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Background
In recent years, single-cell RNA sequencing (scRNA-seq) has developed into a powerful 
tool for defining and characterizing cell types [1–7] by profiling many individual cells 
at scale and analysing their gene expression to find patterns of variation. This generally 
requires clustering cells, and many different approaches and software packages have 
been developed to streamline this process [8–11]. Despite recent advances and adap-
tations applied to clustering algorithms [12], choosing appropriate clusters (Fig.  1a) 
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remains challenging as: (1) many algorithms have tuneable parameters whose user-
defined adjustment can produce very different results; and (2) without foreknowledge of 
cell types, it is hard to address the quality of the chosen clusters, and whether the cells 
have been under- or over-clustered (Fig. 1a). In general, under-clustering occurs when 
clusters are too broad and mask underlying biological structure. Near-optimal cluster-
ing is when most clusters relate to known or presumed cell types, with relevant biologi-
cal distinctions revealed and without noisy, unreliable, or artifactual sub-populations. 
When cells are slightly over-clustered,  non-relevant subdivisions have been introduced; 
however, these subclusters can still be merged to recover appropriate cell types. Once 
severe over-clustering occurs, however, some clusters may be shattered, meaning they 
are segregated based on non-biological variation to the point where iterative re-merging 
cannot recover the appropriate cell types. Although certain hierarchical approaches, by 
definition, can avoid this shattering phenomenon, strict hierarchical clustering (in con-
trast to hierarchical assembly of clustered cell types) is not commonly used in most sin-
gle-cell RNA-seq analysis workflows.

A number of data-driven metrics have been proposed to address the challenges of 
over- and under-clustering, some of which estimate the statistical robustness of clusters. 
A notable example is the SC3 package, which provides an estimate of cluster number in 
a dataset and also includes a measure of cluster stability [13]; however, its current imple-
mentation is optimized for smaller datasets, and cannot readily be used with other meth-
ods outside of the SC3 package. Alternative approaches include testing clustering across 
various parameter regimes and creating a merged consensus clustering, or iteratively 
applying a machine learning classifier to identify clusters as candidates for re-merging 
[14–17]. However, these approaches are all post hoc, will not split clusters in the case 
of under-clustering, and assume that over-clustered populations can be hierarchically 
merged into properly clustered cell types, which is not always the case (Fig. 1a).

To address this gap, we developed chooseR, a framework that uses iterative, sub-sam-
pled clustering across algorithm parameters to guide decisions about optimal cluster-
ing parameter values and calculate cluster robustness (Fig.  1b). Examples of common 
parameters it can optimize include the resolution (in the Seurat and scVI packages), k 

Fig. 1  Subsampling-based robustness metrics identify near-optimal clustering parameter values. a 
Schematic of the clustering parameter selection problem. In the under-clustering case, clearly distinct 
biological differences remain unresolved. In the optimal clustering case, cells are appropriately grouped, 
while in the minor over-clustering case, some groups of cells are over-split. Either the optimal clustering or 
the minor over-clustering parameter regime is appropriate (red arrows), since the latter can be modified 
through cluster re-merging to obtain the optimal clustering. With severe over-clustering (rightmost panel), 
groups are over-split, and the dark green cluster shows evidence of “shattering”, in that these cells cannot 
be re-assigned to the proper clusters even with iterative re-merging of clusters. b Schematic of the chooseR 
approach. After 100 randomly drawn subsampled sets of cells  are clustered, a cell–cell co-clustering 
frequency matrix is used to calculate mean per-cluster silhouette scores. This process is repeated for each 
parameter value of interest. c Under-, optimal, and over-clustering illustrated on a single-cell RNAseq dataset 
containing ~ 11,000 PBMCs. d Silhouette distribution plot for the dataset in c. Each dot represents a cluster 
at a given clustering parameter value. Medians with 95% CI are shown for each parameter value. The vertical 
red line marks the optimal resolution (in the Seurat package), and the blue line marks the decision threshold 
(“Methods” section). e Median silhouette scores for each cluster at the suggested optimal resolution = 2. 
Cell type families are indicated by colored boxes along the x-axis. This identifies which clusters are likely less 
robust at the optimal parameter value and should be investigated further in a more focused way

(See figure on next page.)
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(for k-means clustering approaches), or the number of reduced dimensions for mani-
folds on which the cells are projected. This framework is designed to be used during 
the initial clustering phase with any clustering method on single cell datasets regardless 
of size, depth, tissue of origin, or species. Crucially, because it wraps around the user’s 
clustering workflow of choice, it allows for unbiased as well as weighted clustering using 
known marker genes, if such prior information exists for the system in question and can 
be incorporated into the clustering workflow being used. In addition, it not only returns 
the near-optimal set of parameter values, but also identifies which clusters are less 
robust and require more focused analysis and re-clustering in isolation; this is important  
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because even a globally optimal parameter set does not necessarily imply that all clusters 
are equally well-resolved.

Results
To demonstrate under-, near-optimal, and severe over-clustering of real cellular data, we 
used a dataset of ~ 11,000 human peripheral blood mononuclear cells (PBMCs) from the 
10x Genomics public repository. When this dataset is under-clustered with the Seurat 
workflow (Fig. 1c, left), sub-types of B cells and dendritic cells are not resolved, and sub-
sets of CD4+ and CD8+ T cells are called as being in the same cluster. By contrast, near-
optimal clustering (Fig. 1c, middle) accurately reflects known cell types and subtypes. As 
the clustering parameter (here, the resolution value) is increased further (Fig. 1c, right), 
the data is split into many small clusters, some of which are  subsets of larger clusters, 
but some of which are shattered into intermixed groups, which cannot be re-merged in 
a coherent way to reconstitute the larger cell groups. This shattering of clusters is also 
evident in how individual cells are distributed into clusters over a range of resolutions, as 
revealed by the Clustree tool (Additional file 1: Fig. S1). Initially, at low or moderate res-
olution values, the cell membership of large clusters divides into more refined branches, 
but with further increases of resolution and cluster number, significant proportions of 
cells intermix across major cell types.

We applied our chooseR framework to identify de novo a set of parameter values that 
produces near-optimal clustering of this dataset (Fig. 1d). When used with the Seurat 
package [8, 9], chooseR identified a resolution of 2 as the value with most clusters (red 
line), based on confidence-interval bounds on the median silhouette value distributions 
(blue line) over all parameter values (“Methods” section). At this resolution, the clus-
ter silhouette scores provide an intuitive metric for identifying highly robust clusters 
and those with lower robustness, the latter of which may require further investigation 
(Fig. 1e). Overall, however, the resolution value returned by chooseR results in clustering 
that corresponds well with known cell types (Fig. 1c, middle), demonstrating that this 
data-driven approach yields reliable clustering parameter values.

It is rare that a single set of parameters in any clustering algorithm will resolve all 
putative cell types equally well, especially given the multi-scale organization of most bio-
logical systems. Thus, we highlight that an important aspect of chooseR is its ability to 
identify which clusters are candidates for re-merging, followed by re-clustering in isola-
tion in order to better subdivide these cells into more robust groups. As an example of 
this strategy, we selected poorly-resolved clusters in the analysis as candidates for fur-
ther investigation, and reclustered them in isolation from other cells to identify better 
subdivisions among them (Additional file 2: Fig. S2). Finally, there are multiple parame-
ters besides the resolution that affect clustering, and chooseR can be used to select near-
optimal values for all of them, with the added benefit of showing which ones appear to 
have the largest effects on clustering (Additional file 3: Fig. S3).

Whereas the illustrations in Fig. 1 are all based on 100 iterations, each subsampling 
80% of the cells, chooseR returns the same near-optimal resolution parameter value at 
50 iterations, and using only 50% of the cells at each iteration (Additional file 3: Fig. S3). 
Although it is not recommended to use too low of a subsampling percentage or too few 
iterations, the user can reduce these numbers to speed up the overall computational 
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time, which scales linearly with the number of iterations; the scaling with respect to the 
number of cells depends on the underlying clustering algorithm being used. Regardless 
of the number of iterations or subsampling percentage, however, chooseR provides an 
assessment of per-cluster robustness at the resulting value of the near-optimal param-
eter, which the user can ultimately evaluate.

Next, we showed that chooseR generalizes across widely-used clustering workflows by 
applying it to the same dataset using the Seurat package and the scVI workflow inte-
grated into Scanpy [10, 11]. Whereas Seurat uses PCA for dimensionality reduction, scVI 
uses deep neural networks to encode the transcriptome in a low-dimensional latent vec-
tor space. They both subsequently use different community detection-based approaches 
(the Louvain and Leiden algorithms, respectively) with tunable parameters to identify 
a suitable set of clusters. Here, chooseR identified a resolution parameter of 2 as near-
optimal for Seurat, yielding 29 clusters, and identified a resolution parameter of 1.6 as 
near optimal for scVI, yielding 30 clusters (Fig. 2a, e). At their respective parameter val-
ues, both workflows identified clusters with a broad range of co-clustering frequencies 
with some off-diagonal hits, suggestive of populations of mixed robustness (Fig. 2b, f ). 
The silhouette scores show that areas of differing robustness coincide well across the two 
methods (Fig.  2c, g and Additional file  4: Fig. S4), and the near-optimal clusters from 
Seurat and scVI are in good agreement (Fig. 2d, h), despite having different near-opti-
mal values for their respective resolution parameters. In addition, the silhouette scores 
per cluster correspond well to the within cluster co-clustering scores along the diago-
nal (Additional file  4: Fig. S4), reflecting their shared information content. Separately, 
the SC3 package [13], which has a built-in consensus-based approach to find an optimal 
k-means clustering, recommended an optimal k-value of 35 clusters (Fig. 2i). Thus, the 
generalized consensus approach in chooseR yields the same clusters using multiple clus-
tering algorithms, highlighting its broad applicability and compatibility with a user’s pre-
ferred clustering package (Fig. 2j). In particular,  the near-optimal parameters selected 
by chooseR for the Seurat and scVI workflows yield clusters that agree better with each 
other (based on per-cluster maximum Dice coefficient metrics) than with the partitions 
obtained using sub-optimal parameter sets for either method (Fig. 2k). Thus, although 
no official cell type annotations were included as part of the release of this dataset, the 
consistency of clusters given by the chooseR-selected optimal parameters in Seurat and 
scVI supports the notion that these clusters likely reflect robust aspects of the underly-
ing biological diversity.

Next, we tested chooseR on a dataset with fewer cells profiled more deeply, apply-
ing it to identify the optimal Seurat resolution parameter on a published Smart-Seq-
based PBMC dataset [18]. Seven cell types, including three T-cell subtypes and 2 
monocyte subtypes, were annotated in the original dataset, based on cell type cluster-
ing and assignment from a much larger dataset (Fig. 3a). chooseR suggested a Seurat 
resolution value of 1.6 as near-optimal for this dataset (Fig. 3b) and identified clusters 
with a range of co-clustering frequencies at this resolution (Fig.  3c). The suggested 
clusters agree well visually with those annotated in the original dataset (Fig.  3d, e), 
though some mixing is evident (Fig. 3e). Specifically, this resolution value results in a 
single cluster for all monocytes, rather than the annotated two, and mixes cytotoxic 
T cells and natural killer cells across two clusters (Fig.  3e). However, the silhouette 
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scores clearly reveal low robustness within the clusters encompassing these mixed cell 
populations (Fig. 3f ), which is further reflected in the co-clustering frequency matrix 
(Fig. 3c), the dot plot of cluster robustness (Additional file 5: Fig. S5) and silhouette 
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UMAP projection (Fig. 3f ). This highlights the ability of chooseR to mark subgroups 
of cells and clusters that require further investigation. It is worth noting that the pub-
lished cluster annotations were generated on a substantially larger dataset that was 
not included here [18], so the overall concordance between clusters and cell types 
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(Fig. 3e), and cluster number (Fig. 3g), demonstrates the efficacy of chooseR in iden-
tifying biologically meaningful clusters, even when applied in isolation on datasets 
with smaller numbers of cells.

We next applied chooseR to data from tissue with high cellular diversity and more 
complex relationships between cell types. This mouse adult spinal cord neuron dataset 
has previously been shown to include distinct dorsal cell types as well as more inter-
related ventral cell types [7, 19] (Fig. 3h). Here, chooseR suggested a Seurat resolution 
value of 4 (Fig. 3i) and identified clusters with widely ranging co-clustering frequencies, 
suggestive of a mixture of highly distinct and less distinct cell types (Fig.  3j). Visually, 
the suggested clusters at this resolution agreed well with the 43 types annotated in the 
original dataset (Fig.  3k). Overall, the recommended clusters strongly correlated with 
the published clusters, particularly among the more distinct dorsal excitatory and dor-
sal inhibitory neurons (Fig. 3l). The silhouette score map clearly reveals robust and less 
robust clusters, the latter concentrated in areas corresponding to closely related ven-
tral neuron groups [7, 19] (Fig. 3m, Additional file 6: Fig. S6). In addition, the correla-
tion between chooseR clusters and annotated subgroups in the mid/ventral groups was 
weaker (Fig. 3l), as expected. Overall, this highlights chooseR’s ability to identify param-
eter values resulting in biologically meaningful groupings among cell types with varying 
degrees of discreteness. Finally, the observation that the number of annotated clusters, 
the recommended optimal k value from SC3, and the number of clusters suggested by 
chooseR coincide almost exactly gives further support to the idea that these clusters cap-
ture  relevant axes of biological diversity (Fig. 3n).

Discussion
Here, we have presented chooseR, a subsampling-based framework to help end-users 
select clustering parameter values a priori. We demonstrate that chooseR can be used 
with multiple clustering packages and recovers previously known cell type clusters in 
a high-cell, lower-depth PBMC dataset, a low-cell, higher-depth PBMC dataset, and a 
larger, more complex dataset of mouse spinal cord neurons. The underlying assumption 
is that clustering workflow parameter values most likely to uncover the underlying bio-
logical diversity are those that generate a large number of clusters with high robustness, 
though we note that this may result in a potential bias towards minor over-clustering. 
However, since chooseR also provides simple, easy-to-interpret metrics—the cluster 
average silhouette score and co-clustering maps—it also identifies those clusters that are 
likely over-clustered, highlighting them for merging or further analysis. Finally, to maxi-
mize the utility of chooseR, it is designed to be wrapped around any existing clustering 
algorithm to help guide the selection of tuneable clustering parameter values.

Conclusion
The chooseR tool assists users in selecting clustering parameters for single cell sequenc-
ing analysis. By providing a workflow-independent framework to identify a near-optimal 
initial set of clusters, we allow end-users to choose with confidence whichever analysis 
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tool they prefer, thus generalizing their strategy towards finding biologically meaningful 
partitionings of single-cell data.

Methods
Overview

The goal of this work was to develop a method for automated selection of cluster-
ing parameter values that could be applied to a wide variety of clustering workflows 
and datasets. The chooseR framework begins by identifying partitionings of the full 
dataset for the lower bound of the clustering parameter values under investigation. 
Next, it clusters 100 random subsets comprising 80% of the cells. This subsampled 
clustering generates co-clustering frequency values for every cell pair, which are then 
used to calculate each cell’s silhouette score on the full (non-subsampled) clustering. 
To calculate the silhouette score, the distance metric between any two cells is set at 
1 minus their co-clustering frequency. Subsequently, per-cell silhouette scores are 
aggregated for each cluster to generate a per-cluster measure of robustness, and this 
entire process is then repeated over the full range of clustering parameter values. For 
each parameter value, the 95% confidence interval (CI) of the distribution of cluster 
silhouette scores is calculated. The near-optimal clustering parameter value is the one 
yielding the highest number of clusters whose median silhouette score overlaps with 
the 95%CI with the highest lower bound (see details below). This approach has two 
key outputs: it identifies a near-optimal partitioning for cell type identification and 
provides a robustness score for each cluster in that partitioning, which can be used to 
identify low-robustness clusters for further analysis.

Data sets

We used three publicly available data sets for the analysis presented here:

1.	 The 10  k PBMCs from a Healthy Donor dataset is publicly available from 
10 × Genomics® and may be downloaded at: http://cf.10xge​nomic​s.com/sampl​es/
cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filte​red_featu​re_bc_matri​x.tar.gz.

	 After making variable names unique, any gene not expressed in at least 3 cells was 
dropped. Additionally, cells with > 20% mitochondrial reads, < 200 genes detected, 
or > 5200 genes detected were removed.

2.	 The Smart-Seq PBMC dataset was published in Ding et al. [18]. It is publicly available 
through the Broad Institute’s Single Cell Portal (Study Number SCP424). No addi-
tional QC metrics or filtering were run, as only those cells with cluster labels in the 
original study were retained.

3.	 The mouse spinal cord neuron dataset was published in Sathyamurthy et al. [7]. It is 
publicly available through the NCBI Gene Expression Omnibus (Ascension Number 
GSE103892). No further QC metrics or filtering were run, as only those cells with 
cluster labels in the original study were retained.

http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz
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Clustering algorithms

The chooseR package serves as a wrapper that is suited to any individual clustering 
method. Here, we illustrate the general workflow used with two popular packages for 
single-cell clustering analyses:

1.	 Seurat—when using the Seurat package (version 3.1.4), before clustering, the 
Seurat::SCTransform function was used with default parameters to normalize and 
scale the data, as well as regress out the percentage of mitochondrial genes. Then, 
Seurat::RunPCA was called on the “SCT” assay with 100 PCs, and all other param-
eters set at default values. Clustering with the Seurat package was performed on 
all calculated principal components, using the Seurat::FindNeighbors function with 
default parameters, followed by the Seurat::FindClusters function with default 
parameters at the specified resolution.

2.	 scVI—when using scVI (version 0.6.5) with Scanpy (version 1.4.6), before clustering, 
a copy of the raw data was saved. Next, the scanpy.pp.normalize_total and scanpy.
pp.log1p functions were used to normalize and scale the data. Then, the 3,000 most 
highly variable genes were determined using scanpy.pp.highly_variable_genes using 
the Seurat settings, with all parameters at default. Next, the raw data  matrix was 
subset to contain only highly variable genes, before calculating 10 latent vectors for 
400 epochs with a helper function provided by scVI. Clustering with the Scanpy 
package was performed on the latent variables calculated by scVI, using the scanpy.
pp.neighbors function with default parameters, followed by the scanpy.tl.leiden func-
tion with default parameters at the specified resolution.

Workflow

For each of these two packages, the general chooseR workflow begins with a full clus-
tering performed (as described above) on all cells to establish reference labels for a 
given resolution. This is followed by 100 repetitions of the clustering, each performed 
on a random 80% subset of the dataset, drawn without replacement. From the 100 
subsampled clustering runs, a pairwise cell–cell co-clustering matrix is created where 
each entry indicates the co-clustering frequency between each pair of cells. The 
co-clustering frequency f(x,y) between two cells, x and y, is defined as the number 
of runs in which the cells were grouped into the same cluster divided by the num-
ber of times the cells were both included in a subsampling run. This co-clustering 
matrix is converted to a distance matrix by subtracting all values from 1; this leads 
to a distance value of  0  for cell pairs that always co-clustered and a value of  1  for 
cell pairs that were never grouped into the same cluster. Using this distance matrix, 
silhouette scores are then calculated per cell to each cluster. These per-cell silhouette 
scores are calculated and averaged across the full clustering labels to produce a mean 
score per cluster. The distribution of these per-cluster silhouette scores represents the 
robustness of the partitioning at a given parameter value. This entire process is then 
repeated over a range of clustering parameter values.
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To determine the near-optimal value of the clustering parameter(s), 95% confidence 
intervals were calculated on the median silhouette score for each clustering parame-
ter value using the CRAN package boot with 25,000 re-samples and “type = ‘bca’”. The 
decision threshold was defined as the highest value of all lower ends of the 95% confi-
dence intervals. The near-optimal clustering parameter value was then selected as the 
one yielding the largest number of clusters, while still having a median per-cluster sil-
houette score above the decision threshold. Finally, for comparison with the optimal k 
value obtained from the SC3 package, we used the SC3::sc3_estimate_k function with 
default parameter values.

Supplementary information
The online version contains supplementary material available   at https​://doi.org/10.1186/s1285​9-021-03957​-4.

Additional file 1: Fig. S1. Clustree displaying the problem of under-, near-optimal, and over-clustering. Generated 
with Clustree v0.4.2 from CRAN. As resolution increases, the number of crossing arrows increases, indicative of shat‑
tering—that is, clustering on noise that could not be solved by hierarchical merging.

Additional file 2: Fig. S2. Illustration of subclustering framework for better resolution of poorly-resolved clusters. For 
clusters identified as being poorly-resolved in the top-level clustering using all cells (left panel), it is possible to rerun 
the chooseR framework with Seurat on just these cells, following the same general procedure. This improves the 
clustering of certain subsets of cells (arrowheads in the lower right panel), allowing for them to be better resolved 
than they were at the top-level clustering. Although there is no guarantee that all cells will eventually be sorted into 
the clusters with the same robustness (due to biological and technical noise in the data set), successive reclustering 
of poorly resolved clusters at the top level can help to refine some cell clusters.

Additional file 3: Fig. S3. Application of chooseR to additional clustering parameters and effect of repetitions and 
subsampling on chooseR results. a Silhouette distribution plot from chooseR applied to the Seurat parameter deter‑
mining how many variable genes should be selected for clustering cells (on the PBMC data set explored in Fig. 2). 
The red line reflects the near-optimal value identified by chooseR, and the blue line reflects the decision threshold. 
Seurat returns relatively robust clusters somewhat independently of this parameter. b Cluster silhouette scores for 
the near-optimal value of the number of highly variable genes selected for clustering. c Same as a, but for the Seurat 
parameter determining how many principal components to use for clustering. Here, the cluster robustness stabilizes 
after selecting more than 20 PCs for this data set. d Same as b, but for the near-optimal value of the number of PCs 
used for clustering. e Silhouette distribution plot over different values of the resolution parameter when using only 
20% of the total cells in each iteration. The near-optimal parameter value for the resolution is 4, which differs from 
that identified when subsampling 80% of all cells in each iteration (Fig. 2). f Silhouette scores for each cluster at the 
near-optimal resolution value identified in e. The overall scores are substantially lower than when using 80% of all 
cells in each iteration (Fig. 2), suggesting that subsampling only 20% of all cells per iteration is too few. g, h Same as 
e–f, but subsampling 50% of all cells per iteration. Here, the near-optimal value of the resolution parameter is the 
same as when subsampling 80% of all cells, and the silhouette distribution at this parameter value resembles that 
when using 80% of all cells. i–l, Same as e–h, but with 20 and 50 iterations using 80% of all cells at each iteration. 
Here, the near-optimal value of the resolution identified is the same as the one found with 100 iterations (Fig. 2). The 
time cost for running chooseR scales linearly with the number of iterations, and approximately O(number of cells1.5) 
per iteration using Seurat; this latter scaling is dependent on the underlying clustering approach that is wrapped 
into chooseR.

Additional file 4: Fig. S4. UMAP representations and silhouette scores corresponding to Fig. 2. a, b, UMAPs 
calculated from scVI’s latent variables, displaying silhouette score and suggested clusters at resolution equals 1.6. 
c Dot plot displaying individual cluster silhouette scores for chooseR  and Seurat at resolution equals 2. Those with 
low scores would be candidates for further investigation. d As in c but with chooseR and scVI at resolution = 1.6. e, 
f co-clustering matrices (as in Fig. 2b, f ), but reordered to match panels c and d, showing that clusters with good 
silhouette scores also have high self co-clustering values, as shown along the diagonal.

Additional file 5: Fig. S5. Silhouette scores for Ding et al. [18]. Dot plot displaying individual cluster silhouette 
scores for chooseR  and Seurat at resolution parameter value = 1.6. Clusters with low scores would be candidates for 
further investigation.

Additional file 6: Fig. S6. Silhouette scores for Sathyamurthy et al. [7]. Dot plot displaying individual cluster silhou‑
ette scores for chooseR and Seurat at resolution parameter value =  4. Clusters with low scores would be candidates 
for further investigation.
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