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unlabelled. However, increasingly there are situations where sequences are just par-
tially labelled. In this paper, we designed a new training method based on the Baum-
Welch algorithm to train HMMs for situations in which only partial labeling is available
for certain biological problems.

Results: Compared with a similar method previously reported that is designed for the
purpose of active learning in text mining, our method achieves significant improve-
ments in model training, as demonstrated by higher accuracy when the trained mod-
els are tested for decoding with both synthetic data and real data.

Conclusions: A novel training method is developed to improve the training of hidden
Markov models by utilizing partial labelled data. The method will impact on detecting
de novo motifs and signals in biological sequence data. In particular, the method will
be deployed in active learning mode to the ongoing research in detecting plasmodes-
mata targeting signals and assess the performance with validations from wet-lab
experiments.
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Background

Hidden Markov model [1-5] is a well known probabilistic model in the field of machine
learning, suitable for detecting patterns in sequential data, such as plain texts, biological
sequences, and time series data in the stock market. For all these applications, successful
learning depends, to a large degree, on the amount and, more importantly, the quality
of the data. In text mining problem, though the data amount is huge, careful labelling
tasks consume massive human labor [6]. In biological sequence analysis, discovering de
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novo signal remains challenging because a precise full labeling via wet-lab experiments
demand even more resources and time, and hence it is considered unfeasible in gen-
eral. Therefore, research is necessary in data handling with different labelling quality
for applied machine learning community. In this paper, we focus on designing a Baum—
Welch-algorithm based learning method for HMMs to handle the biological problems
when only partial labeling is available in training data.

This work is inspired by our recent research on detecting de novo plasmodesmata tar-
geting signals in Arabidopsis Plasmodesmata-located proteins (PDLPs). PDLPs are type I
transmembrane proteins, which are targeted to intercellular pores called plasmodesmata
that form at the cellular junctions in plants [7]. In our study [8], by building a 3-state
HMM, we predicted the presence of two different plasmodesmata targeting signals
(named alpha and beta) in the juxta membrane region of PDLPs. While all the predicted
signals were successfully verified in wet-lab experiments so far, some predicted signals
contain residues that do not conform to the true signal; wet-lab experiments showed
that those residues alone was not sufficient to target the protein to plasmodesmata.
Because both the cost and time are high for wet-lab experiments, an improved HMM
would be highly desirable. However, due to the limitation in the number of the training
examples—Arabidopsis genome encodes only eight PDLP members, further improve-
ments of the model can be hardly achieved. It would require to fully utilize the current
wet-lab experimental results to train the model, i.e., by labeling the residues that have
been already shown to be either part of the signals or not part of the signals, given that
labels are not available for all the residues due to limited experimental results.

In a related work by Tamposis et al., a semi-supervised approach is developed to han-
dle a mixture of training sequences that contains a subset of fully labelled sequences,
with the remaining sequences having no labels at all or partial labels [9]. Their method
uses the fully labelled sequences to train the parameters for HMMs and then use Viterbi
algorithm to predict the missing labels followed by training the model again with the
predicted labels. This process is iterated until a convergence condition is met. Instead,
we are specifically interested in situations where no fully labelled sequences are available
and often the partial labeling is also sparse. In the text mining field, HMM training algo-
rithm of handling partial label was developed especially for active learning purposes and
designed to fit into text mining special situation: no label scenario, or in other words,
no meaningful label can be assigned [6]. However the unit of observation in text mining
and information retrieval is a word, instead of a single letter, corresponding to individual
amino acid residue as in biological sequences. So, in order to deal with the partial labe-
ling aforementioned, we have designed a novel Baum—Welch based HMM training algo-
rithm to leverage partial label information with techniques of model selection through
partial labels. Besides the difference in the observation unit, our algorithm differs from
[6] primarily in how to calculate the expected value for a given partial label at a given
position: our method sums over hidden state paths that must be subject to constraints
anywhere given partial labels in the training sequence. In contrast, in [6] the expected
value for a given partial label at a given position is calculated by summing over paths
that are only constrained at the position being considered, and anywhere else in the
sequence the hidden paths are free to go through all possible states (labels) even at posi-
tions where partial labels are given. Moreover, this difference affects how the expected



Li et al. BMC Bioinformatics (2021) 22:162 Page 3 of 21

value for a transition is calculated, regardless whether the transition happens to involve
one partial label, two partial labels, or no partial labels at all. The comparison between
our method and the method described in [6] showed that our method outperformed in
both synthetic and real data for decoding task in biological problems.

The rest of this paper is organized as follows. First, the relevant background knowledge
of HMM is briefly reviewed, and notations are introduced. Then, our method of training
HMM when only partial label sequences are available is described in details. This is fol-
lowed with experiments and results to examine and demonstrate the modelling power of
the novel algorithm. Discussion and conclusion are given at the end.

Methods

Hidden Markov model review

In general, a HMM consists of a set of states S;, i = 1toN, and a set of alphabets K
that can be emitted from these states with various frequencies; b;(k) stands for the fre-
quency of letter k € K being emitted from state S;, and we use B to denote the emission
matrix of dimension N x K, containing b;(k) as elements. Transitions among states can
be depicted as a graph, often referred as model architecture or model structure: each
state is represented as a node, and transition from state S; to state S; is represented by a
directed edge, with a weight a;; being the transition probability, and we use A to denote
the transition matrix of dimension N x N, containing a;; as elements. Hereafter, we
often refer to a state S; by its index i.

Given a HMM, let 6 stand for collectively all its parameters, namely the emission fre-
quencies b;(k) and transition probabilities a;;. Given a sequence of observation O, and its
elements O; € K, wheret = 1...T, a main assumption of using HMM is that each letter
in the sequence is emitted from a state of the model, so correspondingly there is a state
sequence, forming a Markov chain, which is hidden from direct observation, hence the
name: hidden Markov model. One task (decoding) is, therefore, to find the most prob-
able state sequence (also called hidden path) X*: X* = argmax ,Pr(O, X|#), among all
possible state sequences that can emit the observation sequence O. The second task is to
train the model on a set of m training sequences. This task is accomplished by adjusting
model parameters 6 to maximize the likelihood Y.~ Pr(O*|0) of observing the given
training sequences O°, where s = 1...m [10].

The decoding task is well studied and straightforward and is solved by Viterbi algo-
rithm efficiently [11]. The technique guarantees to return the optimal answer. Note that,
in the work by Bagos et al. [12], a modified Viterbi algorithm is developed to incorporate
prior topological information as partial labels to improve predictions, whereas our focus
is instead on how to use the partial labels in training the model. However, the second
task, or the training of a HMM is not guaranteed to reach optimum when labels are not
given for the training sequences.

The major training algorithms of HMM are the following three in general: maximum
likelihood, Baum—Welch algorithm, and Viterbi training [13]. Maximum likelihood is
used when label information is available fully, and it returns the optimal solution. The
latter two algorithms are used when no label information is available. Interested read-
ers can find a gentle introduction and tutorial for hidden Markov models in [10]. For



Li et al. BMC Bioinformatics (2021) 22:162 Page 4 of 21

the purposes of comparison, we adopt notations in [6] for future discussion of both
the background knowledge and our method. The description of notations is shown in
Table 1.

In this paper, we focus on a special case for training HMMs when only partial label is
available. Or in other words, we aimed at finding model 6 so that Pr(O|0) is maximized
(locally) and the resulting decoded state sequence must satisfy the partial labels given in
the training sequences at the same time.

Training hidden Markov model with partial label sequences

As introduced in the previous section, when no labels are available, Baum—Welch algo-
rithm is typically used to train HMM and Viterbi training is sometimes used for speed
and simplicity; when all label information is given, training HMM is straight forward
by maximum likelihood approach. Currently, training HMM with partial label is mainly
studied in the field of text mining, with a particular focus on active learning problems,
such as the work done in [6], with which we compare our proposed method.

Our proposed method is a novel approach to this partial label training problem with
modification of Baum—Welch algorithm (called constrained Baum—Welch algorithm)
and a model selection technique, which helps our algorithm leverage available informa-
tion and improve the training and performance in decoding task. In the next two sub-
sections, we discuss in detail our constrained Baum—Welch algorithm and the model
selection methods respectively and how to combine the two for model training.

Constrained Baum-Welch algorithm

The standard Baum—Welch algorithm is an Expectation-Maximization approach to maxi-
mizing likelihood when the system contains latent variables, which are the state sequences
for hidden Markov models when training sequences are not labelled. Our constrained
Baum—Welch algorithm (cBW) is similar to the standard Baum—Welch algorithm except
that the training sequences are partially labelled, which imposes the constraints on the pos-
sible hidden state paths in calculating the expectation. Standard Baum—Welch algorithm
is divided into E-step and M-step. The M-step of cBW algorithm is identical to standard
Baum—Welch’s. The difference is the E-step, computing forward and backward matrices.

Table 1 Notations

Symbols Explanations

[% Hidden Markov model: 6 = (, A, B)

N States'number in hidden Markov model

K Symbolic Number in hidden Markov model
A Transition matrix with dimension N x N

aji Probability of state i transition to state j

B Emission matrix with dimension N x K
bi(k) Probability of state j emitted from symbol k
b4 Initial probability of states with dimension N x 1
(03 The sth sequence with length T*

X* State sequence of O°

m Total number of sequences
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The forward matrix « is of N x T, where N is the number of states and 7 is the sequence
length. An element «;(¢) is the probability of the observed sequence up to and including Oy,
with the symbol O; being emitted from state i. The backward matrix 8 is of N x T dimen-
sion has element B;(¢) as the probability of the observed sequence from position ¢ onto the
end, with the symbol O; being emitted from state i. The formulas of computing « and g are
shown as following respectively.

Given the model 6 = (r, A, B), where 7 is a N dimension vector, with 7; being the prob-
ability that any hidden state path would start with state i. Then, the initial values of forward
matrix « for one given training sequence O = (Oy, ..., Or) is computed as follows.

o;(1) = wb;(01) (1)

After calculating the initial values of «, by dynamic programming, the remaining val-
ues at any position for any state are calculated recursively by summing over the possible
state paths X = (X1, ..., X7), allowed by the model, that lead to the point whose o value
is being calculated. However, since we now have partial labels for the training sequence
O, care must be taken to satisfy the constraints at each position O; imposed by the par-
tial label, L(O;) € S U {0}, where a value zero means no label available. Specifically,

{bi(ot+1>z,ﬁ1aj(t>aji, ifL(Or11) =0 or i
0

ai(t +1) = ifL(Or41) #0 and  L(Opy1) # i

2)
In the above equation, the first case is when position Oy, is either unconstrained (0) or
constrained to be state i by the partial label. In such a case, the « value is computed in
the same way as the standard Baum—Welch algorithm, though the actual value can still
be affected by partial labels at earlier positions via recursion. The second case is when
the position ¢ + 1is constrained by the partial label to be a state other than i. In this case,
a;(t + 1) = 0. This latter case is what makes the algorithm different from the standard
Baum—Welch algorithm in order to “honor” the partial labels. The backward matrix g is
initialized as the following.

pi(T) =1 (3)

Then, similarly, a recursive procedure is applied for the remaining of backward matrix.

ﬁm:{Z/Ailﬂf<f+1)aijbf(0(t+1>), ifL(O) =0 or i | W
0 If1(0y) #0 and L(Op) # i

Note that, while the « is calculated the same way as the modified Forward algorithm in
[12] but the B is calculated differently from their modified Backward algorithm. After the
calculations of o and g, then we can calculate y variable, where y;(¢) is the probability of
observing the training sequence O from all possible state paths that are allowed by hid-
den Markov model 6 as constrained by the partial labels and go through state i at posi-
tion . y;(¢) is computed as follows.
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P(X(t) = i,016)
P(0)9)
i (t) i) ()
Yo o ()5 (0)

vi(t) = P(X(¢) = il0,0) =

where the last equal sign holds because P(O|0) = Z}Ail aj(t)B;(t). The next step is to
compute &;(¢), which is the probability of of observing the training sequence O from all
possible state paths that are allowed by hidden Markov model 6 as constrained by the
partial labels and go through state i at positive ¢ and transition to state j at position ¢ + 1:

PX(@) =i, X(t+1) =j0|9)
(1) = L)

 a®aghi(t + DbO(E + 1)) (©)
P(OI0)

Finally, with y, &, the M-step is to update the initial probability 7*, every elements of the

transition matrix A*: a;

i and every elements of the emission matrix B*: b} (o).

(@) = yi(D) (7)

DY 0
a; = 71 < 8
/ ZtT:1l yi(t) ( )
S i) =0,

b*(or) =
14 (Ok) Zth_ll )/l(t)

)

where ()=, stands for indicator function, which equals to 1 if O(t) = o, and 0 other-
wise. Then, for the case of multiple sequences, each sequences indexed by s, total num-
ber of sequences of m, The only changing is the updating of 7*,A4*, and B* as follows.

m s
S(1
(i) = =L @ (10)
DYDY iy S 10)
A= S ~—T°—1_s (11)
Dose1 2=t Vi)
m T5—1 S
- _ SO os)=

b;k(ok) — s=1 Z[—l yl ( ) Os(t) O (12)

T5—1
D1 Vi®)

The procedure above is repeated till either the Y ." log(P(O*|0)) converge or reaching
maximum iteration numbers set by the user. As mentioned in the Introduction section, a
key difference between our method and [6] lies in the E-step for calculating the expected
value for a given emission or transition. Our method handles the partial label con-
straints recursively for the o and 8, whereas [6] calculates « and 8 without using the par-
tial labels and only uses the partial labels in resetting y at each partial labelled position

Page 6 of 21
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independently, as if partial labels elsewhere would have no effect for the position being
considered. Since E-step in Baum—Welch algorithm invokes forward and backward algo-
rithms, which are essentially a dynamic programming to more efficiently calculate the
likelihood: Pr(0O|0) = ExerPr(0, X|0) with I" being the set of all hidden paths, and hence
should give the same result when the likelihood is computed by exhaustively summing
over probability for all possible hidden state paths. Therefore, we believe, the partial
labels would restrict the possible hidden state paths, Pr(0|0) = ZxcPr(0O, X|0) with
" being the set of all hidden paths constrained by partial labels and such constraints
should be handled recursively in the dynamic programming. Figure 1 shows an example
for the forward/backward dynamic programming table construction. Another advantage
of our method comparing with the method in [6] is that our training method can keep
the topology of the initial transition and emission guesses for the model as standard
Baum—Welch does. In other words, if prior knowledge is available for the model topol-
ogy, our training method for partial label data can keep the knowledge to the end of

training.

Model selection based on partial label information
The second part of our method is model selection based on partial label information. The
rationale is straightforward: while the constrained Baum—Welch algorithm increases the
log-likelihood of the given training sequences (with partial labels), iteration after itera-
tion monotonically as ensured by EM approach, there is no direct guarantee that the
increased log-likelihood would necessarily lead to higher decoding accuracy. Therefore,
at each iteration of constrained Baum—Welch algorithm, decoding accuracy for the par-
tially labelled training sequence can be calculated and factored into model selection.
Specifically, after reaching convergence condition or maximum number of iterations,
the total number of iteration is Q and the i iteration’s model and the corresponding
log-likelihood can be denoted as 6; and Y _." Log (P(O*|6;)) respectively and let the decod-
ing accuracy denote as Accuracy(6;, O, X). The final model returned by the algorithm
can be expressed as:

argmin G*Pr(O|9* = {argmax GieglmQAccumcy(Gi, 0,X)}) (13)

Notice that 6* is a set of models in general. Finally, combining the constrained Baum—
Welch and the model selection described above, the overall algorithm of our proposed
method is given in Algorithm 1. In next section, Tables 2, 3, 4 and 5 will show the
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Table 2 Improvements of cBW + model selection, cBW alon vs Scheffer et al., with fully connected

(2021) 22:162

initial transition matrix for synthetic data with Viterbi algorithm

State #/
training
sample

Average improvements of cBW +
model selection in setting 1/2

Average p value of cBW +
model selection in setting 1/2

Average improvements of
cBW alone in setting 1/2

3/1600
3/2000
3/2400
3/2800
5/1600
5/2000
5/2400
5/2800
7/1600
7/2000
7/2400
7/2800

7.35/8.29%
7.99/8.82%
8.47/9.13%
8.51/9.24%
12.97/14.75%
14.63/16.32%
14.69/16.54%
15.56/17.22%
8.61/10.42%
10.56/12.40%
11.35/13.21%
12.16/14.06%

2.1E-02/6.2E-05
3.9E-02/2.6E-09
2.8E—-03/24E-10
5.8E—-03/6.9E—-10
7.8E—05/3.3E-05
2.5E—-03/1.2E-06
7.8E—04/6.2E—06
1.6E—02/1.3E-07
3.5E-02/1.1E-02
6.4E—03/6.2E—03
8.2E—03/7.8E—-03
1.0E—03/1.1E—04

7.61/8.49%
8.31/9.00%
8.71/9.18%
8.65/9.24%
11.13/12.82%
12.65/14.11%
12.73/14.50%
13.72/15.22%
5.56/7.20%
7.87/9.52%
8.71/10.43%
9.68/11.41%

Table 3 Improvements of cBW + model selection, cBW alone vs Scheffer et al. in cases of correct

initial transition matrix for synthetic data with Viterbi algorithm

State #/
training
sample

Average improvements of cBW +
model selection in setting 1/2

Average p value of cBW +
model selection in setting 1/2

Average improvements of
cBW alone in setting 1/2

3/1600
3/2000
3/2400
3/2800
5/1600
5/2000
5/2400
5/2800
7/1600
7/2000
7/2400
7/2800

8.07/8.57%
8.58/9.05%
8.93/9.24%
8.87/9.31%
11.99/13.24%
13.07/14.20%
13.22/14.59%
13.89/15.20%
7.85/9.37%
9.75/11.28%
10.50/12.10%
11.39/12.95%

2.3E—04/4.7E—07
1.9E—06/6.5E—09
1.6E—07/1.0E—09
1.3E—08/1.5E-09
1.7E—02/4.5E—-06
4.1E—02/3.4E-06
2.0E—02/1.2E—05
4.1E—02/1.6E-07
6.7E—02/3.5E-02
5.6E—-03/4.1E-03
1.8E—02/1.9E-02
1.4E—03/1.9E-04

8.11/8.56%
8.63/9.03%
8.97/9.20%
8.94/9.26%
11.76/13.08%
12.87/14.11%
12.94/14.35%
13.85/15.16%
6.04/7.34%
7.93/9.32%
8.99/10.53%
9.75/11.29%

usefulness of both this model selection method and the ability of keeping correct topol-

ogy of cBW method.

Page 9 of 21
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Table 4 Improvements of cBW + model selection, cBW alon vs Scheffer et al., with fully connected
initial transition matrix for synthetic data with posterior-Viterbi algorithm

(2021) 22:162

State #/
training
sample

Average improvements of cBW +
model selection in setting 1/2

Average p value of cBW +
model selection in setting 1/2

Average improvements of
cBW alone in setting 1/2

3/1600
3/2000
3/2400
3/2800
5/1600
5/2000
5/2400
5/2800
7/1600
7/2000
7/2400
7/2800

7.08/8.02%
7.93/8.57%
8.21/8.85%
8.43/9.15%
9.13/10.62%
10.32/11.68%
11.26/12.74%
12.48/13.76%
8.40/10.08%
10.22/11.96%
11.10/12.68%
12.18/13.89%

3.6E—02/1.9E-04
9.5E—03/3.9E-05
1.7E—03/2.5E-05
1.8E—03/1.1E-06
24E—-02/3.2E—-03
14E—02/6.2E—-05
1.1E—02/2.0E—06
9.8E—03/2.1E-08
6.0E—02/2.5E-02
3.2E—02/1.3E-04
8.1E—03/1.5E—-05
1.6E—04/8.4E—08

7.49/8.35%
8.32/8.88%
8.55/9.03%
8.82/9.36%
9.08/10.58%
10.38/11.76%
11.29/12.84%
12.56/13.86%
7.77/9.50%
9.82/11.65%
10.60/12.31%
11.96/13.77%

Table 5 Improvements of cBW + model selection, cBW alone vs Scheffer et al. in cases of correct
initial transition matrix for synthetic data with posterior-Viterbi algorithm

State #/
training
sample

Average improvements of cBW +
model selection in setting 1/2

Average p value of cBW +
model selection in setting 1/2

Average improvements of
cBW alone in setting 1/2

3/1600
3/2000
3/2400
3/2800
5/1600
5/2000
5/2400
5/2800
7/1600
7/2000
7/2400
7/2800

7.46/8.01%
8.09/8.52%
8.32/8.67%
8.58/8.99%
9.52/10.62%
10.53/11.55%
11.51/12.58%
12.49/13.55%
8.75/10.19%
10.50/11.99%
11.15/12.47%
12.36/13.75%

2.8E—02/1.7E-02
3.0E-02/1.6E-02
3.7E—02/5.9E-03
4.9E—02/12E-03
1.1E-01/5.1E-02
6.0E—02/8.2E—-03
2.0E—02/3.5E-04
1.7E—02/8.0E—06
2.9E—-02/2.6E—-02
2.1E—-02/4.2E-03
6.9E—02/7.8E—-04
5.2E—-02/1.1E-05

7.64/8.11%
8.25/8.60%
8.49/8.73%
8.79/9.09%
9.45/10.59%
10.47/11.63%
11.44/12.58%
12.55/13.61%
8.27/9.77%
9.82/11.31%
10.69/12.11%
12.05/13.57%
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Algorithm 1: Constrained Baum-Welch with model selection based on de-

coding accuracy.

Data: sequences: O, partially label X
Result: bestA bestB

initialization: 6 = (w, A, B) ;
bestAccuracy < 0 ;

while not reaching maximum iteration nor convergent do
calculate a,3 by Eq. 1 to 4 ;

calculate 7, £ by Eq. 5to 6 ;

update 7*,A*,B* by Eq. 7to 9 ;

X* < Decoding(r*,A*,B*,0) ;

myAccuracy < Accuracy( X*,X) ;

if myAccuracy > bestAccuracy then

bestAccuracy < myAccuracy ;

T T
bestA + A* ;
bestB «— B* ;
end
end
Results

In this section, we set up experiments using both real biological data and synthetic data
to test our method for decoding task and compared the results with those from using
the method in [6]. It has been reported that [14, 15] posterior decoding in general per-
forms better than Viterbi algorithm. So, in order to evaluate how our training method
can impact on decoding, we carried out the decoding on the testing sequences with the
trained model using both the standard Viterbi algorithm [10] and posterior-Viterbi algo-
rithm described in [15], and the accuracy was computed by comparing the predicted
label with the ground truth label at each position to determine the number of correct
predictions:

# of correct predicted labels
# of total labels

Accuracy =

The results of these experiments show that our method outperforms Scheffer et al’s
method in model training, as evidenced in the improved decoding accuracy, regardless
which decoding algorithm is used. Specifically, on average, decoding accuracy improves
by 33% with Viterbi algorithm, 36% with posterior-Viterbi algorithm in real data, and
improves by 7.35-14.06% with Viterbi algorithm, 7.08-13.89% with posterior-Viterbi
algorithm in synthetic data with significant p values. Note that, in two cases when the
sequences are either almost fully labelled (95%) or very sparsely labelled (5%), the differ-
ences between various algorithms are insignificant. This phenomenon is no surprising
though, as it is expected that the benefit from making good use of partial labels dimin-
ishes when labels are extremely sparse, which makes the various algorithms converge to
Baum—Welch algorithm, or when sequences are almost fully labelled, which makes the
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various algorithms converge to the maximum likelihood. Therefore, our evaluations are
divided into two settings for synthetic data. Setting 1 has partial label information from
5 to 95%. Setting 2 has partial label information from 10 to 90%.

Synthetic data

The method described in [6] is mainly focused on handling text mining problems using
synthetic data. To make the comparison fair, we have also performed experiments using
synthetic data, which allowed us to observe our method’s different performance in dif-
ferent situations. In the experiments with synthetic data, the data is generated from
ground truth HMMs, which are also generated randomly with predefined connections.
For each experiment, the size for initial guess of transition and emission matrices are
identical to the corresponding ground truth model. We fixed the number of symbols in
hidden Markov model to be 20 to mimic the 20 amino acids in protein sequences. To
test how model complexity may impact the training, we chose three different numbers
of states: 3, 5, and 7. Moreover, different levels of training sample size were also consid-
ered as an experimental variable. Each experiment (with fixing state number and train-
ing examples) was evaluated for different levels of partial label and repeated for 50 times,
and the corresponding paired p values were also calculated to assess the statistical signif-
icance of the performance difference between our method and the other method. Since
our method can maintain the topology of initial guess of transition matrix, experiments
were divided into two different groups. One was initialized the transition matrix with
the same connectivity as the ground truth model, and the other was initialized with fully
connected transition matrix.

Three sets of experimental results with fully connected transition matrix as initial
guess are shown in Figs. 2, 3 and 4. Additional results are shown in Tables 2, 3, 4 and 5
for comparison.

Conducted using different numbers of states, training examples, and different decod-
ing algorithms, the results show that our method outperforms the method by Scheffer
et al. by 7.08-14.06% across different percentage of unlabelled data, with significant p
value (< 0.05) for majority of the experiments. While both methods achieve a perfor-
mance closer to that of the ground truth model as the level of partial labels increases,
the improvement of our method over the method of Scheffer et al’s is more pronounced
when partial labels are sparse, namely the level of unlabelled data is high, as shown in the
X-axis of the Figures. For example, in Fig. 2, with Viterbi decoding, at the level of 70%
unlabelled data, i.e., 30% partial labels, our method reaches an accuracy of 62%, which
is 98% of the ground truth model accuracy, whereas Scheffer et al’s reaches accuracy
of 54%, which is 85% of the ground truth model accuracy. Similar trends hold true for
Figs. 3 and 4 when the model has 5 and 7 states respectively regardless of the decoding
algorithm used.

Real data

For the real biological data, we adopted data from [16]. The data contains 83 multi-pass
transmembrane proteins with complete label information. The topology of multi-pass
transmembrane protein is shown in Fig. 5. The label for each sequence contain three
different values: i, 0o, M. They stand for the region of protein sequence inside, outside
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Cell
Outside Membrane Inside
Cell Cell

— P

Fig. 5 multi-pass transmembrane proteins the red lines represents protein sequence outside of cell
membrane, the blue lines represents protein sequence inside of cell membrane, and green line represents
transmembrane domain of the protein sequence. Generated by Google Drawings

Fig. 6 Topology of 4-state HMM for multi-pass transmembrane prediction States i and o represent inside and
outside cell membrane respectively. Both M and M stand for transmembrane domain, the redundant M is
used to avoid direct connection between state i and o, which is impossible. Generated by Google Drawings

cell membrane, and the transmembrane domain respectively. While much more sophis-
ticated hidden Markov models have been used for modeling transmembrane protein
topology [16-19], a simple HMM is used in this study to primarily evaluate the new
training algorithm for partial labels. The architecture of the HMM is shown in Fig. 6,
in which a redundant M’ node is introduced as a simple mechanism to avoid a state
path, such as iiiimmmmiii or cooommmoooo, that does not correspond to the real
topology of transmembrane protein, in which a membrane domain has to be flanked by
i on one side and o on the other side. Therefore, the transition matrix is 4 by 4, corre-
sponding to the four states. Note that the amino acid emission frequencies for the trans-
membrane state are calculated by lumping together counts or expectation from both M
and M’ states. We set up two different experiments with different initial conditions: (1)
Transition matrix has correct zeros as ground truth model. (2) Transition matrix is fully
connected. We set up experiments for condition (2) because the method in [6] cannot
enforce initial zeros to remain zeros during the training, therefore, condition (2) gives
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more fair comparison of the two methods when no prior knowledge is available. The
HMM is trained by these two different methods in a 10-fold cross validation scheme.
Different levels of unlabelled data in training examples are actuated by selecting loca-
tions randomly to be unlabelled for each sequence. Since no ground truth model is avail-
able, maximum likelihood method with fully labelled training data is used to mimic the
role of the ground truth model in experiments with synthetic.

For condition (1), the result shown in Fig. 7 demonstrates that our method (con-
strained Baum—Welch with model selection) outperforms other method (Scheffer et al)
by 33.59% with Viterbi Algorithm and 36.16% with posterior-Viterbi algorithm. For con-
dition (2), the result shown in Fig. 8 attests that our method outperforms other method
by 33.20% with Viterbi Algorithm and 36.32% with posterior-Viterbi algorithm. For both
conditions, the performance of our method with or without model selection technique

and maximum likelihood are very close.

Discussion

From the results of experiments with synthetic data in Tables 2, 3, 4 and 5, they show:
(1). constrained Baum—Welch algorithm with or without model selection technique
achieve significant better performance than Scheffer et al. [6]; (2). constrained Baum—
Welch benefit from having correct topology (comparisons between the 4th columns of
Tables 2, 3); (3). constrained Baum—Welch algorithm performs better when model selec-
tion technique is used, especially when the task is hard (comparisons between 2nd and
4th column in Tables); (4). disregarding the training methods, posterior-Viterbi always
outperforms standard Viterbi for decoding (Shown in Figs. 2, 3, 4, 7, 8).

From the results of experiments with real data, performance of constrained Baum-—
Welch with or without model selection are very close to maximum likelihood approach
across different percentages of partial label. However, the performance of Scheffer et al’s
drops dramatically after the percentage of unlabelled data is greater than 10%. The rea-
son behind this is the method by Scheffer et al. cannot enforce the correct topology even
the initial guess is correct. For this problem in particular, have a HMM with correct
topology is key for higher accuracy.

Moreover, there are a few points worth mentioning for the benefits of those who
may consider using this method for their applications. First, the ability of keeping cor-
rect topology makes cBW method compatible with more complex HMM, such as pro-
file HMMs. However, as a trade-off, the training time can significantly increase. Second,
model selection technique, although optional, is highly recommended to be used with
posterior-Viterbi instead of standard Viterbi for best decoding performance. Lastly,
our method is designed especially for the task of detecting de novo targeting signals,
which assumes no fully labelled sequence is available in general. For the cases with relax-
ing constraints: some fully labelled sequences are available, our method is not the only

choice, interested readers may also consider methods in [9].

Conclusion

In this work, by modifying the standard Baum—Welch algorithm, we developed a novel
training method, which, along with a model selection scheme, enables leveraging the
partial labels in the data to improve the training of hidden Markov models. Compared
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with a similar method, our method achieved significant improvements in training hid-
den Markov models as evidenced by better performance in decoding both synthetic data
and the real biological sequence data.

For future work, we will further investigate the impact of this training method on
detecting de novo motifs and signals in biological data. In particular, we plan to deploy
the method in active learning mode to the ongoing research in detecting plasmodesmata
targeting signals and assess the performance with validations from wet-lab experiments.

Abbreviations
HMM: Hidden Markov model; PDLP: Plasmodesmata-located proteins; cBW: constrained Baum-Welch algorithm; EM:
Expectation—maximization.
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