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Abstract
Background: High-throughput sequencing experiments followed by differential
expression analysis is a widely used approach for detecting genomic biomarkers. A
fundamental step in differential expression analysis is to model the association
between gene counts and covariates of interest. Existing models assume linear effect
of covariates, which is restrictive and may not be sufficient for certain phenotypes.

Results: We introduce NBAMSeq, a flexible statistical model based on the generalized
additive model and allows for information sharing across genes in variance estimation.
Specifically, we model the logarithm of mean gene counts as sums of smooth
functions with the smoothing parameters and coefficients estimated simultaneously
within a nested iterative method. The variance is estimated by the Bayesian shrinkage
approach to fully exploit the information across all genes.

Conclusions: Based on extensive simulations and case studies of RNA-Seq data, we
show that NBAMSeq offers improved performance in detecting nonlinear effect and
maintains equivalent performance in detecting linear effect compared to existing
methods. The vignette and source code of NBAMSeq are available at http://
bioconductor.org/packages/release/bioc/html/NBAMSeq.html.

Keywords: Bayesian shrinkage, Differential expression analysis, Generalized additive
model, RNA-Seq, Spline model

Background
Introduction

In recent years, RNA-Seq experiments have become the state-of-the-art method for
quantifying mRNAs levels by measuring gene expression digitally in biological sam-
ples. An RNA-Seq experiment usually starts with isolating RNA sequences from bio-
logical samples using the Illumina Genome Analyzer, a commonly used platform for
high-throughput sequencing data. These mRNA sequences are reverse transcribed into
cDNA fragments. To reduce the sequencing cost and increase the speed of read-
ing the cDNA fragments (typically a few thousands bp), these fragments are sheared
into short reads (50-450 bp). These reads are mapped back to the original reference
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genomes/transcriptomes and the number of read counts mapping to each gene/transcript
region are computed. RNA-Seq experiments are usually summarized as a count table with
each row representing a gene/transcript and each column representing a sample.
An important aspect of statistical inference in RNA-Seq data is the differential expres-

sion (DE) analysis, which is to perform statistical test on each gene to ascertain whether
it is DE or not. Several methods have been developed for DE test using gene counts data,
including DESeq2 [1], edgeR [2], which are based on negative binomial regression model;
voom [3], which is based on empirical Bayes model and BBSeq [4], which is based on
beta-binomial regression model. DESeq2 [1] performs DE analysis in a three-step proce-
dure. The normalization factors for sequencing depth adjustment are first estimated using
median-to-ratio method. Both the coefficients and the dispersion parameters in negative
binomial distribution are estimated by the Bayesian shrinkage approach to effectively bor-
row the information across all genes. Finally, the Wald tests or the likelihood ratio tests
are performed to identify DE genes. edgeR also uses the negative binomial distribution to
model gene counts. It assumes that the variance of gene counts depends on two dispersion
parameters, namely the negative binomial dispersion and the quasi-likelihood dispersion.
The negative binomial dispersion is estimated by fitting a mean-dispersion trend across
all genes whereas the quasi-likelihood dispersion are estimated by Bayesian shrinkage
approach [5]. The DE statistical tests are conducted based on either the likelihood ratio
tests [6, 7] or the quasi-likelihood F-tests [8, 9]. Both the DESeq2 and edgeR are widely
used due in part to their shrinkage estimators which can improve the stability of DE test in
a large range of RNA-Seq data or other technologies that generates read counts genomics
data. voom [3] is an alternative tool for DE analysis. It estimates the mean-variance rela-
tionship of the log-counts non-parametrically, followed by the limma empirical Bayes
analysis pipeline [10]. On the other hand, BBSeq [4] assumes that the count data follows a
beta-binomial distribution where the beta distribution is parameterized in a way such that
the variance accounts for over dispersion. The parameters are estimated by the maximum
likelihood approach andDE analysis is based on either theWald test or the likelihood ratio
test. Both the negative binomial and beta-binomial regression models belong to the gen-
eralized linear model (GLM) class. GLM is popular owing to the ease of implementation
and interpretation, by assuming the link function is a linear combination of covariates.
However, as illustrated in the motivating dataset below, the linearity assumption is not
always appropriate and nonlinear models for linking the phenotype to gene expression in
RNA-Seq data may be important. Stricker et al. (2017) [11] proposed GenoGAM, which is
a generalized additive model for ChIP-Seq data. However, GenoGAM was developed for
a different purpose, i.e., the nonlinear component was to smooth the read count frequen-
cies across genome, and not for relating a nonlinear association between the phenotype
and read counts.
In this paper, we introduce NBAMSeq, a generalized additive model for RNA-Seq data.

NBAMSeq brings together the negative binomial additive model [12] and information
sharing across genes for variance estimation which enhances the power for detecting
DE genes, since treating each gene independently suffers from power loss due to the
high uncertainty of variance, especially when the sample size is small [1]. By borrowing
information across genes, NBAMSeq is able to model the nonlinear association while
improving the accuracy of variance estimation and shows significant gain in power for
detecting DE genes when the nonlinear relationship exists.
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Motivating datasets

We start our exposition by demonstrating the existence of nonlinear relationship between
gene counts and covariates/phenotypes of interest via three simple models and com-
paring them using ANOVA F-test. Two real RNA-Seq datasets are used. The first
dataset is obtained from The Cancer Genome Atlas (TCGA) consortium, a rich reposi-
tory consisting of high-throughput sequencing omics data for multiple types of cancers;
downloadable from the Broad GDAC Firehose. For ease of exposition, we focus on the
Glioblastomamultiforme (GBM), an aggressive form of brain cancer. The dataset consists
of RNA-Seq count data on 20,501 genes and 158 samples generated using the Illumina
HiSeq2000 platform. 16,092 genes were retained after filtering for genes with more than
10 samples having count per million (CPM) less than one. Gene counts are normalized
using median-of-ratios as described in DESeq [13] and DESeq2 to account for differ-
ent library sizes across all samples. Age has been identified as an important prognostic
marker for malignant cancers including GBM [14]. To better understand the prognostic
value of age in GBM, here we aim to identify age specific gene expression signature. For
each individual gene i, three models were fitted: (i) base model: yij = β0 + β1x1j + β2x2j,
(ii) linear model: yij = β0 + β1x1j + β2x2j + β3x3j, (iii) cubic spline regression with 3
knots: yij = β0 + β1x1j + β2x2j + f (x3j), where yij denotes logarithm transformed nor-
malized counts of sample j and x1j, x2j and x3j denotes gender, race (Caucasian versus
non-Caucasian) and age, respectively. We compared the three models using ANOVA F-
test, and the p-values are adjusted using the Benjamini and Hochberg (1995) [15] false
discovery rate (FDR). The test statistics, degrees of freedom in F-statistics and number
of significant genes at FDR < 0.05 are summarized in Additional file 1: Table S1. 250
genes are significant when comparing model (i) to model (iii). We further investigated the
p-values of these 250 genes when comparing model (i) to model (ii) and found that 30
out of these 250 genes have FDR > 0.2 (see Additional file 1: Table S2), implying that a
simple linear regression is unable to identify these 30 genes even if a less stringent FDR
threshold is used. Moreover, 9 genes are significant when comparing model (ii) to model
(iii). Figure 1 shows the scatterplots of counts versus age of the most significant genes. For
visualization, a local regression is fitted on each scatterplot, suggesting significant nonlin-
ear relationships between normalized gene counts and age. Although only GBM is shown
here, we observed similar nonlinear age effect for other types of cancer from BroadGDAC
Firehose database (see Additional file 1: Table S3).
The second dataset comes from our study of gene expression associated with post-

traumatic stress disorder (PTSD) in the World Trade Center (WTC) responders [16].
The dataset consists of RNA-Seq read counts of 25,830 genes in whole blood profiled in
324 WTC male responders. The phenotype of interest is the Posttraumatic Stress Disor-
der Checklist-Specific Version (PCL), a self-report questionnaire assessing the severity of
WTC-related DSM-IV PTSD symptoms [17]. To better understand the nonlinear effect
of PTSD severity on gene expression, here we aim to identify gene expression signature
related to PCL score. The gene filtering criterion and normalization method are similar
to the framework used in the first motivating dataset and samples with missing clinical
information were omitted from the analysis. 16,193 genes and 321 samples were retained
for DE analysis. In addition, cell type proportions have been implicated in the analy-
sis of whole blood samples. The proportions of CD8T, CD4T, natural killer, B-cell and
monocytes were estimated as described in our previous paper [18]. Similar to the first
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Fig. 1 Nonlinear relationship between gene counts and age in TCGA GBM data

motivating dataset, the base model, linear model, and cubic spline regression model were
fitted on each gene to study the effect of PCL score. Age, race, cell proportions of CD8T,
CD4T, natural killer, B-cell and monocytes were adjusted in each model. When compar-
ing the cubic spline regression model with base model using ANOVA F-test, 6 genes are
significant at FDR < 0.05. Additional file 1: Figure S1 shows the scatterplots of counts
versus PCL score of these 6 genes. These plots show a consistent nonlinear pattern, i.e.,
gene expression first decrease and then gradually increase with the minimum at around
PCL score 30.
These observations indicate that the relationship between gene counts and covariate

of interest may be nonlinear, and it can be challenging to capture the true underlying
nonlinear relationship using parametric methods. Thus, more flexible statistical methods
to characterize the nonlinear pattern in RNA-Seq data will improve the DE analysis of
complex phenotypes. Negative binomial distribution has been shown to be a powerful
model because it captures the over-dispersion of the nature of the count data generated by
RNA-Seq experiments [1, 2]. To this end, we propose a negative binomial additive model
to capture the nonlinear association in RNA-Seq data analysis.

Implementation
NBAMSeq is implemented in R and its general work flow is summarized in Fig. 2. The
foundations of generalized additivemodel, model fitting algorithm, parameter estimation,
and statistical inference are given in Additional file 1 Information A. NBAMSeqDataSet
is an R class used by NBAMSeq to store the count data and the estimated parameters
during statistical analysis. To make NBAMSeq interoperable with other Bioconductor
packages and facilitate downstream analysis of results, NBAMSeqDataSet is inher-
ited from the Bioconductor core class SummarizedExperiment. Constructing a
NBAMSeqDataSet object requires an RNASeq count matrix, a data frame which con-
tains covariates of interest, and a design formula which specifies how to model the
samples.
DE analysis is performed by NBAMSeq function which takes NBAMSeqDataSet

objects as input. NBAMSeq function contains a few internal steps. The initial smoothing
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Fig. 2 The workflow for NBAMSeq

parameters, gene-wise dispersions, and coefficients of the covariates are estimated by gam
function in mgcv [19–23]. These estimated values are saved in the NBAMSeqDataSet

object to facilitate model fitting in the next steps. When using the gam function,
to enforce smoother models we set the gamma argument to be 2.5 as the default
value. The rationale of this default value is given in Additional file 1: Figure S4
and S5. The dispersion trend and maximum a posterior (MAP) dispersions are esti-
mated by estimateDispersionsFit and estimateDispersionsMAP functions
in DESeq2. The final coefficients are estimated by gam function again, where the smooth-
ing parameters and initial values of coefficients are the previously saved values in the
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NBAMSeqDataSet object. To speed up these steps, parallel computing is supported by
using parallel = TRUE option in the NBAMSeq function.
The DE test results can be obtained by the results function which takes the

NBAMSeqDataSet after model fitting as input. The results can be visualized by the
makeplot function.

Results
Simulation

To evaluate the performance of NBAMSeq, we designed simulation studies comparing
NBAMSeq to DESeq2, edgeR and voom [3], three of the most popular softwares for
identifying DE genes in RNA-Seq data. Four scenarios were considered; the first was to
evaluate the accuracy of dispersion estimates and power of detecting DE genes when the
nonlinear effect is the true association. The second was to investigate the robustness of
NBAMSeq when the linear effect is the true association. The third was to evaluate the
error rate control when no gene is differentially expressed, and the last was to investigate
the ability of NBAMSeq in differentiating DE genes with nonlinear from linear effect.
In all scenarios, we assumed that the gene counts follow negative binomial distribution,

i.e. Kij ∼ NB(μij,αi), μij = sjqij. For simplicity and without loss of generality, we set
all normalization factors sj to be 1. Since αi decreases with increasing mean counts, we
assumed that the true mean dispersion relationship is αi = a/μ̄i +0.05. The performance
under different degrees of dispersion (a = 1, 3, 5) were studied. In practice, although a
could be larger than 5, the larger value of a is compensated by the larger mean counts.
The magnitude of αi is in similar scale regardless of a, and thus only a = 1, 3, 5 were
studied. The covariate of interest xj was simulated from a uniform distribution U(u1,u2).
For simplicity, we used u1 = 20 and u2 = 80 because 20 to 80 covers the range of age and
PCL score in our motivating datasets.

Scenario I

The aim of this scenario was two-fold: (i) to evaluate the accuracy of NBAMSeq disper-
sion estimates when nonlinear effect is significant, and (ii) to investigate the power and
error rate control of NBAMSeq.
We simulated several count matrices which contain the same number of genes

(n =15,000) across different sample sizes (m = 15, 20, 25, 30, 35, 40). We randomly
selected 5% of the 15,000 genes to be DE. A comparison of other proportions of DE genes
was given in Additional file 1: Figure S2 and S3, which shows that our proposed method
is not sensitive to the DE proportions. Within each count matrix, the mean of negative
binomial distribution μij was simulated from

ηij = log2(μij) =
{
bi0 + ∑5

q=1 biqBq(xj), i ∈ {DE indices}
bi0 + c, otherwise

and μij was calculated by μij = 2ηij , where B(·) are cubic B-Spline basis functions to
induce a nonlinear effect on DE genes, and c is a constant to ensure that the count distri-
bution of DE and non-DE genes are comparable. The cubic B-Spline basis functions were
generated by the bs function in spline package [24], and details of the recursive algo-
rithm used by bs function can be found in Friedman et al. [25]. Since any nonlinear spline
function can be generated from linear combination of B-Spline basis functions [26], we
used the formula above to induce nonlinear effect in our simulations. The intercepts bi0
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were simulated from normal distribution, and the other coefficients bi1, bi2, ..., bi5 were
simulated from a uniform distribution. The mean and standard deviation of normal dis-
tribution, as well as the lower/upper bound of uniform distribution were chosen such that
the distribution of μ̄i = 1

m
∑m

j=1 μij across all genes mimicked our second motivating
dataset. Finally, the count of gene i in sample j was simulated from NB(μij,αi). The simu-
lation was repeated 50 times for each combination of dispersion and sample size.Without
loss of generality, here we used the link function with base 2 in generating μij. One could
also use link function with natural logarithm base in this simulation. Replacing base 2
with natural base only changes the coefficients of cubic B-Spline basis functions by a fixed
constant, thus will not affect the accuracy of parameter estimation.
To evaluate the accuracy of dispersion estimates, three methods were compared: (a)

DESeq2; (b) edgeR; (c) NBAMSeq. voom was excluded from dispersion estimates com-
parison because the model was applied on a different scale, i.e., log-counts based on
linear model with Gaussian error, thus the notion of dispersion is not applicable for this
method. The hypothesis of interest is whether the expression value of each gene is associ-
ated with the covariate of interest xj. For DESeq2 and edgeR, the design matrix is given by
[ 1,X∗], whereX∗ = (x1, x2, ..., xm)T. The hypothesis can be formulated as testing whether
the coefficient of xj in the generalized linear model is equal to zero. For NBAMSeq the
design matrix is constructed by the method in Model Fitting section, and the hypothesis
test are given by Inference section in Additional file 1: Information A. To illustrate that
information sharing across genes produces more accurate dispersion estimates, the gene-
wise dispersion estimated by NBAMSeq (NBAMSeq gene-wise) without incorporating
prior dispersion trend was also included in the comparison. The average mean squared
error (MSE) across 50 repetitions was calculated as shown in Fig. 3. Among the DE genes
with nonlinear effect, NBAMSeq outperforms DESeq2 and edgeR across different sam-
ple sizes. On the other hand, among the non-DE genes, the MSE of edgeR, DESeq2 and
NBAMSeq are comparable. NBAMSeq also has lower MSE than NBAMSeq (gene-wise),
which shows that the Bayesian shrinkage estimation is better than gene-wise dispersion
estimation. This simulation scenario shows that NBAMSeq is able to maintain good dis-
persion accuracy for non-DE genes and shows improvement in the accuracy over DESeq2
and edgeR for DE genes when the nonlinear association is significant.
Next, we compared the performance of DESeq2, edgeR, voom and NBAMSeq in DE

analysis. The design matrix of voom is similar to DESeq2 and edgeR as given above.
Figure 4 shows the average number of DE genes, true positive rate (TPR), empirical false
discovery rate (FDR), empirical false non-discovery rate (FNR), area under curve (AUC)
and F1 score of these four methods. For edgeR, two approaches for DE are available,
namely the quasi-likelihood (QL) and the likelihood ratio test (LRT) approach for calcu-
lating the test statistics as described in Lund et al. (2012) [8]. The authors further showed
that detecting DE genes using QL approach controls FDR better than the LRT approach.
When calculating TPR, FDR, and FNR, genes are declared to be significant if nominal
FDR is <0.05 (i.e. FDR adjusted p-value <0.05). The number of DE genes and TPR results
indicate that our proposed method NBAMSeq has the highest power for detecting non-
linear DE genes regardless of the degrees of dispersion and sample sizes. In addition,
NBAMSeq controls the FDR at 0.05 in all cases. The FNR results show that NBAMSeq
has lower FNR compared to other methods. To ascertain that the power of NBAMSeq is
not sensitive to the nominal FDR cutoff for DE genes, the AUC and F1 score comparisons



Ren and Kuan BMC Bioinformatics          (2020) 21:171 Page 8 of 15

Fig. 3 Scenario I: MSE of dispersion estimates

show NBAMSeq is consistently more powerful in all cases. The observation also shows
that the performance of DESeq2 and edgeR LRT approach are comparable, whereas edgeR
QL approach is conservative as shown by the higher FNR. Additional comparisons of
the QL approach for NBAMSeq and Gaussian additive models on logarithm transformed
count data are provided in Additional file 1: Figure S4 and S5.

Fig. 4 Performance metrics in Scenario I
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Scenario II

The goal of this scenario was to evaluate the robustness of NBAMSeq when the true
association is a linear effect. The simulation setup in this scenario is similar to Scenario I
except that ηij is given by:

ηij = log2(μij) =
{
bi1xj + c1, i ∈ {linear DE indices}
bi0 + c2, otherwise

where c1 and c2 are constants to ensure that the DE and non-DE genes counts distribution
are comparable to avoid bias in detecting DE genes. The linear coefficient bi1 was simu-
lated from normal distribution. Similar to Scenario I, the mean and standard deviation of
normal distribution were chosen such that the distribution of μ̄i mimicked the distribu-
tion of mean normalized counts in real data. The simulation was repeated 50 times and
the averageMSE of dispersion estimates is shown in Additional file 1 Figure S6. The accu-
racy of NBAMSeq is comparable to the accuracy of DESeq2 and edgeR in almost all cases.
This simulation shows that although NBAMSeq is designed to detect nonlinear effect,
the method is robust and yields accurate dispersion estimates when the true association
is linear.
To evaluate the power and error rate control of our proposed model NBAMSeq in

detecting DE genes with linear effect, we compare the TPR, FDR, FNR, and AUC at nom-
inal FDR 0.05. Additional file 1: Figure S7 illustrates that NBAMSeq is a robust approach
and maintains comparable performance to other methods.

Scenario III

The aim of this scenario was to investigate the error rate control of NBAMSeq in the
absence of DE genes. The simulation setup in this scenario is similar to Scenario I and
II except that ηij is given by ηij = log2(μij) = bi0 + c. To evaluate the error rate control
of the methods, we calculated the type I error. For each individual gene, the type I error
is defined as the number of false positives over the total number of repetitions. Addi-
tional file 1 Figure S8 shows the box-plot of type I error across all genes. The type I error
of NBAMSeq is comparable to that of other methods. The MSE plots of dispersion esti-
mates are provided in Additional file 1: Figure S9, which shows the accuracy of dispersion
estimates given by NBAMSeq is also comparable to the other methods.

Scenario IV

In real datasets, one could encounter scenarios in which both nonlinear and linear effect
exist between gene counts and covariates. To mimic this situation, we considered a
scenario where μij was simulated from

ηij = log2(μij) =

⎧⎪⎨
⎪⎩
bi0 + ∑5

q=1 biqBq(xj), i ∈ {nonlinear DE indices}
bi1xj + c1, i ∈ {linear DE indices}
bi0 + c2, otherwise

A total of 5% genes was chosen to be DE genes, where 2.5% were nonlinear DE genes and
the rest were linear DE genes. The median degree of dispersion (a = 3) was studied. To
determine whether a gene was differentially expressed or not, we used the same criteria as
the previous scenarios, i.e., nominal FDR <0.05 to identify DE genes. To differentiate the
two types of DE genes (linear versus nonlinear effect), we considered two approaches. In
the first approach, a DE gene is declared to have nonlinear effect if its estimated effective
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degrees of freedom (edf) in generalized additive model [22] is above a certain thresh-
old. Since a linear effect covariate only has one degree of freedom, we considered a DE
gene as nonlinear if its edf >1.5. In the second approach, we differentiated the nonlin-
ear and linear effect by comparing the AIC/BIC computed from the nonlinear and linear
model. The AIC and BIC for nonlinear model was given in our NBAMSeq output, where
the number of parameters in AIC/BIC was defined as edf [22]. We also fitted a linear
model for each gene where the model fitting and parameter estimation procedure were
similar to the “Implementation” section except that only linear terms were included in
the model. A gene was considered to be nonlinear if its AIC/BIC in nonlinear model was
lower than linear model. The correct classification percentage (CCP), which is defined as
the total correctly classified genes over all genes, is given in Additional file 1: Table S4.
The CCP for both approaches were high (>0.97 for all sample sizes) since majority genes
were non-DE genes, therefore they contributed most to the CCP. Thus, we also computed
the CCP for differentiating nonlinear and linear effect among the DE genes (Additional
file 1: Table S5). The results showed the edf approach has higher accuracy compared to
AIC/BIC approach. One possible explanation is that the generalized additive model auto-
matically shrinks to a linear model when the true effect is linear. As a result, the AIC/BIC
for linear and nonlinear models are very close, making the direct comparison difficult. In
our software, both options, i.e., edf and AIC/BIC are provided. Based on our simulation
results, we recommended the edf approach. For cases where the edf is large, the users may
also use AIC/BIC for model comparisons.

Real data analysis

In this section, we applied DESeq2, edgeR with LRT approach, voom and our proposed
methodNBAMSeq to ourmotivating datasets (“Motivating datasets” section), namely the
TCGA GBM dataset and WTC dataset. In TCGA GBM dataset, the association between
age and each gene expression was investigated, adjusting for sex and race. At FDR 0.05,
845, 784, 510 and 1,349 genes were detected by DESeq2, edgeR, voom and our proposed
NBAMSeq, respectively. 323 genes were in common among the four methods, whereas
440 genes were unique to NBAMSeq (Additional file 1: Figure S10). To account for the
fact that significant genes are sensitive to the FDR threshold, we investigated the adjusted
p-value of genes detected by NBAMSeq but not DESeq2, edgeR or voom and vice versa
(see Fig. 5). A large proportion of the genes detected byNBAMSeq but not DESeq2, edgeR
or voom have FDR above 0.1 for DESeq2, edgeR or voom, implying that these meth-
ods are unable to detect all the nonlinear genes even if a less stringent FDR threshold is
used. However, for the genes detected by DESeq2, edgeR or voom but not NBAMSeq,
the majority of their adjusted p-values in NBAMSeq are <0.1, implying that NBAMSeq
is able to detect almost all these genes at FDR <0.1. Next, we performed the pathway
analysis on DE genes using the hypergeometric tests implemented in the clusterProfiler
software [27] for both the Kyoto Encyclopedia of Genes and Genomes (KEGG) [28] and
Gene Ontology [29] gene sets. Significant pathways were chosen at FDR 0.05. Gene sets
with fewer than 15 genes or greater than 500 genes were omitted from the analysis. For the
KEGG pathways, no gene set was significant among DESeq2, edgeR, or voom DE genes
whereas 1 genes set was significant among NBAMSeq DE genes (Table 1). This result is
particularly interesting as cytokines dysregulation is involved in disrupting the immune
system at older age via the loss of function to control systemic inflammation [30, 31],
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Fig. 5 Histogram of adjusted p-values. The dashed line is FDR cut-off 0.1. a Genes detected by NBAMSeq but
not DESeq2. b Genes detected by NBAMSeq but not edgeR. c Genes detected by NBAMSeq but not voom. d
Genes detected by DESeq2 but not NBAMSeq. e Genes detected by edgeR but not NBAMSeq. f Genes
detected by voom but not NBAMSeq

which could increase the susceptibility to age related diseases including cancer [32, 33]. In
addition, the second gene set identified by NBAMSeq DE genes, i.e., Wnt signaling path-
way (despite not making the FDR cutoff ) was also an important pathway, as the mutations
in Wnt signaling pathway is implicated in a variety of developmental defects in animals
and associated with aging [34, 35]. For the Gene Ontology, a total of 5,000 gene sets were
tested, 45, 12, 0 and 28 gene sets were identified by DESeq2, edgeR, voom and NBAM-
Seq, respectively and 23 gene sets were in common between DESeq2 and NBAMSeq. A
full list of significant gene sets identified by these models are provided in Additional file 1:
Table S6-S8. Specifically, the gene sets unique to NBAMSeq DE genes (Additional file 1:
Table S9) are extracellular matrix pathways. Changes to extracellular matrix changes with
aging has been implicated in the progression of cancer [36]. These observations suggest
that gene sets detected by the NBAMSeq provide additional insights to the development
of cancer and aging as a risk factor.
In the WTC dataset, the relationship between PCL and gene expression were inves-

tigated, adjusting for age, race and cell proportions (CD8T, CD4T, natural killer, B-cell,
monocytes). At FDR 0.05, 836, 770, 887 and 803 genes were detected by DESeq2, edgeR,
voom and NBAMSeq, respectively (Additional file 1: Figure S11). Unlike the TCGAGBM

Table 1 Top 5 KEGG pathways selected by NBAMSeq

ID Description pvalue p.adjust

hsa04060 Cytokine-cytokine receptor interaction 0.000154 0.0463

hsa04310 Wnt signaling pathway 0.001509 0.2271

hsa00260 Glycine, serine and threonine metabolism 0.003616 0.3628

hsa00350 Tyrosine metabolism 0.007484 0.5632

hsa04512 ECM-receptor interaction 0.010991 0.6555
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dataset, the genes detected by the four methods have a large overlap, implying that the
primary effect of PCL on gene expression is linear. Although NBAMSeq identified fewer
PCL gene expression signature compared to DESeq2, the 44 genes detected by DESeq2
but not NBAMSeq were marginal significant in NBAMSeq (Additional file 1: Figure S12).
However, for the genes unique to NBAMSeq, they were not necessarily significant in
DESeq2, edgeR or voom. We performed pathway analysis on KEGG [28], and Additional
file 1: Table S10 shows the significant KEGG pathways among NBAMSeq DE genes. As
expected, these KEGG pathways were also significant among DESeq2 DE genes due to
the large overlapping genes.

Discussion
Although our model was developed for RNA-Seq data, it can be extended to identify
nonlinear associations in other genomics biomarkers generated from high throughput
sequencing which share similar features as RNA-Seq data (e.g., over dispersion in count
data) as well as time-course RNA-Seq data. Compared to DESeq2, edgeR and voom, our
proposed NBAMSeq method offers more flexibility as the degrees of freedom are esti-
mated automatically within the model instead of being pre-specified. A closely related
R package gam [37] is also developed for fitting generalized additive models. However,
this package does not support negative binomial distribution and the degrees of free-
dom have be pre-specified in the spline function. Our NBAMSeq framework allows for
flexible models to be fitted on individual genes via mgcv [19–23]. As shown in our sim-
ulation studies, the individual gene-wise dispersion estimate is less accurate compared to
methods which model the information sharing across genes. Our proposed model is able
to consider both the model flexibility for the non-linear relationships in the mean func-
tion as well as information sharing across genes in dispersion parameter estimation. In
addition, NBAMSeq also offers the flexibility of differentiating the DE genes, i.e., linear
versus nonlinear effect. In our simulation studies, we showed that the edf threshold 1.5
achieved good CCP, however future work includes determining the optimal edf threshold.
Our simulation studies show that the proposed NBAMSeq is powerful when the under-
lying true association is nonlinear and robust when the underlying true association is
linear compared to DESeq2, edgeR or voom. One might argue that the nonlinear associ-
ation can be detected by fitting a spline regression with certain degrees of freedom and
then incorporating the design matrix into DESeq2, edgeR or voom. The main disadvan-
tage of this approach is that the degrees of freedom has to be fixed before using DESeq,
edgeR or voom; and inappropriate choice of degrees of freedom leads to inflated FDR or
underestimated TPR (see Additional file 1: Figure S13 - S15). In addition, the real data
analysis showed that NBAMSeq offers additional biological insights to the role of aging
in the development of cancer by modeling the nonlinear age effect. Both the simulation
and case studies suggest the advantageous of investigating potential nonlinear associa-
tions to detect more effective biomarkers, in order to better understand the biological
underpinnings of complex diseases.
NBAMSeq is developed for detecting nonlinear association between gene expression

and continuous phenotypes. Our proposed framework is also applicable for scenarios
in which the phenotype of interest is binary (e.g., cancer vs noncancer) and the model
includes confounding variables which could be related to gene expression in a nonlinear
pattern. On the other hand, for scenarios in which the phenotype of interest is ordinal, we
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recommend treating the variable as categorical if the number of categories is small (<5).
If the number of categories is five or more, then one can treat it as a continuous vari-
able and apply NBAMSeq for detecting nonlinear effect. Similar to other softwares for
RNA-Seq DE analysis, currently NBAMSeq is developed for inference at gene level in the
absence of prior information. Recent methods which take into account the gene network
structure in DE analysis have been shown to a powerful approach [38]. Thus, an inter-
esting future research direction is to incorporate the network topology in NBAMSeq to
detect nonlinear association and decipher the collective dynamics and regulatory effects
of gene expression. Currently, the computational time of NBAMSeq is longer compared
to DESeq2, edgeR or voom due to the nested iteration algorithm. Future work includes
approximating smoothing parameters by single iteration and reducing runtime cost.

Conclusions
This paper introduced a flexible negative binomial additive model combined with
Bayesian shrinkage dispersion estimates for RNA-Seq data (NBAMSeq). Motivated by
the nonlinear effect of age in TCGA GBM data and PTSD severity (PCL score) in
WTC data, our model aimed to detect genes which exhibit nonlinear association with
the phenotype of interest. The smoothing parameters and coefficients in NBAMSeq
were estimated efficiently by adopting the nested iterative method implemented in mgcv
[19–23]. To increase the accuracy of the dispersion parameter estimation in small sam-
ple size scenario, the Bayesian shrinkage approach was applied to model the dispersion
trend across all genes. Hypothesis tests to identify DE genes were based on chi-squared
approximations. Finally, NBAMSeq is available as a Bioconductor package.

Availability and requirements
Project name: NBAMSeq
Project home page: http://bioconductor.org/packages/release/bioc/html/NBAMSeq.
html
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