
Yu et al. BMC Bioinformatics          (2020) 21:198 
https://doi.org/10.1186/s12859-020-3541-7

METHODOLOGY ARTICLE Open Access

Power analysis for RNA-Seq differential
expression studies using generalized linear
mixed effects models
Lianbo Yu* , Soledad Fernandez† and Guy Brock†

*Correspondence:
lianbo.yu@osumc.edu
†Soledad Fernandez and Guy Brock
contributed equally to this work.
Center for Biostatistics, Department
of Biomedical Informatics, The Ohio
State University, 1800 Cannon Dr.,
43210 Columbus, OH, USA

Abstract
Background: Power analysis becomes an inevitable step in experimental design of
current biomedical research. Complex designs allowing diverse correlation structures
are commonly used in RNA-Seq experiments. However, the field currently lacks
statistical methods to calculate sample size and estimate power for RNA-Seq
differential expression studies using such designs. To fill the gap, simulation based
methods have a great advantage by providing numerical solutions, since theoretical
distributions of test statistics are typically unavailable for such designs.

Results: In this paper, we propose a novel simulation based procedure for power
estimation of differential expression with the employment of generalized linear mixed
effects models for correlated expression data. We also propose a new procedure for
power estimation of differential expression with the use of a bivariate negative
binomial distribution for paired designs. We compare the performance of both the
likelihood ratio test and Wald test under a variety of simulation scenarios with the
proposed procedures. The simulated distribution was used to estimate the null
distribution of test statistics in order to achieve the desired false positive control and
was compared to the asymptotic Chi-square distribution. In addition, we applied the
procedure for paired designs to the TCGA breast cancer data set.

Conclusions: In summary, we provide a framework for power estimation of RNA-Seq
differential expression under complex experimental designs. Simulation results
demonstrate that both the proposed procedures properly control the false positive
rate at the nominal level.

Keywords: RNA-Seq, Power analysis, Bivariate negative binomial, Generalized linear
mixed effects Model

Background
RNA-Seq has become a popular tool for studying dynamics of gene function through
transcriptomic data of individuals with multiple samples of different origins [1, 2], diverse
cell types [3, 4], and multiple time points [5, 6] over the past decade. The transcriptomic
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measurements from multiple samples of the same individual are correlated in nature. It
is very challenging to estimate power in designing these RNA-Seq experiments as well as
to do comparative analysis. Currently there is a need of developing statistical methods for
sample size calculation and power estimation with correlated RNA-Seq data.
Since the emergence of RNA-Seq data, several papers have used Poisson or negative

binomial (NB) distribution to model count-based expression data [7–9]. But these meth-
ods are based on generalized linear models with fixed effects, so they can not be directly
applied to correlated expression data. To overcome this limitation, others proposed the
generalized linear mixed effects model (GLMM) tomodel count-based expression data by
adding random effects to allow diverse correlation structures while still assuming a Pois-
son distribution (Poisson-LMM) or NB distribution (NB-LMM) [10–12]. In addition, the
bivariate negative binomial (BNB) distribution was introduced to model paired counts of
brain lesions [13]. The BNB distribution is a compound distribution of two conditionally
independent Poisson random variables for modeling paired counts with a Gamma ran-
dom variable for modeling individual effects. Even though the BNB distribution has not
yet been used for RNA-Seq data analysis, it is a great candidate for experiments using
paired designs.
Several studies provide methods for sample size calculation and power estimation at

the marginal level [14–17] or data set level [18–20] for testing differential expression
of RNA-Seq experiments. However these methods were designed for experiments using
independent samples and can not be directly applied to correlated expression data since
they may lead to biased estimators of model parameters and result in a failure of proper
error rate control. So far, there is lack of general methods for power analysis that can be
applied to correlated RNA-Seq data. To overcome this deficiency, we are the first group
to propose a BNB approach for paired designs and a more general GLMM approach
for designs with diverse correlation structures. To ensure the false positive rate is prop-
erly controlled at the nominal level, we employ our previously published procedure for
simulating the null distribution of test statistics [17] and also compare it against the
asymptotic Chi-square distribution. To demonstrate performance of the new BNB and
GLMM approaches, simulations were conducted under a variety of scenarios. A real
TCGA data set was used for method application.

Methods
BNBmodel

The BNB distribution can be obtained by compounding two conditionally independent
Poisson random variables X|G = g ∼ Poisson(μg) and Y |G = g ∼ Poisson(γμg) with
a Gamma random variable G ∼ Gamma(φ−1,φ). The probability mass function for the
joint distribution of (X,Y ) is

P(X = x,Y = y) = φ−φ−1

�
(
φ−1)

μx (γμ)y

�(x + 1)�(y + 1)
�

(
x + y + φ−1)

(
μ + γμ + φ−1)x+y+φ−1 .

Without loss of generality, we use γ to denote the fold ratio of a gene between two
conditions. We are interested in testing hypothesis H0 : γ = γ0 vs. hypothesis H1 : γ �=
γ0. A Wald test for testing log transformed γ is H0 : log(γ ) = log(γ0) vs. H1 : log(γ ) �=
log(γ0). The likelihood ratio test (LRT) statistic and the Wald test statistic for the above
hypothesis with BNB distribution are defined in Rettiganti and Nagaraja [13].
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GLMM

Poisson or NB distribution is modeled through the log link function of a linear predictor
of mixed effects as

η = Xβ + Zb,

where β are fixed effects and b are random effects following normal distributions. For
inference on fixed-effects β , hypotheses H0 : Lβ = 0 vs.H1 : Lβ �= 0 is tested by LRT or
Wald test. Random effects b can be tested by z-statistic for difference from 0.

Empirical parametric test

In this study, we used our previously published simulation-based empirical paramet-
ric test for inferences [17] and the extended Bonferroni method for controlling per
comparison error rate (PCER) [21].

Procedure for power estimation

1. Specify all input parameters: sample size per condition n; mean expression μ;
dispersion φ; fold ratio γ between conditions, nominal false positive rate α,
number of simulations T.

2. Simulate count data T times from BNB(μ, γ ,φ) under both the null and alternative
hypotheses using the input parameters listed in Step 1.

3. Fit BNB model or GLMM and obtain test statistics (LRT or Wald) under the null
hypothesis for each simulation run.

4. Calculate the 100(1 − α)th percentile of the empirical null distribution of test
statistics (LRT or Wald) as the critical value.

5. Fit BNB model or GLMM and obtain test statistics (LRT or Wald) under the
alternative hypothesis for each simulation run.

6. Calculate power (percent of rejections under the alternative hypothesis) for the
input parameters listed in Step 1.

Results
Simulations

Parameter setting

Count data were simulated from a Poisson-Gamma (BNB) distribution under two exper-
imental conditions (e.g. baseline vs. treatment) for n subjects. The input parameters for
power calculation at the marginal level are sample size n, mean expression μ at base-
line, fold ratio γ between the two conditions, dispersion φ, and nominal false positive
rate α. Parameter values for each are n = 5, 10, 15, 20, 25;μ = 3, 5, 10, 20, 100; γ =
1
3 ,

1
2 , 1, 2, 3;φ = 0.01, 0.1, 1, 10, 100;α = 0.01, 0.005, 0.001, 0.0005. Under Poisson-LMM

and NB-LMM models, experimental condition is the fixed effect and subject is the ran-
dom effect. Under each scenario, 20,000 simulations were run as described in section
‘Procedure for Power Estimation’.

Power analysis

Figure 1 shows QQ plots for both LRT and Wald test statistics under the BNB, Poisson-
LMM, and NB-LMM models at the null hypothesis with n = 5, 10, 15, 20, 25; μ = 10;



Yu et al. BMC Bioinformatics          (2020) 21:198 Page 4 of 12

Fig. 1 QQ plots of null LRT and Wald statistics. Data were simulated for 20,000 times at μ = 10 and φ = 1
under the null hypothesis. Sample sizes were set at n = 5, 10, 15, 20,and 25. Both the LRT and Wald tests were
used for testing mean differences between two conditions under the BNB, Poisson-LMM, or NB-LMMmodel.
Null test statistics are plotted against the Chi-square distribution with 1 degree of freedom. Both the LRT
under the BNB model and the LRT under the Poisson-LMMmodel are approximately following the Chi-square
distribution. The Wald test under BNB is slightly above the Chi-square distribution. The LRT under the
NB-LMMmodel is moderately below the Chi-square distribution. Both the Wald test under the Poisson-LMM
model and the Wald test under the NB-LMMmodel are dramatically above the Chi-square distribution

φ = 1. The null distribution of LRT statistics under the BNB model can be approx-
imated to a Chi-square distribution with 1 degree of freedom, but Wald test statistics
under the BNBmodel are slightly above the Chi-square distribution. The null distribution
of LRT statistics under the Poisson-LMM model can be approximated to a Chi-square
distribution with 1 degree of freedom, but LRT statistics under the NB-LMM model
are moderately below the Chi-square distribution. Wald test statistics under both the
Poisson-LMM and NB-LMM models have unusually large values due to computational
instability and dramatically deviate from the Chi-square distribution, therefore these two
tests are not pursued further for power analysis.
Figure 2 shows the critical values of the empirical null distribution for the four tests

(LRT under the BNB model, Wald under the BNB model, LRT under the Poisson-LMM
model, and LRT under the NB-LMM model) and the critical values of the Chi-square
distribution with 1 degree of freedom over 5 different sample sizes, 5 different mean



Yu et al. BMC Bioinformatics          (2020) 21:198 Page 5 of 12

Fig. 2 Critical value plots for both the LRT and Wald tests. Critical values were calculated from the empirical
null statistics at 5 different sample sizes, 5 different mean expression levels, 5 different dispersion values for
four tests (LRT under the BNB model, Wald test under the BNB model, LRT under the Poisson-LMMmodel,
LRT under the NB-LMMmodel) and for the Chi-square distribution with 1 degree of freedom (dashed black
lines). The nominal false positive rate α is set at 0.001. The LRT under the BNB model and the LRT under the
Poisson-LMMmodel have similar critical values as the Chi-square distribution, but the Wald test under the
BNB model has larger critical values than the Chi-square distribution especially at smaller mean expression
levels and oppositely the LRT under the NB-LMMmodel has lower critical values

expression levels, and 5 different dispersion parameters. At each input parameter setting,
the false positive rate is controlled at the nominal level α = 0.001 by using the empiri-
cal parametric test or the Chi-square distribution. Both the LRT under the BNB model
and the LRT under the Poisson-LMMmodel with the use of the empirical parametric test
have similar critical values as the Chi-square distribution. However the Wald test under
the BNBmodel with the use of the empirical parametric test has larger critical values than
the Chi-square distribution especially at smaller mean expression levels. The LRT under
the NB-LMM model with the use of the empirical parametric test has lower critical val-
ues than the Chi-square distribution. When the approximated Chi-square distribution is
used instead of the empirical parametric test (Fig. 3), actual false positive rates of the LRT
under the BNB model and the LRT under the Poisson-LMM model are well maintained
at the nominal false positive rate as expected. Actual false positive rates of the Wald test
under the BNB model are much larger than the nominal false positive rate especially at



Yu et al. BMC Bioinformatics          (2020) 21:198 Page 6 of 12

Fig. 3 False positive rate plots for both the LRT and Wald tests. Actual false positive rates were calculated at 5
different sample sizes, 5 different mean expression levels, 5 different dispersion values for four tests (LRT under
the BNB model, Wald test under the BNB model, LRT under the Poisson-LMMmodel, LRT under the NB-LMM
model). The nominal false positive rate α is set at 0.001 (dashed black lines). The Asymptotic Chi-square
distribution is used instead of the empirical parametric test for calculating the critical values. Actual false
positive rates of the LRT under the BNB model and the LRT under the Poisson-LMMmodel are well
maintained at the nominal false positive rate. Actual false positive rates of the Wald test under the BNB model
are much larger than the nominal false positive rate especially at smaller mean expression levels. Actual false
positive rates of the LRT under the NB-LMMmodel are uniformly lower than the nominal false positive rate

smaller mean expression levels. Actual false positive rates of the LRT under the NB-LMM
model are uniformly lower than the nominal false positive rate.
Power at two different fold ratios (2 fold down or 2 fold up respectively) for the four tests

at α = 0.001 are displayed in Figs. 4 and 5. In general, power increases with larger sample
sizes, larger mean expression levels, and larger absolute fold changes for all four tests. The
LRT under the BNB model and the LRT under the Poisson-LMMmodel have equivalent
power over different parameter values. The Wald test under the BNB model has lower
power at 2 fold down and higher power at 2 fold up in general when compared to the LRT
under the BNB model and the LRT under the Poisson-LMM model. The LRT under the
NB-LMM model has lower power at almost all parameter values when compared to the
LRT under the BNB model and the LRT under the Poisson-LMMmodel.
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Fig. 4 Power plots for both the LRT and Wald tests at the fold ratio of 2. Power was calculated at 5 different
sample sizes, 5 different mean expression levels, 5 different dispersion values for four tests (LRT under the
BNB model, Wald test under the BNB model, LRT under the Poisson-LMMmodel, LRT under the NB-LMM
model) of the fold ratio of 2. The nominal false positive rate α is set at 0.001. The LRT under the BNB model
and the LRT under the Poisson-LMMmodel have equivalent power over different parameter values. But
compared to them, the Wald test under the BNB model has higher power and the LRT under the NB-LMM
model has lower power at almost all parameter values

Applications

TCGA data set

To study and demonstrate the proposed power estimation procedure in a real data appli-
cation, we used the TCGA breast cancer data set as a pilot data set for designing a new
study to detect differential expression using a paired design. The TCGA breast cancer
data set BRCA (acquired in Feb. 2019 from FireBrowse) contains 1,212 tumor samples and
20,531 genes with non-zero counts. TMMmethod was used for normalization of all sam-
ples [22]. We chose the comparison between primary tumor samples and their matched
normal samples (112 samples) for this case study. BNB model was fit to obtain param-
eter estimates for each gene. The estimated mean expression levels of matched normal
samples are 14, 681, and 3,022 at the 20th, 50th, and 80th percentiles of all genes respec-
tively. The estimated dispersion values are 0.07, 0.2, and 1 at the 20th, 50th, and 80th
percentiles of all genes respectively. To demonstrate how to estimate power, we choose the
mean expression level at the 20th percentile, the dispersion at the 80th percentile, and the
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Fig. 5 Power plots for both the LRT and Wald tests at the fold ratio of 0.5. Power was calculated at 5 different
sample sizes, 5 different mean expression levels, 5 different dispersion values for four tests (LRT under the
BNB model, Wald test under the BNB model, LRT under the Poisson-LMMmodel, LRT under the NB-LMM
model) of the fold ratio of 0.5. The nominal false positive rate α is set at 0.001. The LRT under the BNB model
and the LRT under the Poisson-LMMmodel have equivalent power over different parameter values. But
compared to them, the Wald test under the BNB model has lower power and the LRT under the NB-LMM
model has lower power at almost all parameter values

detectable fold ratio of 2 and 0.5 between primary tumor and matched normal conditions
to simulate test statistics under both the null and alternative hypotheses for 20,000 times.
The LRT and Wald tests under the BNB model and the LRT under the Poisson-LMM
model were compared with the use of the empirical parametric test as well as the Chi-
square distribution under the null hypothesis at the nominal false positive rate of 0.001.
Actual false positive rates using the Chi-square distribution at this α level are shown in
Fig. 6. We observe that actual false positive rates are inflated at most sample sizes for the
Wald test, which is consistent with the simulation results. Figure 7 shows power as a func-
tion of sample sizes at the mean expression level of 14 and the dispersion of 1 for a 2-fold
up- or down-regulation of primary tumor compared to matched normal using the empir-
ical parametric test for both tests. The LRT has better performance than the Wald test in
general. To design a new RNA-Seq study with at least 80% power for the LRT, we will need
n = 5 samples per group to detect a 2-fold up-regulation or n = 9 samples per group to
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Fig. 6 False positive rate plot for the TCGA breast cancer data set. Actual false positive rates were calculated
for both the LRT and Wald tests under the BNB model and the LRT under the Poisson-LMMmodel at μ = 14,
φ = 1, and 11 different sample sizes (range 3-20). The nominal false positive rate α is set at 0.001. The LRT and
Wald tests under the BNB model and the LRT under the Poisson-LMMmodel were compared with the use of
the empirical parametric test (dashed lines) and the Chi-square distribution (solid lines) under the null
hypothesis

detect a 2-fold down-regulation for genes at the mean expression level of 14 and the dis-
persion of 1. Results for all combinations of the mean expression level and the dispersion
values are included in the additional file 1. The computation time for the BNB models
and Poisson-LMMmodel are about 34 and 15 hours respectively on a standard windows
laptop with Intel Core i7-6820HQ CPU at 2.70GHz and 32GB RAM. Two main factors
for the used computation time in this case are the number (i.e. 20,000) of simulations and
the number (i.e. 11) of different sample sizes.

Discussion
Several studies discovered excessively inflated false positive rates for differential expres-
sion detection by using popular NB methods (i.e. edgeR, DESeq2) in RNA-Seq data
analysis [23–26]. A reasonable explanation for this phenomena is that these methods
mainly rely on biased asymptotic Chi-square distribution for inferences, which results in
the failure in false positive rate control, especially in experiments with small sample sizes.
In consistency with this phenomena, our published paper shows the downward bias of
critical values when an asymptotic Chi-square distribution is applied for both the LRT
and Wald tests under the NB model in power analysis for RNA-Seq differential expres-
sion studies [17]. In that paper, we provided a solution so that false positive rates can be
controlled at the nominal level with the use of the empirical parametric test for obtaining
critical values of both tests. In this paper, we show that either the empirical parametric
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Fig. 7 Power plot for the TCGA breast cancer data set. Power was calculated for both the LRT and Wald tests
under the BNB model and the LRT under the Poisson-LMMmodel by using the empirical parametric test at
μ = 14, φ = 1, and 11 different sample sizes (range 3-20). The nominal false positive rate α is set at 0.001. The
detectable fold ratios of the mean expression levels between primary tumor and matched normal are set at 2
(solid lines) and 0.5 (dashed lines) under the alternative hypothesis

test or asymptotic Chi-square distribution can be used to obtain critical values for both
the LRT under the BNBmodel and the LRT under the Poisson-LMMmodel. However the
empirical parametric test has to be used for both theWald test under the BNB model and
the LRT under theNB-LMMmodel because the test statistics deviate from the asymptotic
Chi-square distribution.
We observed that the LRT under the BNB model and the LRT under the Poisson-LMM

model have similar performance under both the null and alternative hypotheses. The
main reason of the equivalent performance of these two tests is that the employed BNB
model is based on the Poisson-Gamma compound distribution, which is similar to fit the
Poisson-LMMmodel.When testing γ > 1 for paired designs, theWald test of BNB is rec-
ommended since it has the highest power among all four tests. But when testing γ < 1 for
paired designs, either the LRT under the BNBmodel or the LRT under the Poisson-LMM
model is recommended. This unbalanced effect on power for the Wald test is related to
selected transformation functions g(.), which was also reported in the article by Rettiganti
and Nagaraja [13]. We also notice that there are some negative values of LRT statistics
under the NB-LMM model in our simulations. For these cases with negative values, the
parameter space under the null hypothesis is not completely contained in the parame-
ter space under the alternative hypothesis since the MLE estimates of the random effect
under both hypotheses are not the same.
In almost all current studies that use a NB model for differential expression detec-

tion or power analysis, the dispersion parameter is assumed equal across conditions.
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We have proposed unequal dispersion parameters across conditions for power analysis
[17]. Similarly, the proposed BNB model can be naturally extended to unequal dispersion
parameters with both the LRT and Wald tests for paired designs. In addition, the pro-
posed GLMM procedure can be applied to multiple factorial designs and allow multiple
random effects. For these designs, the value or distribution of model parameters need to
be pre-specified so that the procedure can simulate data from a known GLMM model
under both hypotheses. In addition, our proposed method can be used to estimate power
at the data set level, where the distribution under the null hypothesis of the LRT or Wald
test can be simulated for groups of genes with similar expression profile to maintain a
proper false positive rate control.

Conclusions
Many methods on sample size calculation and power estimation have already been pro-
posed for RNA-Seq data over last decade. However nearly all of them were developed
for experiments with independent measurements. To overcome this limitation in current
methods, we provide a framework for power analysis of RNA-Seq experiments with cor-
related measurements (e.g. repeated samples, time course, etc.). Our simulation based
procedures provide proper control of false positive rate, and our novel GLMM proce-
dure can be used for complex designs by allowing diverse correlation structures with both
random effects and random residual errors.
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