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Abstract

Background: Lung cancer is the leading cause of cancer-related deaths in both men and women in the United
States, and it has a much lower five-year survival rate than many other cancers. Accurate survival analysis is urgently
needed for better disease diagnosis and treatment management.

Results: In this work, we propose a survival analysis system that takes advantage of recently emerging deep learning
techniques. The proposed system consists of three major components. 1) The first component is an end-to-end
cellular feature learning module using a deep neural network with global average pooling. The learned cellular
representations encode high-level biologically relevant information without requiring individual cell segmentation,
which is aggregated into patient-level feature vectors by using a locality-constrained linear coding (LLC)-based bag of
words (BoW) encoding algorithm. 2) The second component is a Cox proportional hazards model with an elastic net
penalty for robust feature selection and survival analysis. 3) The third commponent is a biomarker interpretation
module that can help localize the image regions that contribute to the survival model’s decision. Extensive
experiments show that the proposed survival model has excellent predictive power for a public (i.e., The Cancer
Genome Atlas) lung cancer dataset in terms of two commonly used metrics: log-rank test (p-value) of the
Kaplan-Meier estimate and concordance index (c-index).

Conclusions: In this work, we have proposed a segmentation-free survival analysis system that takes advantage of
the recently emerging deep learning framework and well-studied survival analysis methods such as the Cox
proportional hazards model. In addition, we provide an approach to visualize the discovered biomarkers, which can
serve as concrete evidence supporting the survival model’s decision.
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Background

Lung cancer is the leading cause of cancer-related deaths
in both men and women in the United States. An esti-
mated 158,080 Americans died from lung cancer in 2016,
accounting for approximately 27% of all cancer deaths!.
The five-year survival rate of lung cancer is 17.7%, which
is lower than that of many other leading cancers, such
as colon cancer (64.4%) and breast cancer (89.7%). There
are two main types of lung cancer: small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC
accounts for the majority of lung cancer (80% — 85%)
and has two major subtypes: adenocarcinoma (AC), repre-
senting approximately 40%, and squamous cell carcinoma
(SC), representing approximately 25% — 30%2. Accurate
survival analysis is essential for personalized treatment
management and prognosis. For example, closer follow-
up and more aggressive treatment might benefit patients
with poorer prognoses [1].

Cell localization

Currently, histopathology images serve as the golden stan-
dard for lung cancer diagnosis and are primarily evaluated
by pathologists or doctors. However, this process is labor
intensive, time consuming, and subject to high inter-
observer variability. Recently, an automated histopatho-
logical analysis system [2] has been shown to be able to
provide accurate, consistent, and valuable decision sup-
port for the diagnosis of different diseases, such as breast
cancer [3], pancreatic neuroendocrine tumors [4], lym-
phoma [5], and lung cancer [1, 6—8]. With the emergence
of deep learning methods that have achieved great suc-
cesses in computer vision [9-12], in this work, we aim
to develop a deep learning-based lung cancer survival
analysis system that can provide accurate prediction of
patient survival outcomes and identify important image
biomarkers.

Pathologists make diagnostic decisions based on cellular
and inter-cellular level morphology, and thus accurate cell
localization is a prerequisite step for lung cancer survival
analysis. Since cells usually exhibit circular or approxi-
mately circular shapes and their sizes fall within a rela-
tively small range, many methods [13-15] are designed
to fully utilize this prior information. These methods pri-
marily consist of three steps: cell confidence map genera-
tion, cell center localization, and optional post-processing.
Here, we refer to a cell confidence map as an intermediate
image transform which highlights cell centers. For exam-
ple, in [14], Byun et al. first apply a Laplacian of Gaussian
(LoG) filter with a fixed scale for locating nuclei on reti-
nal images, assuming that the cell size is known a priori

Thttp://www.lung.org/lung- health-and- diseases/lung- disease-lookup/lung-
cancer/resource-library/lung- cancer-fact- sheet.html
Zhttps://www.cancer.org/cancer/non-small-cell-lung- cancer/about/what-is-
non-small-cell-lung- cancer.html
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and cell detection can be achieved by locating the maxi-
mum filter response in a neighborhood with a predefined
size. Observing that many cells exhibit round shapes, Veta
et al. [16] used a fast radial symmetry transform (FRST)
[17] to generate cell confidence maps. Following this idea
of radial symmetry-based voting, Parvin et al. [18] have
proposed an iterative voting approach based on (weakly)
radial symmetries, which is adaptive to geometric per-
turbation and can handle elliptical objects. However, the
iterative procedure in [18] is computationally expensive.
To address this issue, Qi et al. [15] have proposed single-
pass voting for cell detection which performs only one
round of voting and computes the final cell centers by
applying mean shift clustering [19] to the vote image.

Recently, deep learning-based models, especially convo-
lutional neural networks (CNNs), have attracted partic-
ular interest [9-12] and achieved state-of-the-art perfor-
mance in various vision tasks, such as image classification
[20, 21], object detection [22, 23], segmentation [24] and
so on. Great successes of applying CNN to medical image
analysis have also been reported [25-28]. In [25], Cire-
gan et al. applied a deep CNN for automatic mitotic cell
detection in breast cancer histology images. In [27], Song
et al. first computed a pixel-wise coarse segmentation
with CNN and achieved the final nuclei locations using a
fast min-cut/max-flow graph inference algorithm [29]. In
both [25] and [27], the CNN models are applied to testing
images in a sliding-window manner for pixel-wise clas-
sification, which is computationally expensive. Recently,
Long et al. [30] proposed a fully convolutional network
(FCN). In contrast with conventional CNN methods
[9-12], an FCN is trained in an end-to-end manner and
can produce output maps with the same size as the
inputs, and thus it is both asymptotically and absolutely
efficient [30].

Survival analysis

Survival analysis is a well-studied field in health statistics
research which aims at predicting the time until the occur-
rence of an event of interest, such as onset of a disease,
tumor recurrence, death after some treatment interven-
tion, etc. The time between the beginning of follow-up
and the occurrence of the event is called survival time or
failure time. In survival analysis, one important issue to
be considered is the censoring problem. For example, this
occurs when a subject is not followed up during the study
period or does not experience the event of interest before
the study ends. Since the exact survival times of the cen-
sored subjects are unknown, and they account for a large
portion of the data, standard statistical methods such as
linear regression are not suitable for survival time data.
In survival analysis, the most commonly used method is
the Cox proportional hazards model [31]. Other meth-
ods include the Kaplan-Meier estimate [32] for calculating
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the survival probability and the log-rank test [33] for
comparing the survival outcomes of two or more subject
groups.

Recently, there have been several works published
regarding survival analysis of lung cancer using patho-
logical image features [1, 6-8]. In [6], Wang et al. have
proposed three groups of image morphological features
(geometry features, pixel intensity statistics, and texture
features) extracted from the segmented cell regions, and
the Cox proportional hazards model is used to select
image features that are correlated with patient survival
outcomes. Similarly, Yao et al. [7] have enhanced the three
groups of image features by including the spatial distri-
butions of cell subtypes (tumor, lymphocyte, stromal) and
have built a separate survival model for each of the two
major subtypes of NSCLC: adenocarcinoma and squa-
mous cell carcinoma. In [1], the cells are first segmented
out using the Otsu threshold selection method [34], and
then a total of 9,879 quantitative features are extracted
from each image patch using CellProfiler [35]. They all
achieved success in building a powerful survival model
and finding valuable biomarkers. For example, in [6], pixel
intensity and texture features are found to be correlated
with survival outcomes; in [7], image features related with
cell subtype distributions, cell shape and granularity are
selected; in [1], Zernike shape, texture and radial distri-
bution of pixel intensity are among the top prediction
features.

However, the aforementioned methods [1, 6, 7] face
several limitations. First, they all require cell segmenta-
tion as a prerequisite step. As opposed to cell detection,
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accurate, robust and efficient cell segmentation remains
a challenging task because 1) there exist significant vari-
ations in intra- and inter-cellular intensity, especially for
cancer cells across different patients, and 2) cells are
often clustered into clumps, such that they might partially
overlap with one another. Inaccurate cell segmentation
might harm the discriminative power of some morpho-
logical features, such as cell granularity or shape. Second,
the cell features are currently handcrafted: thus, they are
error-prone and do not contain any high-level information
related to diagnosis. In recent years, deep learning-based
models have achieved state-of-the-art results in feature
representation learning. Zhu et al. [8] proposed a deep
learning-based survival model that takes 1024 x 1024
image patches as input and treats the classification out-
puts as the patient risk scores for survival analysis. How-
ever, in practice, pathologists or doctors make diagnostic
decisions based on cellular level image information, and
these discriminative details could be lost in Zhu'’s architec-
ture, which downsamples the inputs with size 1024 x 1024
to the last convolutional feature maps with size 20 x 20.
More importantly, this system misses the opportunity to
use the well-developed survival analysis methods, such
as the Cox proportional hazards model and its variants
[31, 36, 37], to identify and interpret biomarkers. So far,
those works that can combine the deep learning frame-
work and the classic survival analysis methods remain
absent. Finally, individual cellular features are currently
aggregated into a patient level feature vector using rel-
atively simple statistically based methods such as taking
the mean, median or standard variation of each feature
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Fig. 1 An overview of the proposed system for lung cancer survival analysis
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Fig. 2 An overview of the proposed cell feature learning framework. The activation values of the global average pooling (GAP) layer are used as the

dimension [1, 6, 7]. More advanced local feature aggre-
gation methods, such as bag of words (BoW) [38] or
sparsity-based BoW variations [39, 40], are not investi-
gated.

To overcome the aforementioned challenges, we pro-
pose a survival analysis system that takes advantage
of the emerging deep learning framework [20, 21] and
well-studied survival analysis methods [31, 36, 37]. An
overview of the proposed system is provided in Fig. 1,
which consists of three main components: 1) An end-to-
end cellular feature learning module using a deep neural
network with global average pooling. The learned cel-
lular representations encode high-level biologically rele-
vant information without the requirement of individual
cell segmentation, and then are aggregated into patient-
level feature vectors by using a locality-constrained lin-
ear coding (LLC)-based bag of words (BoW) encoding
algorithm. 2) A Cox proportional hazards model with
an elastic net penalty for robust feature selection and
survival analysis. 3) A biomarker interpretation module
which can help localize the image regions that con-
tribute to the survival model’s decisions. Extensive exper-
iments demonstrate that the proposed survival model
provides excellent predictive power for testing data in
terms of two commonly used survival analysis met-
rics: the log-rank test (p-value) of the Kaplan-Meier
estimate and the concordance index (c-index). Further-
more, the proposed system can easily visualize the
selected biomarkers, which can serve as regions of inter-
est (ROIs). In this scenario, pathologists or doctors
can validate the automated generated survival analysis
results by examining these ROIs using raw image data.
We argue that this system should receive greater future
investment.

Methods

Cell detection via end-to-end learning

In pathological image analysis, cells are the regions of
interest, and it is important to achieve accurate and robust
cell detection. Many conventional CNN architectures
[9-12] usually adopt the sliding window strategy to
make dense predictions in the testing stage, which is

computationally expensive. Fortunately, an FCN [30]
architecture is proposed to upsample the output layer
to a higher resolution which is the same as the input
image dimension. Furthermore, in order to propagate
more contextual information to higher resolution layers,
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Ronneberger et al. have proposed a U-Net architecture
[41] which makes the expansive and contracting paths
more or less symmetrical via gradually upsampling lay-
ers in the expansive path and concatenating them with
corresponding layers in the contracting path. The U-Net
architecture has been proven to be effective for cell seg-
mentation and tracking [42]. In this work, we adopt the
U-Net architecture for cancer cell detection.

Denote T = {(x,7) € X x Y} as the training data, where
x represents a training image and y = v * G is the corre-
sponding cell center probability map, where v(i,j) = 1 if
there is a human cell center annotation at pixel location
(i,7), and otherwise v(i,j) = 0. G denotes a Gaussian ker-
nel with standard deviation o. Let 0 denote the output,
and then the loss function can be defined as:

1 h w ) ) B
L(y,0) = = T+ BN — o), (1)
¥,0) = ; j:zl(y I

where & and w denote the height and width of x, respec-
tively, and y represents the mean value of y. B is a
predefined constant which is chosen as § = 0.2 in
our implementation. The final cell center coordinates are
achieved via non-maximum suppression on the output
map o. Please refer to [42] for more details of the U-Net
architecture.

Biological information bearing feature learning

Cellular feature extraction

After cell localization, discriminative cell representations
must be learned for survival analysis. In the current
literature, cellular descriptors are still composed using
hand-crafted image features, and a proportion of them,
such as cell size and shape features, rely on cell seg-
mentation. Inaccurate cell segmentation will reduce the
discriminative power of these features. Recently, image
features based on the outputs of the last fully connected
layers of CNN models have emerged as state-of-the-art
generic representations for visual recognition [43-46].
Inspired by the success of CNN features, in this work,
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we propose to train a deep neural network to classify
cells into different risk groups based on the correspond-
ing patient survival times, and we build cell descrip-
tors using activations within the learned deep neural

network.
The proposed architecture in Fig. 2 is based on the

VGG-Net [47], from which we remove the layers after
conv5 and instead add a convolutional layer followed by a
global average pooling (GAP) layer with pooling size 5 and
stride 5, which is then directly fed into the softmax layer
for outputting the risk scores. The newly added convolu-
tional layer selects 3 x 3 kernels with 512 feature maps as
well as stride size equal to 1 and pad size of 1. The activa-
tions of the GAP layer are used as feature representations
of cells for the subsequent survival analysis. The GAP
layer design is inspired by [48], which uses a GAP layer
as a structural regularizer to help the deep neural net-
work prevent overfitting and improve the generalization
ability. Later, it is used to localize the discriminative image
regions (attention) in [46] for solving classification tasks.
Note that the global average pooling summarizes the spa-
tial information, and thus it is inherently robust with
respect to spatial translation of the inputs. This property
is essentially important for robust cell feature learning
because inaccurate or inconsistent cell center localizations
will directly lead to input translations.

To illustrate the robustness of the GAP layer with
respect to translations of the inputs, we provide
both quantitative and qualitative analyses as follows.
Specifically, we first randomly sample 1000 cells from
histopathological images of our dataset, The Cancer
Genome Atlas (TCGA), pass them forward through the
trained network, and treat the activations of the GAP layer
as their features X € RPN where D = 512 and N =
1000. Then, we randomly shift the cell center coordinates
in four directions (left, right, top, and bottom) by a certain
amount ¢, and their corresponding features X; € RPN
are extracted as well. The Euclidean distances between
the features of translated cells and the originals, D; =
IX — Xl € RN, are computed. We repeat this process

classification. Please refer to [46] for the details of computing CAMs

g “;‘},ft

Fig. 4 Examples of the generated CAMs for several training patches. The maps in the second row highlight the discriminative image regions for cell
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for different translation amounts, with ¢ = {1, 3,5, 7,9, 11}
pixels. For comparison, the histograms of oriented gradi-
ents (HOQG) [49] features are also computed. The medium
values of D; normalized by the medium values of the inter-
cell distances of X against different ¢ are plotted in Fig. 3a.
It can be observed that, compared with the HOG image
features, the perturbations of GAP features caused by
input translations are smooth and insignificant. Further-
more, for each translated cell, we conduct top-k retrieval
against the original cells and compute the precision. The
top-k retrieval precision values for different ¢ are shown in
Fig. 3b, showing that the retrieval accuracy using GAP fea-
tures remains at a high value even with a large translation
(for example, 11 pixels). In contrast, the retrieval perfor-
mance using HOG features deteriorates significantly as
the translation grows. The robustness of the GAP cellular
features with respect to input translations will effectively
compensate for the inaccuracy or inconsistency of cell
detection.

In addition, we probe into the neural network and local-
ize the discriminative image regions (attentions) for cell
classification by following the method in [46]. Several
examples of the training patches and the computed class
activation maps (CAMs) are shown in Fig. 4. It can be
observed that the network generally places greater atten-
tions on the central regions which are desired. However,
when the cells are not localized in the image patch centers
due to inaccurate cell detection, the network will adjust its
attentions accordingly. This further shows that the activa-
tions of the GAP layer are robust with respect to image
translations and are suitable for cell representations.

Aggregating cellular features

Given a patient p and a set of D-dimensional cellular
descriptors X =[x1,X3,...,XN] € RPN from p, we aim
to aggregate individual cellular representations X into a
single feature vector, f, as p’s representation. One of the
simplest yet most effective local descriptor aggregation
methods is the BoW model [38]. Given a learned code-
book with M entries, B =[bq,by,...,by] € RPXM | the
BoW method converts each cellular descriptor x; into an
M-dimensional code ¢; € RM, and then all of the cellular
codes C =[cy, ¢y, .., cx] € RM*N are pooled into a single
vector, f € RM, There are many encoding methods, such
as hard vector quantization (VQ) [50] and sparse coding-
based soft VQ [39, 40]. Among these works, LLC [40] is
used to project each descriptor into its local coordinate
system for patientwise representation learning. Letting
B; € RP*K denote the k-nearest neighbors of x;, where
k << M, the code c; can be achieved by solving a small
linear system:

N
%nzwn—qaw,saﬂq=LVi )
=
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Table 1 Dataset description
Dataset Description
Set| 63 patients, 14 in low risk group, 12 in high risk group
Set I 58 patients, 8 in low risk group, 15 in high risk group

The final feature representation f for patient p can be
achieved via sum pooling or max pooling, followed by ¢»
normalization, f = f/||f||s. The poolings are computed
as: 1) sum pooling: f = YN ¢;; 2) max pooling: f =
max(cCy, ..., CN ).

Survival analysis

Given a set of observations (f;,y;,8;), i = 1,2, ..., P, where
P is the number of observations, y; is the observed time
to the event of interest for individual i, §; = 1 if an
event occurred at that time and 0 if the observation has
been censored, and f; =[f;1,fq, ... fiz] € RM is the set
of features or predictor variables obtained at time 0. The
objective of survival analysis is to reveal the relationship
between predictor variables, such as the image feature
vector f in this work, and survival time. In health infor-
matics, the Cox proportional hazards model [31] is one
of the most commonly used approaches for survival time
analysis and is defined as:

si(t) = so(t)efi P, (3)

where s;(t) is the hazard for observation i at time ¢, so(£) is
the baseline hazard and is left unspecified, and g € RM is
the parameter vector. The estimation of § is obtained by
maximizing the partial log likelihood:

P efiTﬂ
L(ﬂ) = l_[ 7@;
8i=1 2_jeR; e/

(4)

where R; = {jly; > t;}. For high-dimensional data, with
M > P, the ¢; penalty (lasso) [51] or £, (ridge regression)
is added to avoid degenerated solutions.

The £; penalty tends to generate sparse solutions, which
are often desired for feature selection. However, as indi-
cated in [36], this can also cause one significant problem:
if the two predictors are strongly correlated, the lasso will
pick one and entirely ignore the other. To tackle this prob-
lem, we add the elastic net penalty [37], which is a mixture
of £; and £3, to (4): the problem thus becomes:

1
Lner(B) = L(B) = MellBl + 51 —o)1B13), (5)

where L(B) is defined in Eq. (4), || - |1 denotes the ¢;
penalty, || - ||% denotes the £, penalty, and « is used to bal-
ance between £ and 5. In our implementation, we solve
(5) using the cyclical coordinate descent algorithm [36],
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cells are detected, and 2631 cells are detected in the lower row

Fig. 5 Qualitative cell detection results for two large image patches. Several zoomed-in patches are shown on the right part. In the upper row, 6087

and its implementation can be found in the R package
glmnet®.

Evaluation

We use two metrics to measure the predictive power
of the survival model: the Kaplan-Meier estimate (KME)
[32] that can effectively measure the survival differences
between two or more groups, and the concordance index
(c-index) [52] that can reveal the relative risks between
patients.

Kaplan-Meier Estimate. In clinical trials, it is impor-
tant to be able to accurately and robustly measure the
fraction of patients who survive after a certain amount
of time after treatment in spite of censored observa-
tions. For this purpose, the Kaplan-Meier estimate is
the simplest yet most effective way to compute the sur-
vival rates. For two or more groups of subjects, the
log-rank test is conducted to measure the significant
difference between their survival distributions. The sur-
vival outcomes of two groups are considered as signifi-
cantly different if the p-value of the log-rank test is less
than 0.05.

Concordance Index. This is another commonly used
metric to measure survival model performance, which is
calculated as the fraction of all pairs whose predicted sur-

3http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

vival risks are correctly ordered among all subjects that
can actually be ordered. The survival time ¢;/¢; for patient
pilpj can be ordered if p; is uncensored and ¢; < ¢;. Note
that #; would be the censoring time if p; is censored. Let
G = (V,E) denote a directed graph, where the vertices
V denote all of the patients, and a directed edge e;; exists
between two nodes, v; and v;, if the corresponding patient
pi of v; is uncensored and #; < t;. The edges can only
originate from those uncensored nodes. Given a pair of
patients (p;, pj) € E and their risk scores r; and rj, p; and p;
are considered concordant if r; > r;. For the concordance
index (c-index), the value of 0.5 is a random guess, and 1
is the best.

Table 2 Survival analysis results with different feature encoding

algorithms
Method Evaluation | Evaluation Il
p-value c-index p-value c-index
Cellular voting 0.0290 0.5103 0.0320 0.5739
Aggregate statistic [6, 7] 0.0083 0.6798 0.2200 0.6750
BoW encoding 0.0290 0.6591 0.0045 0.6770
LLC-sum encoding 0.0110 0.6874 0.0260 0.6751
LLC-max encoding 0.0031 0.6911 0.0470 0.6770

Note that lower p-values are better, whereas higher c-index values are better
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Experimental results

Dataset

The proposed framework is validated using a dataset
downloaded from TCGA data portal*. TCGA is a
collection of cancer specimens with additional clinical
information and histopathology slide images. In total, 121
patients with image annotation and entire survival infor-
mation are collected, and they are randomly partitioned
into two sets, Set I and Set II, which contain 63 and 58
patients, respectively. The detailed description of the two
sets is summarized in Table 1. A patient is labeled as high
risk if his/her known days to death value is less than T,
and low risk if either the days to death or days to last fol-
low up value is greater than T,. Note that those patients
whose days to death values are unknown and whose days
to last follow up values are less than 77 are not included
for cell feature training. For example, when 77 = T = 3

*https://tcga- data.ncinih.gov/docs/publications/tcga/

years, among the 63 patients in Set I, there are 14/12
patients in the low/high risk group; among the 58 patients
in Set II, there are 8 with low risk and 15 with high risk.
For each patient, an image patch with size 2356 x 1304
is sampled from the cancerous regions of the histopathol-
ogy slide image under 20X magnification for image feature
extraction.

Pre-processing

Cell detection

In this work, we implemented the U-Net architecture
using Theano® and Keras®. Both training and testing are
conducted on a machine equipped with an Intel Xeon E5-
1650 CPU and an NVIDIA Quadro K4000 GPU. The qual-
itative cell detection results for two large image patches
are shown in Fig. 5, and several zoomed-in patches are

Shttp://deeplearning.net/software/theano/
Ohttps://github.com/fchollet/keras
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also provided for better illustration. It may be observed
that the trained model can provide desirable cell center
localization results.

Feature learning

The feature learning model is fine-tuned based on the
pretrained VGG model” using Caffe [53] implementation
on an NVIDIA Quadro K4000 GPU. For each training
image, cell centers are localized using the aforementioned
cell detection method. For each detected cell, an 80 x
80 patch around it is cropped as a training sample, and
the label of the training sample is decided by the corre-
sponding patient’s risk status. For each patient, 2000 cells
are randomly selected for feature extraction. The model
is trained using a stochastic gradient descent algorithm
with the initial learning rate set as 0.00001 and the mini-
batch size of 10. The training is stopped after 100,000
iterations.

Survival analysis without feature selection

We validate the proposed cell feature learning framework
for survival analysis using two different setups: 1) Evalua-
tion I, using the selected 26 patients in Set I as training and
the rest of Set I plus all patients in Set II as testing; 2) Eval-
uation II, using the selected 23 patients in Set Il as training
and the remaining patients in Set II plus all patients in Set
I as testing. In both experimental setups, we maximize the
testing set sizes.

For the training set, a binary classifier (logistic regres-
sion used in this paper) is trained to classify each patient
as low risk or high risk. For the testing set, the model out-
putr; €[0, 1] for the patient p; is treated as his/her survival

7https://github.com/BVLC/caffe/wiki/Model- Zoo

risk score, with a larger value denoting a higher survival
risk and vice versa. When computing p-values, a risk score
threshold r = 0.5 is used to partition the testing patients
into two groups, low/high risk, by their predicted r-values
and then to compute the p-values from the log-rank test.
When computing c-index values, the raw risk score r is
used, and no binary thresholding is involved.

The detailed survival analysis results of Evaluation I
and Evaluation II using both p-value and c-index metrics
are listed in Table 2. Note that in addition to the patient
features aggregated via LLC reconstruction, the conven-
tional encoding method, BoW, is also tested. For both
BoW and LLC encoding, the dictionary B is learned via
k-means clustering with k equal to 256. Meanwhile, two
other local feature aggregation methods are also tested for
comparison:

1 Cellular Voting. Here, we treat the softmax output of
the deep learning model (see Fig. 2) as the cell’s risk
score, and the patient’s risk score is determined by
averaging all of the cellular scores.

2 Aggregate Statistic. As in [1, 6, 7], the mean, median,
and standard variation of each cellular feature are
computed and then concatenated into one single
vector. The resulting feature dimension is 1536.

From Table 2, we observe the following: 1) In terms
of both p-value and c-index metrics, the built survival
model achieves satisfactory survival prediction outcomes
with varying cellular feature aggregation methods. For
example, the p-values of the survival models using BoW,
LLC-sum and LLC-max encoding methods are all less
than 0.05 under both setups. Their c-index values are
close to 0.7. As a reference, a c-index value of 0.629 is
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achieved in [8] on a different dataset, the National Lung
Screening Trial (NLST) lung cancer data. We can con-
clude that the learned cellular features indeed encode
patient survival information and effectively generalize the
testing data. 2) Other feature encoding methods such as
cellular voting and aggregate statistics are not able to pro-
duce robust and accurate survival predictions for both sets
of testing data. For example, though the cellular voting
method exhibits good p-value performance, the c-index
value is not satisfactory; in addition, the aggregate statis-
tic method achieves good results in terms of p-value and
c-index in Evaluation I, but the p-value performance in
Evaluation II is poor.

The Kaplan-Meier curves stratified using the proposed
survival model are shown in Fig. 6. It can be observed
that the numbers of the patients who are at risk at the

beginning of each time interval are also reported. These
table values can be used to reconstruct the Kaplan-Meier
curves and provide us with better insight into the survival
prediction results.

Table 3 Comparison of survival models using different
aggregating algorithms

p-value c-index
Method

All Top 30 All Top 30
Aggregate Statistic [6, 7] 0.1247 0.1344 0.6564 0.6633
BoW Encoding 0.0072 0.1190 0.6678 0.6200
LLC-sum Encoding 0.0204 0.0217 06713 0.6449
LLC-max Encoding 0.0298 0.0235 0.6665 0.6767
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Table 4 Survival analysis performance of discovered biomarkers

p-value c-index
Feature ID

Train Test Train Test
x70 0.0001 0.0035 0.7530 0.3683
x93 0.0059 0.0021 0.7382 0.7157
x107 0.0460 0.0990 0.6024 0.5448
x164 0.0099 0.0650 0.6395 0.6428

Survival analysis with feature selection

We conduct survival analysis with feature selection under
two different setups: 1) Evaluation I, which uses all
patients in Set I for training and all patients in Set II for
testing; 2) Evaluation II, which uses all patients in Set II
for training and all patients in Set I for testing.

Feature selection is performed by solving Eq. (5), with
a set as 0.2 in all experiments. We repeat this procedure
100 times on the training data with 10-fold cross valida-
tion and record the frequencies of the chosen features.
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For all encoding methods, the top 30 selected features
are chosen for fair comparison. For both BoW and LLC-
sum encoding under Evaluation I, several sample selected
features and their frequencies are shown in Fig. 7. Since
BoW and LLC-sum features are derived from the same
dictionary B, their selected features can be aligned for
comparison. It can be observed that the selected features,
which correspond to certain entries (or cluster centers)
in the dictionary B, are very consistent for both encod-
ing methods. We can conclude that the cells that fall
into those centers carry discriminative information about
patient survival outcomes.

After feature selection, a survival model is built on the
training data and its predictive power is validated with the
testing data. The Kaplan-Meier curves and the p-values
of the log-rank test using both LLC-sum and LLC-max
encodings are provided in Fig. 8. In addition, the detailed
numerical analysis results are listed in Table 3. Note that
1) The reported table values denote average results of
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Fig. 10 Visualization of discovered biomarker samples and the generated CAMs

the test data of both Evaluations I and II; 2) The sur-
vival prediction outcomes without feature selection are
also computed for comparison. It can be observed that the
adopted feature selection strategy which adds an elastic
net penalty to the Cox model (Eq. 5) can find features that
are highly correlated with patient survival outcomes. For
example, for both LLC-sum and LLC-max encodings, the
selected 30 features achieve similar performance as using
all features (256 dimensions).

Biomarker analysis and visualization

In this experiment, we use all patients in Set I for training
and all patients in Set II for testing. No cross validation is
involved.

We first conduct univariate survival analysis using the
selected features. Four features, x70, x93, x107 and x164,
are chosen for examination. For the i-th feature, X; € R
denotes the feature values for all patients, where P is the
number of patients. A stump classifier is then trained on
the training patients, and the learned threshold is used to
partition the testing patients into the low- and high-risk
groups. When computing the c-index, no risk scores need
to be learned, and the raw feature values are directly used
for calculation for both training and testing set. The sur-
vival analysis results of both training and testing data are
provided in Table 4, and the Kaplan-Meier curves are pro-
vided in Fig. 9. It can be observed that some biomarkers
do carry discriminative survival information. For example,
x93 produces excellent prediction results in terms of both
p-value and c-index on both training and testing sets. In
fact, under the same setup, x93 achieves a better c-index
value, 0.7157, than models built using all (0.6834) and the
top 30 selected features (0.6750).

Since the feature value is closely related to the num-
ber of occurrences of cells belonging to a certain cell
cluster, it will be helpful if those cells can be visual-
ized. Note that the cluster center dictionary B is learned
via k-means clustering, which means that the cell sam-
ples that fall into a certain cluster can be efficiently

identified. Several cell samples corresponding to features
x70, x93, x107, and x164 are shown in Fig. 10. Note
that the survival model makes predictions using only the
cells that fall into the selected cluster centers, and thus
it would be helpful if these attention cells can be visual-
ized. One example can be found in Fig. 11, which shows
that the cells which contributed to the survival model’s
decision are localized and that they are nearly all tumor
cells. This suggests that our survival analysis system can
not only provide numeric conclusions regarding patients’
survival outcomes but can also provide visual evi-
dence supporting the decisions. We argue that the latter
ability is also important, since it allows the pathologists
or doctors the opportunity to re-assess those biomarkers

Fig. 11 Left: An example image patch; Right: The cells that contribute

to the survival model’s decision are highlighted
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using their expertise and knowledge. For the computer-
aided diagnosis system, we believe that this machine
learning framework should receive greater investment in
the future.

Conclusion

In this work, we have proposed a segmentation-free sur-
vival analysis system that takes advantage of the recently
emerging deep learning framework and well-studied sur-
vival analysis methods such as the Cox proportional haz-
ards model. Extensive experiments demonstrate that the
proposed survival model offers excellent predictive power
for the TCGA lung cancer dataset in terms of two com-
monly used survival analysis metrics: the log-rank test
(p-value) of the Kaplan-Meier estimate and concordance
index (c-index). In addition, we provide an approach
to visualize the discovered biomarkers, which can serve
as concrete evidence supporting the survival model’s
decisions.
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