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Abstract

Background: Typical experimental design advice for expression analyses using RNA-
seq generally assumes that single-end reads provide robust gene-level expression
estimates in a cost-effective manner, and that the additional benefits obtained from
paired-end sequencing are not worth the additional cost. However, in many cases
(e.g., with Illumina NextSeq and NovaSeq instruments), shorter paired-end reads and
longer single-end reads can be generated for the same cost, and it is not obvious
which strategy should be preferred. Using publicly available data, we test whether
short-paired end reads can achieve more robust expression estimates and differential
expression results than single-end reads of approximately the same total number of
sequenced bases.

Results: At both the transcript and gene levels, 2 × 40 paired-end reads
unequivocally provide expression estimates that are more highly correlated with 2 ×
125 than 1 × 75 reads; in nearly all cases, those correlations are also greater than for
1 × 125, despite the greater total number of sequenced bases for the latter. Across
an array of metrics, differential expression tests based upon 2 × 40 consistently
outperform those using 1 × 75.

Conclusion: Researchers seeking a cost-effective approach for gene-level expression
analysis should prefer short paired-end reads over a longer single-end strategy. Short
paired-end reads will also give reasonably robust expression estimates and
differential expression results at the isoform level.
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Background
For over a decade, RNA-seq has empowered gene expression analysis. This has led to

fundamental advances in our understanding of diverse phenomena, including the evo-

lution of gene regulation across species [1], alternative splicing [2, 3], relative import-

ance of cis vs -trans regulation [4, 5], genetic underpinnings of heritable disease [6, 7],

and the genetic architecture of phenotypes in natural populations [8, 9]. While the cost

of sequencing has steadily decreased, making expression analyses feasible even on

modest research budgets, maximizing cost efficiency remains high priority. Cost effect-

iveness is particularly important as studies scale up to hundreds or even thousands of
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samples. Maximizing performance given a particular study design has already received

much attention, with investigations of optimal strategies for quality trimming [10], the

effects of quality trimming on expression estimates and differential expression testing

[11], optimal sequencing depth [12, 13], importance of biological replicates [12, 14, 15],

and the relative performance of expression and differential expression tools and pipe-

lines [16–20]. Less attention has focused on how to improve performance given a fixed

number of biological replicates and total sequenced bases.

While the typical length of sequenced reads has increased as costs have decreased,

when an annotated genome is available it remains standard procedure to sequence sin-

gle end reads to estimate gene expression, typically around 75 base pairs. Yet, this strat-

egy does not leverage information provided by the full length of the library fragments,

particularly the greater specificity in read mapping (or pseudo-alignment) that would

be provided by sequencing from both ends of a fragment. Given a fixed cost per base

for the Illumina NextSeq, HiSeq X Ten, and NovaSeq instruments, paired-end 75 bp

reads would be twice as expensive as single-end 75 bp sequencing, assuming an equiva-

lent number of sequenced fragments. However, a sizeable fraction of the long-range in-

formation provided by paired-end sequencing should still be retained by sequencing

shorter paired-end reads. In this study, we evaluate whether that intuition is correct, by

assessing whether expression estimates and differential expression results obtained with

2 × 40 paired end sequencing are more consistent with 2 × 125 paired end sequencing

than either 1 × 75 or 1 × 125 single-end sequencing. Our particular focus is on 1 × 75,

as the cost of 1 × 75 and 2 × 40 are the same per read when sequencing using the Illu-

mina NextSeq (75 cycle kit), a common instrument for RNA-seq studies. Given the

fixed cost per base for the HiSeq X Ten and NovaSeq instruments, there are analogous

choices to make between single-end vs. paired-end sequencing. For example, for the

100 bp NovaSeq kit, a sequencing strategy trade-off exists between sequencing 2 × 50

vs. 1 × 100 reads. We conduct these analyses with publicly available Illumina sequence

data across 12 different SRA (Additional file 1: Table S1). accessions encompassing di-

verse experimental designs and multiple model organisms with high quality annotated

genomes.

Results
Our approach to evaluating the performance of short paired-end reads vs. longer

single-end ones is to compare expression estimates and differential expression results

derived from these strategies to a truth set. Because we cannot know the “truth”, we as-

sume that its closest approximation are results obtained from long, paired-end reads.

Thus, we define our gold standard as the results obtained from 2 × 125 paired-end

reads. We then trim these data down to two data sets with read lengths of 40 and 75

base pairs, and calculate Spearman’s rank correlations between transcripts-per-million

(TPM) estimates based upon 2 × 40, 1 × 75 and 1 × 125 with the 2 × 125 gold standard.

We present these correlations in two different ways. First, we examine the distributions

of those correlation coefficients across alternative sequencing strategies. Second, we

plot the correlations obtained using 2 × 40 over those obtained with 1 × 75 and 1 × 125.

Kallisto transcript-level TPM estimates made with 2 × 40 are always more highly cor-

related with those made with the 2 × 125 gold standard than those made with data

trimmed to 1 × 75 reads (Fig. 1a,c), and perform better than estimates made with data
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trimmed to 1 × 125 for all but a few samples from one SRA accession (Fig. 1a, e). A

similar performance advantage for the 2 × 40 strategy compared to the 1 × 75 strategy

is observed at the gene level (Fig. 1b, d), although there is one accession where 1 × 125

performs better than 2 × 40 (Fig. 1f).

RSEM-based TPM estimates show an overall pattern generally consistent with that

observed with kallisto (Fig. 2). A handful of samples for which 2 × 40 performed less

Fig. 1 Spearman’s rank correlations for kallisto-derived transcripts per million (TPM) between the gold
standard paired-end 2 × 125 strategy and alternative strategies. Violin plots of (a) transcript and (b) gene-
level inference. Comparison of correlations with 2 × 125 between 2 × 40 and 1 × 75 for (c) transcript and (d)
genes, and between 2 × 40 and 1 × 125 for (e) transcript and (f) genes. For c-f, symbol colors correspond to
SRA accessions, and points above the red dotted line are samples where estimates of expression from 2 ×
40 is more highly correlated with the gold standard than the contrasted single-end strategy
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well than both 1 × 75 and 1 × 125 had low bowtie2 alignment rates to the reference

transcripts (for the 2 × 125 libraries, overall alignment rates of 37.1–51.0%), suggesting

that library quality issues were responsible, but raising a broader issue concerning

whether variation in alignment rates between strategies could explain the relative per-

formance of 2 × 40 to 1 × 75 and 1 × 125.

Fig. 2 Spearman’s rank correlations for RSEM-derived transcripts per million (TPM) between the gold
standard paired-end 2 × 125 strategy and alternative strategies. Violin plots of (a) transcript and (b) gene-
level inference. Comparison of correlations with 2 × 125 between 2 × 40 and 1 × 75 for (c) transcript and (d)
genes, and between 2 × 40 and 1 × 125 for (e) transcript and (f) genes. For c-f, symbol colors correspond to
SRA accessions, and points above the red dotted line are samples where estimates of expression from 2 ×
40 is more highly correlated with the gold standard than the contrasted single-end strategy
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Kallisto does not conduct formal sequence alignment, so for each sample-strategy

combination we summed the kallisto transcript-level counts as a proxy for the number

of informative reads used in estimating expression. The summed kallisto counts for 2 ×

40 have a weak correlation with performance (with respect to TPM) relative to 1 × 75

the transcript level, and a moderate correlation at the gene level (Fig. 3a,b); the relative

differences in counts between 2 × 40 and 1 × 75 appear uncorrelated with the relative

performance of 2 × 40 and 1 × 75 (Fig. 3c,d). A similar pattern is observed with respect

to 1 × 125 (Additional file 1: Figure S1). For RSEM-derived expression estimates, we

found no impact of the percent of reads uniquely aligning on the relative performance

of 2 × 40, but at the gene level found that relative differences in overall alignment rate

had some effect on the robustness of TPM estimates of 2 × 40 relative to both 1 × 75

and 1 × 125 (Additional file 1: Figure S2, S3). For both kallisto and RSEM, while there

are no obvious taxonomic effects there are clear experiment-specific effects, manifested

as differences in relative 2 × 40 performance among accessions derived from the same

species. Similar to the above results based upon expression correlations, looking across

all accessions, for most samples root-mean-square error of expression estimates based

upon 1 × 75 and 1 × 125 was greater than for 2 × 40 (Fig. 4).

We next evaluated the extent to which differences in performance with respect to es-

timating expression levels translated into downstream effects on tests of differential ex-

pression. Within each SRA accession and for each pair of conditions and for each

sequencing strategy, we conducted Wald tests with, sleuth, limma-voom, and DESeq2.

Fig. 3 Effects of kallisto pseudo-alignment efficiency on differences in TPM estimate Spearman’s rank
correlations between 2 × 40 vs. 1 × 75. Efficiency of 2 × 40 is presented as the total kallisto count for 2 × 40
for (a) transcripts and (b) genes, and contrasted with the efficiency of 1 × 75 in the form of count ratios for
(c) transcripts and (d) genes. Symbol colors correspond to SRA accessions
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Similar to our evaluation of expression estimate robustness, we defined “true” differen-

tial expression signals as those recovered with 2 × 125, given a false discovery rate

(FDR) of 0.01. We then calculated seven performance metrics on a per-accession basis

for each differential expression method -sequencing strategy combination.

Sequencing strategy clearly impacts downstream differential expression analyses.

Looking across all three differential expression methods, at both the transcript and

gene level, for the majority of accessions false negative rates are lower for 2 × 40 com-

pared to 1 × 75 (Fig. 5; Additional file 1: Figure S4, S5; Additional file 1: Table S2). The

empirical false discovery rate—that is, for a strategy being evaluated, the proportion of

putative differentially expressed features with a Benjamini-Hochberg adjusted p-value

below our chosen FDR threshold of 0.01 for which the adjusted p-value is > 0.01 with

2 × 125—was also lower for 2 × 40 compared to both 1 × 75 and × 125, although it was

consistently higher than 0.01, the threshold used to classify Wald tests as significant, in-

cluding the 2 × 125 analyses with which we defined true positives and negatives (Fig. 5;

Additional file 1: Figure S4, S5; Additional file 1: Table S2). FDR control was poorer at

the transcript than the gene level, and, as previously reported, DESeq2 did not control

FDR as well as limma-voom and sleuth [18]. At both the transcript and gene level,

AUC is greater for 2 × 40 than 1 × 75 for all but a handful of method-accession combi-

nations (Fig. 5, Additional file 1: Figure S4, S5; Additional file 1: Table S2). Additional

metrics indicate a similar overall performance advantage of 2 × 40 compared to 1 × 75

(Additional file 1: Table S2). For all metrics, the short paired-end strategy outperforms

1 × 125 for the majority of method-accession combinations, although the magnitude of

Fig. 4 Histograms of differences in root-mean-square error (RMSE) between 2 × 40 and either 1 × 75 or 1 ×
125, where RMSE is calculated using 2 × 125 as the gold standard. RMSE differences for kallisto for (a)
transcripts and (b) genes, and RSEM for (c) transcripts and (d) genes. The vertical black dashed line indicates
the threshold above which RMSE for either 1 × 75 or 1 × 125 is greater than that for 2 × 40
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performance advantage of 2 × 40 compared to 1 × 125 is smaller than when compared

with 1 × 75 smaller (Fig. 5, Additional file 1: Figure S4,S5; Additional file 1: Table S2).

Discussion
In the past, the use of single-end sequencing for bulk RNA-seq studies has been moti-

vated by cost concerns, the belief that gene-level analyses of expression are sufficient to

investigate many if not all phenomena of interest, and the assumption that moderate-

sized single-end reads are the best way to balance cost and performance. The continued

decline in sequencing costs has been offset by a research-driven need for greater bio-

logical replication, and the growth in scale and complexity of study designs, such that

cost concerns continue to be important for many researchers. In addition, while gene-

level expression estimates continue to drive many research programs, interest in

Fig. 5 Variation across SRA accessions in (a, b) false negative rate, (c, d) empirical false discovery rate, and
(e, f) AUC between 2 × 40, 1 × 75 and 1 × 125 sequencing strategies based upon differential expression
testing with sleuth. Differences are plotted as means for Wald tests within accessions, for (a, c, e) transcripts
and (b, d, f) genes
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isoform-level patterns such as isoform switching or allele-specific expression, continues to

grow. Thus, affordable sequencing strategies that generate robust estimates of isoform ex-

pression, and enable isoform-level tests of differential expression, would be valuable.

Across multiple datasets and species, and using two different methods to estimate ex-

pression levels, we found that short paired-end reads yield both gene and isoform-level

expression estimates closer to those obtained with long paired-end reads than moderate

sized single-end reads. Notably, this performance advantage occurs when approximately

the same number of bases are sequenced in both strategies. This means that, for the

same overall cost, short paired-end reads will yield more robust expression estimates.

Furthermore, short paired-end reads also outperformed longer single-end reads even

when single-end strategy included more than a third more sequenced bases that the

short paired-end strategy. While our original hypothesis motivating this study was that

improved sequence alignment—both in terms of overall rate and precision—would lead

to superior performance of short paired-end reads, surprisingly alignment statistics

showed, at best, a weak effect on relative performance, suggesting that additional fac-

tors may play a role. Finally, using three different methods to test for DE, we found that

the improvement in expression estimation translates to better performance in DE test-

ing, which the most common primary research objective in bulk RNA-seq studies.

Thus, across a wide array of bulk RNA-seq applications in in settings where sequencing

costs represent a substantial constraint, the use of short paired-end reads has the po-

tential to improve both candidate gene discovery and the detection of biologically

meaningful isoform-level variation.

Conclusions
When designing a gene expression study using bulk RNA-seq, given a fixed budget, more

robust expression estimates and differential expression test results can be obtained from

short paired-end reads compared to longer single-end reads. In other words, the extra in-

formation provided by reads pairs during the mapping or pseudoalignment phase out-

weighs any potential penalty of short reads. In almost all cases, short paired-end reads

trump single-end reads that sequence approximately the same number of bases. Short

paired-end reads provide an additional benefit in that they can identify a large fraction of

differentially expressed isoforms, for the cost of gene-level analysis with longer single-end

reads. From a practical perspective, neither NextSeq nor NovaSeq sequencing kits distin-

guish between single and paired-end libraries. In the experience of support staff at the

Bauer sequencing core facility at Harvard, one can get 92 bp from the NextSeq 75 bp kit,

such that 2 × 40 is a viable sequencing design. Alternatively, the smallest NovaSeq kit is

for 100 cycles, which can be used to sequence paired 50 bp reads, allowing one to leverage

that instrument’s much smaller cost per sequenced base. Overall, our findings suggest that

for a given number of sequencing cycles, the most efficient design for RNA-seq expression

analysis is sequencing shorter paired reads, rather than longer single-end reads.

Methods
Datasets

From NCBI’s Short Read Archive, we downloaded paired-end RNA-seq reads from 12

different studies (Additional file 1: Table S1), representing model organisms with well-
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annotated reference genomes: mouse (Mus musculus), human (Homo sapiens), yeast

(Saccharomyces cerevisiae), fly (Drosophila melanogaster), and worm (Caenorhabditis

elegans). In selecting data sets, we required minimum pre-processing read lengths to be

≥125 bp, and experimental designs to contain ≥2 experimental conditions.

Short-read processing

We removed adapters and trimmed reads with NGmerge [21]. For each sample, we

trimmed reads to 125, 75, and 40 bp using awk. For downstream analyses, we used 2 ×

125, 2 × 40,1 × 125, and 1 × 75 trimmed data sets. Single-end data sets were comprised

of the first read from the original paired reads. Reads were trimmed from the distal

ends, such that trimming mimicked how sequencing to different lengths would be car-

ried out on an Illumina sequencer.

Expression analyses

For each sample-sequencing strategy combination, we estimated transcript-level expres-

sion with kallisto [22]. We designated abundance estimates derived from 2 × 125 as our

gold standard against which to benchmark all other strategies. We used Spearman’s

rank correlations to quantify the degree of concordance between alternative sequencing

strategies and the gold standard in terms of transcript per million (TPM). We per-

formed similar analyses at the gene level by aggregating transcript-level TPMs using

the R package Tximport [19]. For yeast, which has no alternative splicing, analyses were

only conducted at the transcript level. As an additional estimate of the correspondence

between alternative sequencing strategies with 2 × 125 we also calculated root-mean-

square error (RMSE).

Because a large proportion of RNA-seq applications involve tests of differential ex-

pression (DE), we compared differential expression test results between the gold stand-

ard 2 × 125 and alternative strategies. Specifically, for each experiment we conducted all

possible pairwise Wald tests of transcript-level DE with sleuth [18] version 0.30.0, and

used p-value aggregation (https://pachterlab.github.io/sleuth_walkthroughs/pval_agg/

analysis.html) for gene-level analyses. To compare performance of alternative strategies

relative to the gold standard, we calculated false negative and false positive rates, defin-

ing significant tests as those with Benjamini-Hochberg adjusted p-values ≤0.01.

In order to evaluate whether our findings were pipeline-specific, perhaps related to

particular features of tools such as kallisto that rely on pseudo-alignment, we also per-

formed expression analyses with an alternative pipeline, involving estimation of expres-

sion levels with RSEM [23] version 1.2.29 based upon alignments with bowtie2 version

2.3.2, [24]. When SRA metadata enabled us to determine that libraries were stranded,

we included the relevant RSEM command line arguments for restricting bowtie2 align-

ments to the correct read pair configuration. Using these expression estimates, we con-

ducted differential expression tests with two different methods: limma-voom [25]

version 3.38.3 and DESeq2 [26] version 1.22.2. For limma-voom, we only conducted

tests where, for each gene or transcript, there were ≥ 2 samples with counts per million

(CPM) ≥ 1. For limma-voom, we employed TMM normalization, and the voomWith-

QualityWeights option. Sleuth and limma-voom have previously been demonstrated to

be top performers that correctly control FDR [22], and while DESeq2 has been shown
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to not control FDR as well as these two methods [22], we included it because it is a

commonly used differential expression method. For all differential expression analyses,

we calculated performance metrics for Wald tests where, at the specified false discovery

rate (FDR) threshold of 0.01, there were ≥ 50 significantly differentially expressed fea-

tures in all sequencing strategies. Metrics were calculated relative to 2 × 125, i.e. signifi-

cant and non-significant results obtained with 2 × 125 were treated as true positives

and negatives, respectively. Those metrics were the empirical false discovery rate, false

positive rate, false negative rate, sensitivity, specificity, precision, and area under the

curve (AUC) based upon receiver-operator statistics. These metrics were calculated

with python scripts available at our associated github repository (see below). As the

multiple-test adjusted p-values are the standard metric with which to determine

whether particular transcripts or genes are differentially expressed, for AUC calcula-

tions we used these values as the response variable relative to the “true” classification

of differences derived from tests based upon the 2 × 125 data. All reference genomes

and gtf-formatted annotations against which to estimate expression were downloaded

from Ensembl, and transcripts for kallisto-based analyses were extracted using the ex-

tract-reference-transcripts utility in RSEM.
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