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Abstract

Background: Hinge-bending movements in proteins comprising two or more
domains form a large class of functional movements. Hinge-bending regions
demarcate protein domains and collectively control the domain movement.
Consequently, the ability to recognise sequence features of hinge-bending regions
and to be able to predict them from sequence alone would benefit various areas of
protein research. For example, an understanding of how the sequence features of
these regions relate to dynamic properties in multi-domain proteins would aid in the
rational design of linkers in therapeutic fusion proteins.

Results: The DynDom database of protein domain movements comprises sequences
annotated to indicate whether the amino acid residue is located within a hinge-
bending region or within an intradomain region. Using statistical methods and
Kernel Logistic Regression (KLR) models, this data was used to determine sequence
features that favour or disfavour hinge-bending regions. This is a difficult
classification problem as the number of negative cases (intradomain residues) is
much larger than the number of positive cases (hinge residues). The statistical
methods and the KLR models both show that cysteine has the lowest propensity for
hinge-bending regions and proline has the highest, even though it is the most rigid
amino acid. As hinge-bending regions have been previously shown to occur
frequently at the terminal regions of the secondary structures, the propensity for
proline at these regions is likely due to its tendency to break secondary structures.
The KLR models also indicate that isoleucine may act as a domain-capping residue.
We have found that a quadratic KLR model outperforms a linear KLR model and that
improvement in performance occurs up to very long window lengths (eighty
residues) indicating long-range correlations.
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(Continued from previous page)

Conclusion: In contrast to the only other approach that focused solely on
interdomain hinge-bending regions, the method provides a modest and statistically
significant improvement over a random classifier. An explanation of the KLR results is
that in the prediction of hinge-bending regions a long-range correlation is at play
between a small number amino acids that either favour or disfavour hinge-bending
regions. The resulting sequence-based prediction tool, HingeSeek, is available to run
through a webserver at hingeseek.cmp.uea.ac.uk.

Keywords: Protein conformational change, Domain closure, Hinge axis, Linker region

Background
Protein domains have various definitions within Biochemistry [1]. From a structural per-

spective a domain is characterised as a globular, spatially separate part of a protein and

methods have been developed to recognise them from this property [2]. They are consid-

ered to be able to fold independently of other parts of the protein and are associated with

a distinct function. This lends them the ability to act as a fundamental component of

evolutionary change. For protein structure databases such as SCOP [3], SCOP2 [4] and

CATH [5] they form the basic element of classification. They can be identified from se-

quence homology using methods such as Pfam [6] where multiple-sequence alignments

of family members of a domain are encoded as hidden Markov models.

It is now an established fact that conformational change is integral to protein func-

tion [7, 8]. A common class of movement is a domain movement in proteins compris-

ing more than one domain [9–12]. Several methods have been developed to identify

domains from the movement itself [13–18] and in this context they have been called

“dynamic domains”. The relative movement of dynamic domains is controlled by so-

called hinge-bending regions located between the domains. These normally compara-

tively short regions collectively control the domain movement [10] as has been demon-

strated using inverse-kinematics Monte Carlo in glutamine binding protein where the

known domain movement was reproduced almost perfectly when only 11 of the 226

residues situated at the two hinge-bending regions were allowed to flex [19]. In an early

application of the DynDom method it was found that hinge-bending regions are often

situated at the termini of β-sheets and α-helices [10].

To date very little work has been carried out to determine whether hinge-site features

are reflected in the sequence. Flores et al. [20] annotated hinge-bending regions from

the Database of Macromolecular Motion (DBMM) [21] to form their “Hinge Atlas”

dataset and performed statistical analyses to create a predictor for hinge sites from

sequence alone. Hinge sites were identified using the FlexProt program [22]. They

calculated log-odds frequencies scores for a 17-residue-long sliding window, assigning

the central residue to a hinge-bending region if the resulting accumulated score was

above a threshold. The results achieved did not appear to be significantly different to a

random assignment. They incorporated information about secondary structure and

active site location into the predictor, “HingeSeq”, which improved predictive power.

They did not quote the area under the ROC curve (AUROC) but we estimated it from

their figure to be approximately 0.65.

Kuznetsov [23] reports using support vector machines (SVM) to predict “conform-

ational switches” from sequence, which were described as areas of flexibility that drive
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conformational change. The basic data used also came from the DBMM but the sites

identified, based on changes in main-chain dihedral angles, were not exclusively located

at hinge-bending regions. Using a window length of 11 residues, an AUROC of 0.64

was found, which increased to 0.69 when profiles were used. The method has been

implemented at the webserver FlexPred [24]. Bodén and Bailey [25] presented a

method, also based on the DBMM, which predicted “conformational variability” based

on secondary structure prediction uncertainty for which a neural network was used. A

window length of 15 was used and an AUROC of 0.64 was reported.

This work relates also to the study of linker regions; polypeptide regions that link

two domains [26, 27]. The difference between these linker region studies and hinge-

bending region/conformational-switch region studies, is that the latter were identified

from conformational change, whereas the former were identified purely on structural

features. There is an increasing interest in the dynamic properties of linker regions as

their rational design would benefit the efficacy of therapeutic fusion proteins con-

structed using recombinant DNA technology [28].

A feature of the DynDom program is that it determines not only dynamic domains but

also hinge-bending regions, as can be seen in the example of glutamine binding protein in

Fig. 1. Dynamic domains are determined based on their rotational properties and hinge-

bending regions are those regions within which a rotational transition occurs in going

from one dynamic domain to another. This connects directly with what “bending” really

means. The exact method for assigning bending regions is described in detail by Hayward

and Lee [29]. This precise definition of a bending region lends itself to the aim of this

study. Here we trained a range of Kernel Logistic Regression (KLR) models on protein

Fig. 1 DynDom result for glutamine binding protein. DynDom result for the movement that occurs upon
binding glutamine (PDB: 1GGG, chain A to PDB: 1WDN, chain A) showing the open, ligand-free
conformation (see DynDom website at www.cmp.uea.ac.uk/dyndom for more details on this and other
domain movements). The arrow represents the hinge axis. Red and blue are the dynamic domains, green
the hinge-bending regions. Red and blue amino acids in the sequence at the bottom of the figure are
intradomain and green amino acids are hinge-bending. Such annotated sequences are the basic data of
this study. This is a typical member of Group 1 (see Methods)
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sequences with hinge-site annotation from examples that showed a clear hinge-bending

movement in the two main DynDom databases in order to understand sequence proper-

ties of hinge-bending regions and to produce a hinge site predictor from sequence.

Fig. 2 Propensities (Hinge Index, HI) of amino acids and p-values. The HI and p-value of each amino acid
for the following datasets (the percentage sets the filtering level according to sequence identity; see
Methods section for definitions): a Group1_90% b Group1_40% c Group1_20%. The amino acids have been
sorted according to their HI values (blue lines). A negative HI value indicates an amino acid that disfavours
hinge-bending regions and a positive value indicates an amino acid that favours them. The horizontal black
broken line at HI = 0 indicates those with no preference. The light-brown bars indicate the p values
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Results
Hinge statistics

The Hinge Index, HI(a), for each amino acid, a, is shown in Fig. 2 for all three Group 1

datasets, that is Group1_90%, Group1_40% and Group1_20%. A negative HI(a) would

indicate an amino acid that is unfavourable to hinge regions, a value of zero, an amino

acid that has no preference, and a positive value an amino acid favourable to hinge re-

gions. Although the results are generally supportive of those found by Flores et al., they

are statistically significant only for a few amino acids in both studies. For Flores et al.

Ser and Gly had the highest significant HI values. Here, Pro has the highest signifi-

cant HI value at all three levels of filtering. We also found Ser to have a high significant

HI value at 90 and 40% filtering, but contrary to expectation, Gly was not in the top

four at any level of filtering.

At all levels of filtering, Cys received the most negative significant HI value and by a

large margin. Phe and Met also disfavour hinge regions, Phe being the amino acid with

the most negative HI value for Flores et al.. The β-branched amino acids Ile, Val and

Thr all seem to weakly disfavour hinge regions although the results are not statistically

significant.

The equivalent analysis on the Group2_90% is shown in Additional Figure 1. The re-

sults broadly agree with the Group1_90% results.

KLR on 90% sequence identity set

Group 1

We trained KLR models with linear, quadratic, cubic, and RBF kernels on the training

subset from Group1_90% (see Table 1). Each KLR model was constructed across a range

of window lengths, w = [1, 101], and tested on the test set comprising 10% of the whole

set selected at random. ROC curves were created for each window length and each kernel,

plotting the rate of true positive outcomes against the rate of false positive outcomes. The

AUROCs were calculated, giving a measure of performance for each combination of win-

dow length and kernel, as a number between zero and one, where higher numbers repre-

sent better performance. Figure 3a shows how these AUROCs change across window

lengths for each kernel in Group1_90%. A classifier with an AUROC of 0.5 would be

Table 1 Selection criteria for Groups 1 and 2 and number of examples

Criterion Group 1 Group 2

No of domains 2 2

Min no of residues in domain 80 80

Min angle of rotation 20° 15°

Max intradomain backbone RMSD 2.5 Å 3.0 Å

Max no of bending regions 3 5

Max no of residues in a bending region 10 15

Number of domain movements before CD-Hit filtering (90%) 910 1389

Number of domain movements after CD-Hit filtering (90%)a 241 372

Number of domain movements after CD Hit filtering (40%) 171 268

Number of domain movements after CD-Hit filtering (20%) 136 222
aSee Additional Data_1 for list of pairs of structures by protein name and PDB codes
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equivalent to assigning samples to the “hinge-bending region” or “not hinge-bending re-

gion” classes at random. There are two main things to notice about these results. First is

that there is improvement in AUROC up until very long window lengths. This result is in

contrast to previous studies on hinge-bending/conformationally-variable regions where

windows of length less than 25 residues were used by Kuznetsov [23], a window of 17 res-

idues by Flores et al. [20], and a window of 15 residues by Bodén and Bailey [25]. Here we

see an improvement in AUROC with window lengths up to 80–90 residues. This suggests

that if the window spans from one hinge-bending region to the next it can help predic-

tion. The other noticeable feature is that the quadratic, cubic, and RBF kernels all seem to

outperform the linear approach. Additional Table 1 shows a matrix of p-values for the

pairwise comparisons of the AUROC for the four different models for window length 99

residues using Sun and Xu’s implementation [30] of the method by DeLong et al. [31].

The DeLong et al. method tests the null hypothesis that the difference in the empirical

AUROCs can be adequately explained by the variance of the estimator. The null hypoth-

esis is rejected when p < 0.05. This shows that all non-linear models significantly outper-

form the linear model, but that the non-linear models do not all significantly outperform

each other. That the cubic model and RBF models do not improve performance over the

Fig. 3 The performance of KLR models. Results show differences between the linear, quadratic, cubic and
RBF models trained across a range of window lengths. a Group1_90% b Group2_90%
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quadratic model suggests that the quadratic terms are mainly where the improvement lies.

This implies that there exists a correlation between certain pairs of residues at different

positions within the window. The maximum value for the AUROC of 0.75 occurred for

the quadratic model with a window length of 87 residues. The maximum value of the

AUROC for the linear model was 0.69 with a window length of 99 residues.

As stated in the Methods section, the ratio of positive to negative cases was adjusted

to 1:9 for the training set, but in the test set the proportion of residues that are in hinge

regions is only 0.0294 indicating a large class imbalance. In Additional Figure 2(A) we

show a set of ROC curves and their AUROCs from the quadratic model with a window

length 81 that uses different proportions of positive to negative cases in the training

sets. We also show in Additional Figure 2(B), plots of how the AUROC varies with this

proportion for different window lengths. These results confirm that KLR is reasonably

robust to class imbalance as there is little change in the AUROCs with change in this

proportion.

In Additional Figure 3 we show the Precision-Recall plot for window length 81. Such

a plot emphasises the classification of positive examples. The area under the Precision-

Recall plot (AUPRC), which is dependent on the class imbalance ratio, is 0.1785. A

random classifier would give an AUPRC of 0.0294, the proportion of hinge residues in

the test set. Additional Figure 4 shows the AUPRCs plotted against window length for

the four different KLR models. The result mirrors the equivalent plot for the AUROCs.

Group 2

The Group2_90% was used for the same set of experiments as Group1_90%, although due

to the greatly increased computational expense resulting from the use of this larger train-

ing set, fewer window lengths were tried although they spanned the same range (Fig. 3b).

Again we found the same increase in performance with window length and the same

improvement of the non-linear models over the linear model. The matrix of p-values in

Additional Table 2 determined with DeLong et al.’s method, shows that the difference

between the non-linear models and the linear model was statistically significant. In com-

parison with Group1_90%, each model performed worse at most window lengths indicat-

ing the negative influence of the less strict selection criteria for Group2_90%.

KLR on 40% sequence identity set

We considered whether the 90% sequence identity might permit similar sequences

to be present in both training and test sets. The Group1 dataset contains 48 chains

from immunoglobulins; pairwise comparisons between these sequences resulting in

sequence identities ranging between 19.2 and 88.9%. We repeated the experiment

for linear and quadratic models on the Group1_40% dataset, within which pairs of

structures are less likely to be homologous [32]. This reduced the number of im-

munoglobulins included to 3 of 171 proteins. As this reduced the size of the data-

set (see Table 1), we performed 10-fold cross validation (nested cross-validation

was used in order to obtain an unbiased performance estimate [33]). Figure 4a

shows the mean AUROC of the folds across windows of length 3 to 41 in incre-

ments of 2, and 41 to 101 in increments of 10. The results for both linear and

quadratic kernels were poorer than the Group1_90% results, which is expected as
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there is less data in the training set. The models both improved at longer window

lengths: the mean AUROC for the quadratic kernel was 0.61 achieved at window

length 81, and the linear kernel peaked at a mean AUROC of 0.57 at 61 residues.

p-values for paired t-tests across the folds for different window lengths is shown in

Additional Figure 5. Additional Figure 5 shows that the longer the window, the

lower the p-value becomes for the difference between the quadratic and linear

model. At a window length 81 the p-value is 0.004 indicating a statistically signifi-

cant improvement of the quadratic model over the linear model at long window

lengths. Across the folds the AUPRC has a value mean value of 0.0415 compared

to a mean ratio of hinge residues to all residues of 0.0232.

KLR on 20% sequence identity set

We repeated these experiments using the Group1_20% dataset. As our original dataset

is relatively small, filtering at the 20% level reduces the amount of data to an even lower

level (see Table 1). Again we performed 10-fold cross validation. Figure 4b shows the

mean AUROC of the folds across the same range of window lengths used for 40 and

90% filtering. As expected the results for both linear and quadratic kernels were poorer

Fig. 4 The mean AUROCs for linear and quadratic kernels. a Group1_40%. b Group1_20%
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than the 90 and 40% results. Although the difference between the linear and quadratic

models was not found to be significant using the paired t-test (which is likely due to

the small amount of data), we do see the same trend as seen for the 90 and 40% results;

that is an improvement in the AUROC of the quadratic model over the linear model at

longer window lengths.

Across the folds the AUPRC has a value mean value of 0.0390 compared to a mean

ratio of hinge residues to all residues of 0.0213.

Analysis of model weights

In this section, we analyse the weights from the quadratic and linear kernels, at their

optimal window lengths: 87 for Group1_90%, 81 for Group1_40%, and 87 for Group1_

20%. The primal weight vector can be computed for finite feature spaces such as that

of the linear and quadratic kernels, using Eq. 8.

Linear terms

Figure 5 shows example plots of the linear weight distribution for given amino acids

across the window. The scale of the weights differed between the linear and quadratic

models, so each weight is represented as a proportion of the strongest weight applied

by the model to the amino acid.

While there is some disagreement between the models, strong peaks and troughs can

be observed at the same window positions for all three models. Pro was associated with

strong positive weights in and around the central position, with negative weights ±40

residues from the central position. Pro has the highest positive weight of any amino

acid at the central window position confirming the Hinge Index result. The weights in

the Cys plots are mostly negative. It has the lowest valued weights at the central win-

dow position out of all amino acids. Interestingly it has pronounced positive weights

around ±20 residues from the central position. The weights in the Ile plot fluctuate but

all three models show strong positive weights around 5 residues on the N-terminal side

of the central position and a smaller peak 5 residues after. These charts are not all

approximately symmetrical; the Trp plot shows a strong positive peak around the end

of the window, with no corresponding peak at the start.

Product terms

The feature space for the quadratic kernel includes features corresponding to the pair-

wise products of the original input attributes. The weights associated with product

terms in the feature vectors give an indication of the strength of the importance of

pairs of residues at different positions within the sliding window. These can be

visualised for each amino acid pair by plotting them as a heat map, where each axis

represents a position within the sliding window at which a residue occurs.

The heat map in Fig. 6 shows the weights associated with combinations of Cys and

Pro residues according to the quadratic model trained for the Group1_40% dataset. A

patch of positive weights at position (20–25, 0–10) may indicate that such a combin-

ation is favoured. Structurally this would suggest a pair of domains with Pro located at

a hinge-bending region and Cys located at an intradomain region on the C-terminal

side. At this current time we cannot rule out the possibility that these correlations are
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Fig. 5 (See legend on next page.)
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an artefact of the small sample we have of non-homologous proteins with clear domain

movements.

As optimal AUROCs predominantly occurred at window lengths of either 81 or 87,

we include in Additional Table 3, AUROCs at both these window lengths (although

AUROCs are not available for window length 87 on Group1_40% as we did not

perform computations at this window length). The results show there is little or no

difference between the AUROCs at these two window lengths.

HingeSeek web server

We have produced a tool, called “HingeSeek”, which is available to run from a web

server at hingeseek.cmp.uea.ac.uk. The server offers sequence-only hinge predictions,

converting input sequences into windowed one-of-n encoded feature vectors and classi-

fying each residue as hinge or non-hinge based on a selected threshold. The sequence

is then coloured according to the classification, and labelled with the confidence level.

HingeSeek was created by bootstrapping the training data from Group1_90%. One

hundred models were trained using the quadratic KLR model with the optimal window

length of 87. Data was sampled with replacement creating training sets the same size as

the original Group1_90% set. To allow unbiased assessment of the model’s predictions,

there is a sequence identity threshold parameter. When a sequence is entered by the

(See figure on previous page.)
Fig. 5 The linear weights assigned to Pro, Cys, Ile, and Trp. From top to bottom: Pro, Cys, Ile, and Trp by the
linear KLR model at 90% filtering, and from the quadratic KLR models at 40 and 20% filtering. Window
lengths were 87 for those trained using Group1_90%, 81 for those trained using Group1_40%, and 87 for
those trained using Group1_20%

Fig. 6 The weights assigned to combinations of Cys and Pro. Product term weights from quadratic kernel
models with window length 81 trained using Group1_40%
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user, an ensemble is created such that no members of the ensemble were trained on

any sequences having a greater sequence identity than the threshold with the input se-

quence. The weights are extracted from the selected models and averaged to create an

aggregated model. This enables the tool to be used as a fair benchmark for comparison

with competing approaches. In addition to allowing users to predict hinge-bending re-

gions, the web server also includes an interactive weight explorer, which allows users to

investigate the weights that the model assigned to amino acid pairings, by dynamically

generating charts like Fig. 6.

Discussion
We trained a range of KLR models on sequences taken from the DynDom database in

order to understand sequence features of hinge-bending regions and to predict their lo-

cations from sequence alone.

With Group1_90%, a maximum AUROC of 0.75 was achieved. This contrasts

favourably with Flores et al. [20] who could not achieve any predictive value using just

Hinge Index information using the DBMM dataset also filtered at 90% sequence

identity. With Group 1_40% and Group1_20%, the AUROC of the best KLR model was

lower than the AUROC for the best KLR model using Group1_90%, probably due to

the small amount of data available at these levels of sequence identity.

Beyond producing a sequence-based predictor for hinge regions, this work provides

insight into what kinds of residue favour or disfavour hinge regions and hints at pos-

sible relationships between them. Broadly the residues found to favour hinge sites are

those with small side chains confirming the finding by Flores et al. [20]. Ser strongly

favours a hinge site even more so than Gly which, in contrast to Flores et al., we find

only weakly favours hinge regions. Both for Group 1 and Group2, the Hinge Index ana-

lysis shows that Pro is the most favourable residue to be located at a hinge region and

Cys the least favourable. This result is supported by an analysis of the weights of the

linear-terms in the KLR models. The fact that Pro favours hinge-bending regions is un-

expected as in contrast to all other amino acids rotation about its ϕ dihedral is severely

restricted which one would think would inhibit its ability to act as a hinge-bending resi-

due. This result concurs with studies on linker regions [26, 27] identified on structural

features only. Such regions were intentionally omitted from our datasets as positive

cases in order to be certain that those included were confined to those that demon-

strably facilitate hinge bending. We believe the reason for Pro being located in these re-

gions is that it often acts as a terminator for secondary structure elements and

therefore appears at hinge regions because they are also often located at the terminal

regions of secondary structures [10]. Cys is highly disfavoured at bending regions which

can be explained by the fact that many Cys residues form disulphide bonds helping to

rigidify the local backbone. Positive weights for Cys at the ± ~ 20 positions probably

indicate the role it plays in stabilising a domain via cross-linking. Interestingly Ile

appears to act as a domain-capping residue. The preference of some residues to be situ-

ated in bending regions and the preference of others for being located within a globular

domain may explain why we see improvement in prediction up to comparatively long

window lengths.

The consistently better performance of the quadratic kernel over the linear kernel at

very long window lengths implies a correlation between amino acid locations which we
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believe occurs between a small number of amino acids, such as Pro and Cys, that

particularly favour or disfavour hinge bending regions.

Conclusions
We have used statistical methods and machine learning methods to investigate se-

quence features of hinge-bending regions. This work presents an example of an attempt

to analyse sequence features involved in the structure-dynamic relationship. There is

an increased interest in these regions particularly in their role as linkers in therapeutic

fusion proteins. First, we revisited the Hinge Index measure introduced by Flores et al.

[20]. The results broadly confirm their findings for the propensities of particular amino

acids to occur in hinge-bending regions. However, there are some differences, most

notably the finding that proline is the amino acid that has the highest propensity to

occur in a hinge-bending region. This is thought to be due to its secondary-structure

breaking tendency as it is at the termini of secondary structures that hinge bending

often occurs. Flores et al. found that the Hinge Index alone could not be used to pro-

duce a reliable predictor and so here we have used KLR. Although we have produced a

tool with useful predictive power it has not achieved the same level of predictive power

as when machine learning methods are applied to secondary structure prediction from

sequence [34]. This problem represents a case where there is a large class imbalance

with the number of intradomain residues vastly outweighing the number of hinge-

bending residues. This means that with a limited amount of data, and as our results

indicated, only a few of the 20 amino acids having expressed any strong preference for

or aversion of hinge regions, the number of false positives is likely to be high. Using

KLR models of increasing complexity we have found an interesting and quite unusual

feature for the prediction of hinge-bending regions, namely that the quadratic model

outperforms the linear model particularly at very long window lengths (in comparison

to other methods that have been applied to the prediction of hinge-bending/conforma-

tionally-variable regions). This result points to prediction performance being enhanced

by the correlation between those residues that strongly favour or disfavour hinge-

bending regions at a considerable distances apart along the chain. Understanding the

role that particular amino acids play in the formation of hinge regions will be of inter-

est to those who practise protein engineering, particularly those who design linker

regions in therapeutic fusion proteins.

Methods
Dataset

The primary data comprised 5248 domain movements from unique pairs of structures

analysed by the DynDom program. These are deposited in both the user-created data-

base [35] and the non-redundant database [36]. We selected only those that were

uncontestably clear domain movements based on filtering criteria. We created two

datasets, “Group 1” a strictly filtered group, and “Group 2” filtered based on more per-

missive criteria. Table 1 shows the filtering criteria for these two groups. We take the

sequence of the Conformer 1 structure (the two structures submitted are assigned as

“Conformer 1” and “Conformer 2” at the DynDom webserver by the expert user) with

the residues annotated as hinge-bending or intradomain. Figure 1 shows glutamine
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binding protein, a typical member of Group 1. In the user-created set there is a great

deal of redundancy. We follow Flores et al. [20] initially by filtering at 90% sequence

identity on each group to ensure that no two sequences are selected for the same group

if they have a sequence identity of 90% or higher. To achieve this we used the program

CD-Hit [37]. The total counts for the data sets were 241 sequences in Group 1 and 372

sequences in Group 2. Group 1 can be regarded as containing clear hinge regions

whereas Group 2 may contain some less hinge-like regions. Lists of the PDB structures

in Groups 1 and 2 at 90% filtering are given in the Additional Data 1. These pairs iden-

tify the domain movement which can be viewed at the DynDom website.

We also filtered the datasets at 40 and 20% sequence identity thresholds using CD-Hit

to assess the effect of removing homologous proteins. In the Results section we refer to

the different datasets as Group1_90%, Group2_90%, Group1_40% and Group1_20%.

Hinge Index

Flores et al. [20] proposed the Hinge Index, HI(a), for a given amino acid, a, as:

HI að Þ ¼ log
p ajhð Þ
p að Þ

� �
; ð1Þ

which, is the log-likelihood ratio for the occurrence of amino acid a in a hinge region

to its occurrence in the population as a whole. It is a measure of the propensity of an

amino acid for a hinge region. p(a) is the probability of amino acid a irrespective of region

and p(a| h) is the probability of amino acid a given it is in a hinge region, h. These

probabilities were estimated from frequencies calculated using the annotated sequence

data. Significance testing of HI(a) is performed using the hypergeometric distribution as

outlined in detail by Flores et al. pages 6–7. The null hypothesis is that the observed num-

ber of occurrences of an amino acid of a particular type in hinge regions is the result of

the random assignment of that amino acid to hinge regions according to its probability of

occurrence in any region derived from its overall frequency. The alternative hypothesis is

that it is not a random assignment with probabilities derived from their overall frequen-

cies. Following Flores et al., the null hypothesis is rejected when p < 0.05.

Kernel logistic regression

To build the training and test data sets from the sequence and bending region data, a

sliding window of length w residues was placed over each sequence, resulting in subse-

quences of length w residues. If w is odd then the central residue of the window can

either be in an intradomain region or a hinge-bending region. To get from our win-

dowed sequence to a suitable input vector we employ “one-of-n-encoding”. For each

window i the sequence is encoded as a 24w component input vector, xi, where for each

position in the window, 24 rows are assigned, each of which corresponds to the one of

24 “characters” in our alphabet: one character for each of the 20 standard amino acids

plus “B”, “X” and “Z”, standing for ambiguous amino acids and “-” as a dummy charac-

ter for those positions in the window that are beyond a terminus. The value of each of

the 24 rows is set to 0 for each residue apart from the row of the residue at the corre-

sponding window position which is set to 1.

Those windows with the central residue in an intradomain region were negatively

labelled and have a target value for KLR of ti = 0, and those with the central residue in
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a hinge-bending region were positively labelled and given a target value of ti = 1. The

number of negatively labelled records in the training set greatly outnumbered the

number of positively labelled records, so this ratio in the training set was altered by

randomly discarding negatively labelled examples. We elected to use a 1:9 proportion

for the positive to negative cases for all training sets. In the Results section we show

that variation of the proportion of positive to negative cases in the training set did not

affect the AUROC.

KLR was applied to the data using UEA’s MATLAB Generalized Kernel Machine

toolbox [38]. KLR [39] constructs a model of the form:

logit y xð Þf g ¼ w∙ϕ xð Þ þ b;where logit pf g ¼ log
p

1−p

� �
; ð2Þ

where b is a scalar bias parameter, w is a vector of primal model parameters, and ϕ(x)

is the representation of x in a fixed feature space. The logit link function constrains the

output of the model to lie between zero and one. Viewing this output as an a-posteriori

probability of belonging to the “hinge” class, we classify test residues as part of a hinge-

bending region if the output is above a certain threshold, and part of an intradomain

region if the output is below the threshold.

Rather than define the non-linear transformation, ϕ(x), directly, it is implicitly defined

by a kernel function, K, giving the inner product between vectors in the feature space,

K x; x
0

� �
¼ ϕ xð Þ∙ϕ x

0
� �

; ð3Þ

where x and x′ are arbitrary vectors in the input space. A valid kernel function is one

that obeys Mercer’s conditions; i.e. the resulting kernel matrix, K, is positive semi-

definite for any set of points in the input space. We used three kernels starting with the

linear kernel function, a straightforward scalar product of the input vectors:

K x; x
0

� �
¼ x∙x

0
: ð4Þ

The polynomial kernel of Eq. 5, maps the input vector into a higher dimensional

feature space where new features are created from all monomials of order d or less of

the original features. This allows non-linear separations of the data without requiring

an enumeration of the possible combinations.

K x; x
0

� �
¼ x∙x0 þ cð Þd: ð5Þ

In this study, the kernel parameter d was set at two (for a quadratic kernel) or three

(for a cubic kernel), and c is a hyper-parameter. The final kernel function used was the

radial basis function (RBF) kernel:

K x; x
0

� �
¼ exp −θ x−x

0�� ��2n o
; ð6Þ

where θ is a hyper-parameter controlling the sensitivity of the kernel.

Assume we are given a training set of ℓ examples, where xi represents an input vector

and ti and yi are, respectively, the expected and predicted outcome for the ith training

example. The optimal values of the primal model parameters, w, and bias, b, are found
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using the iteratively reweighted least squares training procedure [40] to minimise a reg-

ularised “cross-entropy” cost function:

E ¼ 1
2

wk k2− γ
2

Xℓ

i¼1
ti log yif g þ 1−tið Þ log 1−yif g½ �: ð7Þ

This optimisation problem is more conveniently solved in the dual representation,

where the primal parameters are expressed in terms of the dual parameters:

w ¼
Xℓ

i¼1
αiϕ xið Þ and wk k2 ¼ αTKα; ð8Þ

where α is vector of dual model parameters. From Eq. 2, Eq. 3 and Eq. 8, the equation

used to calculate an expected outcome from an input vector is:

logit y xð Þf g ¼
Xℓ

i¼1
αiK xi; xð Þ þ b: ð9Þ

The regularization parameter, γ, in Eq. 7 along with other hyper-parameters such as

the kernel parameter θ in Eq. 6 and the polynomial kernel’s hyper-parameter c in Eq. 5,

are tuned using the Nelder-Mead simplex algorithm [41] to minimise an approximate

leave-one-out cross-validation estimate of the cross-entropy loss [40], which can be

computed efficiently as a by-product of the training procedure, i.e. the leave-one-out

cross-validation is performed on the training set.
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