finding the optimal hyperparam-
eter combination, an open dataset was divided into training, validation, and test datasets 
for the testing of hyperparameter combinations. The test results were then compared 
with those obtained using the CNN model developed by Najeeb et al. [11]. According 
to the comparison, the present study’s ResNet model, with its optimal hyperparameter 
combination determined using the proposed method, outperformed the CNN model of 
Najeeb et al. [11] in both accuracy and false negative rate, which verified the practicality 
of the proposed method.
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