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Background: Imaging mass spectrometry (imaging MS) is an enabling technology for spatial metabolomics of
tissue sections with rapidly growing areas of applications in biology and medicine. However, imaging MS data is
polluted with off-sample ions caused by sample preparation, particularly by the MALDI (matrix-assisted laser
desorption/ionization) matrix application. Off-sample ion images confound and hinder statistical analysis, metabolite
identification and downstream analysis with no automated solutions available.

Results: We developed an artificial intelligence approach to recognize off-sample ion images. First, we created a
high-quality gold standard of 23,238 expert-tagged ion images from 87 public datasets from the METASPACE
knowledge base. Next, we developed several machine and deep learning methods for recognizing off-sample ion
images. The following methods were able to reproduce expert judgements with a high agreement: residual deep
learning (F1-score 0.97), semi-automated spatio-molecular biclustering (F1-score 0.96), and molecular co-localization
(F1-score 0.90). In a test-case study, we investigated off-sample images corresponding to the most common MALDI
matrix (2,5-dihydroxybenzoic acid, DHB) and characterized properties of matrix clusters.

Conclusions: Overall, our work illustrates how artificial intelligence approaches enabled by open-access data, web
technologies, and machine and deep learning open novel avenues to address long-standing challenges in imaging
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Background

Imaging mass spectrometry (imaging MS) emerged as a
powerful and versatile technology for spatial molecular
analysis [3, 5, 6] with a particular interest in clinical and
pharma applications [17, 20]. The capacities and poten-
tial of imaging MS were boosted with the introduction
of high- and ultrahigh- resolving power mass
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spectrometry analyzers such as FTICR (Fourier-trans-
form ion cyclotron resonance) and Orbitrap that rapidly
shifted the current focus towards applications in spatial
metabolomics and lipidomics [14]. Among various fla-
vors of imaging MS, matrix-assisted laser-desorption
ionization MALDI-imaging is the most widespread [14].
MALDI-imaging requires applying the so-called matrix
onto the tissue section leading to formation of a layer of
crystals covering the sample to facilitate “soft” energy
transfer to sample analytes, enhance their ionization,
and reduce in-source fragmentation [8]. However, the
addition of ionizable matrix molecules contaminates the
data with matrix ion signals which are not relevant for
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the molecular content of the sample and, moreover, can
be isomeric or isobaric with sample analytes and thus
mask out their spatial distribution. The matrix signals
cannot be eliminated from the data with a simple ap-
proach, e.g. by considering [M + H] + matrix ions since a
matrix forms hundreds of so-called matrix clusters,
namely ions composed of matrix molecules. The pres-
ence of matrix cluster ions pollutes MALDI-imaging
data by adding biologically irrelevant signals. This con-
founds quality control and statistical analyses, leads to
false hits in metabolite identification and hinders down-
stream pathways analysis. Despite these negative effects
being widely recognized, currently there is no solution
for filtering out the matrix signals as their formation in
general as well as for specific MALDI matrices, sample
preparation protocols, and types of samples is poorly
understood. A combinatorial model for matrix clusters
was proposed [9] which suggests thousands of theoretic-
ally possible clusters whereas only some of them are ob-
served in real experiments.

An expert can recognize a matrix ion image upon vis-
ual examination. A typical matrix image exhibits the so-
called “background” or “off-sample” pattern with high
intensities in the area outside of the sample and low in-
tensities within the sample area due to the ion suppres-
sion effect [12, 19]. Manual filtering of off-sample ion
images is not feasible due to the sheer size of an imaging
MS dataset containing 10*~10” ion images representing
at least 10°-10®> molecules [15]. To the best of our
knowledge, no automated methods for recognizing off-
sample ion images were published [2]. presents a semi-
automated method which requires manual selection of
the off-sample area and some parameters and provides
no evaluation or error analysis. Various software pack-
ages for imaging MS provide co-localization methods
which in principle can be used for off-sample recogni-
tion but were never evaluated for this specific task. This
gap likely persists due to the lack of a gold-standard
dataset for evaluation of potential methods.

Artificial intelligence is a boosting field of research
that already delivered numerous breakthroughs in image
analysis in particular in image recognition. In this paper,
we present an artificial intelligence approach to
recognize off-sample mass spectrometry images. The ap-
proach capitalizes on using open-access data from the
METASPACE knowledge base which was created by us
[15] and populated by over 3000 public submissions
from various labs (http://metaspace2020.eu). We shared
a large number of mass spectrometry images from public
METASPACE datasets with experts who tagged them as
either on- or off-sample. We curated and integrated
their judgements into a high-quality gold standard set.
We developed several machine and deep learning algo-
rithms for recognizing off-sample images. We trained
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and evaluated them on the gold standard and performed
error analysis. In a test-case study, we investigated the
off-sample images corresponding to the most popular
MALDI matrix (2,5-dihydroxybenzoic acid, DHB) [18]
and derived properties of matrix clusters using a cluster-
generating combinatorial model. We have implemented
the best method as a filter in the METASPACE free
cloud platform. Overall, our work illustrates how artifi-
cial intelligence approaches enabled by open-access data,
web technologies, and machine and deep learning open
novel avenues to address long-standing challenges in im-
aging MS.

Results

Datasets selected for the gold standard

For the gold standard set, we selected 87 public imaging
MS datasets from METASPACE (Supplementary Data
D3). The datasets span various technologies and samples
(Fig. 1). Importantly for the methods development, the
gold standards includes datasets with both rectangular
and non-rectangular imaged area. Also, some datasets
included several tissue sections in the imaged area. For
examples of representative off-sample ion images from
the gold standard datasets see Fig. 2.

Pilot study on creating a gold standard

The pilot study helped us learn about a variety of spatial
patterns in off- and on-sample images (Fig. 2, Supple-
mentary Data D1) as well as about the complexity and
subjectivity of the tagging task, pitfalls of using auto-
mated strategies, as well as estimate resources necessary
to obtain a sufficiently large gold standard set of tagged
ion images. Moreover, we understood the importance of
avoiding semi-automated tagging in order to avoid po-
tential biases. This required implementing a web app for
tagging, as simple approaches not requiring any special
software are not feasible for obtaining a sufficient num-
ber of tagger ion images.

Gold standard

The obtained gold standard includes 23,238 manually
tagged ion images, of them 13,329 “off-sample” and
9909 “on-sample”, available at https://github.com/meta-
space2020/offsample. The ion images tagged as “un-
known” were not included into the gold standard.

Agreement between taggers

Supplementary Table S1 shows the average pairwise
inter-tagger agreement values for each of the five se-
lected datasets. Note that those datasets, in curator opin-
ion, were among the most difficult datasets to tag. The
tagger-curator agreement values range from 0.89 to 1.0
with the average of 0.97 and inter-tagger average agree-
ment values ranging from 0.71 to 0.98 with the average
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Fig. 1 Properties of the public METASPACE datasets selected for the gold standard. They represent a variety of labs, types of samples, and
technologies. Following a stratified random selection, this gold standard set reflects the full set of public datasets in the METASPACE knowledge
base and, taking into account the size of METASPACE currently encompassing over 3000 public datasets, can be considered to be a
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of 0.89. We speculate that the dataset “Servier_Ctrl_
mouse_wb_median_plane_DHB” was likely hard to tag
due the whole-body section including organs of various
properties (density, ionization) as well as presence of the
skin-localized ions which resemble matrix ions with high
intensity at the perimeter of the section (Supplementary
Figure S2). Next, we evaluated the performance of each
tagger individually, and their agreement with other tag-
gers. Supplementary Table S2 shows that taggers highly
agree with the curator (with the Cohen « greater than
0.95). The opposite would indicate excessive curation
that could be associated with a bias introduced by the
curator. Tagger2, Tagger3, and Tagger4 show a strong
inter-tagger agreement (Cohen k greater than 0.92),
while Taggerl and Tagger5 show a moderate inter-
tagger agreement (Cohen « 0.74 and 0.88).

To provide an additional validation of the achieved high
inter-tagger agreement, we also calculated Krippendorff’s
alpha. The average Krippendorffs alpha is equal to 0.9
similar to Cohen’s k (0.89); see Supplementary Table S1.

Performance of the off-sample recognition methods
Spatio-molecular biclustering method

The results of the unsupervised spatio-molecular biclus-
tering method are shown in Supplementary Table S3.
The biclustering method performed the best when com-
bined with the SVM (support vector machine) with

linear kernel, among other machine learning methods.
The optimal values of the method parameters for cluster
assignment were cluster_percent = 0.09, border_percent =
0.1, full_percent=0.1. We investigated the datasets for
which the method performed poorly, i.e. the F1 score
per dataset for either the “off-sample” or “on-sample”
class was below 0.7, which accounted to eight datasets in
total. We visually inspected the spatial clusters for each
dataset. For three out of eight datasets, the spatial clus-
ters were visibly noisy (e.g. Supplementary Figure Sla)
as compared to visibly homogeneous clusters for the
remaining 84 datasets (e.g. Supplementary Figure S1b).
For two out of poorly performed eight datasets, we ob-
served the wrong assignment of large spatial clusters to
either “off-sample” or “on-sample” class (Supplementary
Figure Slc-d). We additionally examined all other data-
sets and confirmed that for all but these two datasets,
the assignment was correct.

In order to improve the method, we considered a
semi-automated strategy when a user would curate the
assignment of two largest spatial clusters. This semi-
automated method is easy to implement as the curation
can be performed just once for a dataset, and requires a
quick visual examination and one click for assignment of
one of the two spatial clusters to the “off-sample” class.
For the semi-automated method, we manually swapped
labels for two datasets for which automated assignment
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Fig. 2 Representative off-sample ion images from the gold standard datasets illustrating a variety of spatial patterns exhibited by such images as
well as particular aspects of the imaging MS datasets. a-c: lllustrative images from several datasets showing the indicative off-sample pattern
(high intensities outside of the tissue section) from DESI- (@) and MALDI-imaging (b-c). d: A dataset with several tissue sections. e: A non-
rectangular dataset where the acquisition area was selected around a whole body mouse tissue section. f: The indicative off-sample pattern. g: A
gradually-changing off-sample pattern. h-k: Different spatial patterns of off-sample images in the same dataset (MALDI-imaging, DHB matrix). h:
The indicative pattern. i: Everywhere-pattern. j: Gradually-changing pattern. k: Spotty pattern with spots everywhere, potentially due to a special
matrix (DHB) application. I-o: Different spatial patterns of off-sample images in the same dataset (DESI-imaging). I: Mainly off-sample localization.
m: Gradual off-sample localization. n: Off-sample leakage pattern. o: Everywhere pattern. p-s: Examples of off-sample MALDI ion images with only
a narrow band of off-sample pixels due to the acquisition area selected precisely around the tissue section. METASPACE links to the ion images:
a,bcdefghijklmnonp,qr,s. Foracknowledgements for these and other gold standard datasets, see section Acknowledgements

failed (Supplementary Figure Slc-d) that improved the For 78 out of 87 datasets, the method produced two
performance up to the F1 score of 0.96 for off-sample large spatial clusters per dataset. For the remaining nine
and 0.97 for on-sample (Supplementary Table S3, sec- datasets, two large clusters and, in addition, from one to
ond row). eight smaller spatial clusters per dataset were found. In
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total, 14 out of 16 of the small clusters were assigned
correctly.

Molecular co-localization method

Similar to the bi-clustering method, the molecular co-
localization method performed the best when combined
with the SVM with the linear kernel. The performance is
shown in Supplementary Table S4 (first row). Since the
molecular co-localization method maps all ion images
into the molecular space of all molecular formulas anno-
tated at FDR (false discovery rate) < =50%, it is natural to
assume that this method works the best when applied to
datasets of similar molecular content. To test this hy-
pothesis, we applied it only to a group of MALDI-
imaging datasets acquired using the 2,5-dihydroxyben-
zoic acid (DHB) matrix in the positive ion mode. The
polarity mode and the MALDI matrix are among the
most influential parameters determining the molecular
content, as molecules have preferential ionization polar-
ity and affinity to a MALDI matrix. Supplementary
Table S4 (second row) shows that indeed, the perform-
ance of the classifier when applied to DHB data only has
been improved, particularly for recognizing off-sample
images with the Fl-score increased from 0.9 to 0.96
(though not significant considering the confidence inter-
vals of +/-0.06).

Comparing performance of all methods

Table 1 compares the performance of all developed
methods for recognizing off-sample ion images. Since
our intended application was filtering out off-sample
ions, we were mostly interested in the high F1 values for
off-sample detection. The best performing method was
the deep residual learning that achieved the F1 off-
sample score of 0.97 +/-0.01. This method had high
stable recall and precision values for off-sample detec-
tion (0.98 +/-0.03 and 0.96 +/- 0.03), while its detection
of on-sample was less reliable (0.94 +/-0.07). The sec-
ond best method with the F1 score of 0.96 +/-0.03 for
off-sample was the semi-automated spatio-molecular
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biclustering where curation of the cluster assignments to
off/on classes was performed for two datasets. This
method proved to be the most reliable for on-sample de-
tection with F1 equal to 0.97 +/-0.01.The spatio-
molecular biclustering method without any curation
achieved the F1 score of 0.93 +/- 0.1 for off-sample and
0.95 +/-0.06 for on-sample. Note that the biclustering
method is unsupervised and the gold standard was used
only to select the parameters. The off-sample F1 score
of the molecular co-localization method was 0.90 +/-
0.07 only. Note that the molecular co-localization
method performed considerably better (F1 score of 0.96
+/-0 .06) on a reduced set of DHB positive data (Sup-
plementary Table S4) that potentially indicates that mo-
lecular co-localization can perform on par with other
methods when applied to data collected with the same
matrix. Supplementary Data D1 describes the perform-
ance of the template-image method which achieved the
F1 score of 0.96 +/-0.06 and 0.92 +/-0.14 in semi- and
fully-automated scenarios, respectively (Supplementary
Table S6).

Off-sample results for specific types of imaging mass
spectrometry

MALDI imaging with the DHB matrix

Recognition of off-sample ion images can have numer-
ous applications and generally is expected to improve
downstream data analysis. Here, we applied it to
characterize the properties of DHB matrix clusters. First,
we selected 31 MALDI-imaging datasets from the gold
standard which were acquired using the DHB matrix in
the positive ion mode; see Supplementary Data DA4.
Then, 353 molecular formulas of the DHB matrix clus-
ters were generated following a combinatorial model
proposed earlier [9]. We then created a custom molecu-
lar database for METASPACE by combining these mo-
lecular formulas with the HMDB (Human Metabolome
Database) v4 database [21] and re-annotated the 31
datasets using this database.

Table 1 Performance of the developed methods for recognizing off-sample ion images as evaluated on the gold standard of 23,238
ion images showing F1-score (F1), precision (P), and recall (R). For each measure, we show the average and confidence intervals (+ —

two standard deviations) over five folds of the cross validation

off-sample on-sample
F1 P R F1 P R
Deep residual learning 97 96 98 96 97 94
(+/-01) (+/-.03) (+/-.03) (+/-.04) (+/-.03) (+/-07)
Semi-automated spatio-molecular biclustering, clusters curated for 2 96 96 96 97 97 97
datasets (+/-.03) (+/-.07) (+/-.04) (+/-01) (+/-.03) (+/-.03)
Spatio-molecular biclustering 93 92 94 95 95 95
(+/-.10) (+/-.10) (+/-11) (+/-.06) (+/—-.06) (+/-.06)
Molecular co-localization 90 (+/— 95 (+/— 86 (+/— 93 (+/- 91 (+/- 96 (+/—
07) .08) .15) .05) A1) 07)
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For the 31 selected datasets, 6677 ions of DHB matrix =~ combinatorial model “n*M + p*(M-H20)-x*H + y*K +
clusters were annotated by METASPACE with an FDR<  z*Na” [9] with a slight prevalence to form clusters in-
=50%. Of them, 3134 (47%) were recognized as off- cluding two molecules of DHB. Supplementary Table S5
sample and thus can be confidently associated with the shows the most frequently recognized matrix clusters;
matrix. These ions represent approximately 5% of all 58,  for a full list, see Supplementary Data D4. Two most fre-
203 annotated ions for the selected datasets. Per dataset,  quent clusters were recognized in 28 out of 31 datasets.
we recognized from zero (for one dataset only) to 314 Note that the protonated ion of the intact DHB matrix,
off-sample DHB matrix cluster ions (101.1 ions on aver- [M + H]+, the ion that one would commonly expect to
age). This quantifies the amount of biologically- be detected, was recognized only in 11 datasets (35% of
unrelated information that should be removed prior to  all datasets). Interestingly, among the most frequently
any downstream analysis. detected matrix clusters (Supplementary Table S5) there

From the recognized matrix cluster ions, 4.3% of them are no clusters containing potassium (K). This is also
are isomeric with non-matrix molecules in HMDB v4. visible in Fig. 3e which shows that for a prevalent major-
This quantifies the ambiguity of metabolite annotation ity of recognized DHB cluster ions the parameter “y”
which turns out to be relatively low. corresponding to the inclusion of potassium in the clus-

Figure 3 shows the parameters of the recognized ter ion is equal to 0. The most frequent matrix cluster
matrix clusters. Interestingly, the recognized clusters ex-  with potassium was “2*M + 1*(M-H20)-1*H + 1*K +
hibit broad patterns for all individual components of the = 0*Na”, detected in 14 datasets (45% of all datasets).
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Fig. 3 Parameters of the recognized DHB clusters. a: The formula n*M+p*(M-H20)-x*H+y*K+z*Na represents the combinatorial model for matrix
clusters from (Keller and Li, 2000) with M representing the DHB matrix molecular formula (C;HgO.). b-c: Histograms of parameters of the formula
from A among ions in 31 MALDI-imaging DHB positive mode datasets which were annotated by METASPACE with an FDR<=50% and ion image
recognized as off-sample
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DESI imaging

We have applied the best off-sample classifier to all
DESI (desorption electrospray ionization) imaging data-
sets from the gold standard (see Supplementary Data D5
as well as all images in section “Gold standard ion im-
ages predictions” at https://github.com/metaspace2020/
offsample). Among all molecules formulas detected in
METASPACE with FDR of at least 50%, ions with two
molecular formulae were classified in more than half of
the datasets (in datasets from two labs: Takats lab from
Imperial College London and Everlin lab from UT
Austin: C18H3003S (in 14 out of 24 datasets) and
C17H2803S (in 13 out of 24 datasets). Interestingly,
some off-sample DESI ion images show “glowing” or
“border” spatial patterns with high intensities around
the border of the tissue section (see Supplementary
Figure S4).

Discussion

Machine learning, and in particular deep learning, has
demonstrated its capacities to outperform other ap-
proaches in various fields of science and technology in-
cluding image and speech recognition, computer vision,
and artificial intelligence [11]. Currently, deep learning is
making its way into computational biology [1]. However,
for exploiting potential of machine learning algorithms,
one needs annotated or tagged data for training and
evaluation. When solving molecular questions in the
context of imaging mass spectrometry, the annotated
data is often hard to obtain due to the lack of ground
truth information about molecular content of the ana-
lyzed sample. Here, we decided to explore the potential
of machine and deep learning approaches to tackle a
problem which on a small scale can be solved by an ex-
pert: recognition of off-sample ion images. Our expertise
in creating a high-quality gold standard [13] together
with the exploited techniques of modern web develop-
ment helped create a high-quality gold standard of 23,
238 images.

This work was enabled by METASPACE, an open
knowledge base of imaging MS data [15]. We used pub-
lic datasets from 20 laboratories with the goal to obtain
a gold standard that would be representative for the
current state of the art, and to create methods that
would have a wide impact in applications involving com-
mon imaging MS technologies and types of samples. By
making their data public on METASPACE, these labs
and their members made this study possible. Public
semi-structured data is becoming increasingly useful
and, through enabling novel computational develop-
ments, will ultimately benefit the field of imaging MS.

The software technologies used in METASPACE are
another cornerstone in this study. The tagging web app
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TagOff was created based on METASPACE. Moreover,
the flexible technology behind METASPACE enabled us
to create a custom molecular database including DHB
matrix clusters to screen for them in tens of datasets in
a short time. We also used METASPACE for interactive
data visualization, and sharing data and images in this
paper. As a future step, we are planning to integrate the
developed recognition of off-sample ion images into
METASPACE and make it available to all users and in
particular to those who provided public data used for
training classifiers.

Working with semi-structured data from various
sources is challenging because of the lack of complete in-
formation about biological systems, sample preparation,
data acquisition, and data pre-processing. METASPACE
metadata captures essential parts of this information
(https://github.com/metaspace2020/metadata). Here, we
demonstrated that the problem of recognizing off-sample
ion images can be successfully solved using minimal
metadata.

Note that our approach does not solve the segmenta-
tion problem of finding pixels which are in the off-
sample region. Our approach is aimed to find and filter
out those ion images which correspond to MALDI
matrix or other background interferences. Although its
results can be used to infer off-sample region e.g. creat-
ing an average off-sample ion image and taking high-
intensity regions, this task is beyond the scope of this
study.

In this work, we compared classification approaches of
different kinds: machine learning employing either mo-
lecular or spatio-molecular content as well as a com-
puter vision approach based on deep learning. We
discovered that deep learning outperforms other ap-
proaches in the F1 off-sample score, with a semi-
automatic expert-driven method based on spatio-
molecular biclustering almost matching and outperform-
ing it in the F1 on-sample score. The usual drawback,
also experienced by us when using various deep learning
frameworks, is that deep learning networks require a
substantial training time, namely days on specially-
devoted GPU (graphics processing unit)-equipped power
station than hinders optimization. However, a combin-
ation of using a modern and fast framework (fast.ai), ad-
vanced deep learning methodology (residual learning),
and training optimization make it possible to outperform
the best expert-driven approaches.

Finally, we have implemented the deep learning classi-
fier in the METASPACE platform, accessible for as new
filter (click at “Add filter”, then “Show/hide off-sample
annotations”). The implementation is also available
through the REST API (https://github.com/metaspace2
020/metaspace/tree/master/metaspace/off-sample). We
believe that this example of how open-source software
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can be improved by using public data, collective input
from the users, and deep learning, represents a model
how challenging problems can be solved in the age of
machine learning and open-access data.

Conclusions

We believe that this work will not only help solve an im-
portant problem in imaging MS, but also will serve as an
example of creating a high-quality annotated gold stand-
ard and subsequently applying machine learning and
deep learning methods in this field. The access to public
semi-structured data allowed us to create a gold stand-
ard data which is representative for the field of imaging
MS and to develop methods that will have a wide impact
beyond just one laboratory or research group.

Methods

Creating a gold standard set of ion images

In image recognition, a gold standard set is a collection
of images manually tagged by experts called taggers
often curated to ensure the highest quality. Having a
gold standard set enables training and evaluating ma-
chine learning algorithms. However, creating an un-
biased, representative, and balanced gold standard is a
substantial challenge on its own. To the best of our
knowledge, there exists no gold standard set of off-
sample images for imaging MS.

Selecting imaging MS datasets for the gold standard

To create a gold standard set of off-sample and on-
sample ion images, we selected public datasets from
METASPACE with the aim to have a manageable num-
ber of diverse yet representative sample of datasets from
different labs, samples, and imaging MS methods. First,
we randomly selected 100 datasets from the public data-
sets in METASPACE. We added 14 more manually
picked datasets to increase the diversity of the set and to
represent a particular lab, biological model, sample prep-
aration protocol, imaging MS source or analyzer that
were not picked by the random sampling. We excluded
27 datasets from one big METASPACE submitter to re-
duce the lab, technology, and sample type bias, which
left us with 87 gold standard imaging MS datasets.

Pilot study

Before creating a gold standard, we ran a pilot study to
investigate the difficulty of recognizing off-sample ion
images, as well as to learn potential pitfalls and obstacles
of the tagging process by involving two taggers; see Sup-
plementary Data D1 for more information.

Web app for manual tagging of ion images
The TagOff webapp (https://github.com/metaspace2020/
offsample) was developed with the aim to facilitate
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tagging as well as help inspect tagged images, correct the
tagging, and curate the gold standard. For a public data-
set in METASPACE, the web app downloads ion images
from METASPACE using the GraphQL API (link),
shows ion images, and let a tagger tag each image into
one of three classes (“off-sample”, “on-sample”, “un-
known”). Tagging can be performed either by a single-
or double-mouse click or, alternatively, by pressing
shortcut keys while hovering the mouse. Also, we imple-
mented a random subsampling that selects a specified
number of ion images randomly; if a dataset has a lower
number of ion images, all ion images would be consid-
ered. For each selected dataset and each tagger involved,
we generated unique URLs containing the dataset and
tagger names, and the maximal number of ion images to
be considered. The tagging results are stored in real
time, associated with the tagger name, and can be
opened by either the same tagger or a curator; see Fig. 4,
video in Supplementary Data D2.

Creating the gold standard set

For every gold standard imaging MS dataset, we consid-
ered annotations at a False Positive Rate <= 50% (the
most permissive value in METASPACE) and randomly
selected 500 ion images for tagging. For datasets with
less than 500 ions annotated, all ion images were consid-
ered. We recruited five taggers with previous experience
in mass spectrometry and explained to them the motiv-
ation behind the study and how to use the TagOff web
app. No optical images or information about sample, im-
aging MS, protocols used to acquire the images were
provided to the taggers. The taggers were instructed to
spend less than 1 s per ion image. We also explained
molecular and sample preparation factors contribut-
ing to generation of off-sample ion images (matrix
application in MALDI, spraying in DESI), the ion
suppression effect leading to lower intensities of
matrix signals within the sample region, as well as
advanced imaging MS effects which can affect how
images look like (high noise, metabolite leakage, wet
matrix application). Importantly, the tagging was per-
formed before recognition methods were developed
to ensure that taggers are not biased by knowing
how methods work.

All 87 gold standard datasets were randomly distrib-
uted between five taggers, with each dataset assigned to
one tagger. Each tagger received a set of pre-generated
TagOff URLs. After the tagging process was completed,
“off-sample” and “on-sample” tags in each dataset were
reviewed by a curator with experience in imaging MS by
quick skimming through images of the same class and
re-tagging when necessary. The curation aimed to en-
sure that the taggers understood the task correctly and
to minimally correct obvious mistakes. For two taggers,
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26 off-sample 70 unknown 388 unassigned

2090573 C11H220

AstraZeneca (link)

Fig. 4 The TagOff web app for facilitated tagging off-sample ion images by using mouse clicks or keyboard shortcuts. a: The layout of the web
page in TagOff. b: A tagger tagging ion images from a DESI-imaging dataset of five liver sections, contributed by Nicole Strittmatter,

after seeing inconsistencies in the first tagged datasets,
the curator instructed the taggers again and asked to re-
peat the tagging.

Evaluating the gold standard

We assessed the complexity of the off-sample classifica-
tion task and the reproducibility of the taggers judge-
ments by calculating an inter-tagger agreement. For this,
after the tagging was completed, the curator selected five
gold standard datasets which were, in their opinion,
among the most difficult datasets to tag. All taggers,
who did not tag these datasets initially, were asked to
tag them additionally, so that each of these five datasets
was tagged by all five taggers. Then, we computed the
taggers’ pairwise Cohen’s kappa agreement coefficient
[4] for all ion images from these five datasets which were
tagged as “off-sample” or “on-sample”. The images
tagged as “unknown” by at least one tagger in the pair
were ignored. We also computed Krippendorff’s alpha
[10] ignoring “unknown” tags.

Methods for automated recognition of off-sample images
We developed three methods for automated recognition
of off-sample ion images. Supplementary Data D1 de-
scribes one more, template-image method.

Spatio-molecular biclustering method

The “spatio-molecular biclustering” method assumes
that pixels of the off-sample area have similar molecular
profiles as well as molecules corresponding to the off-
sample area have similar distributions. First, for each
dataset we found the border pixels. Note that, as dis-
cussed earlier, some of the considered datasets have
non-rectangular calculated borders. Second, for each
dataset we considered a matrix of ion intensities in all
pixels. We performed biclustering using SpectralCoclus-
tering from the scikit-learn v0.19.1. We iteratively in-
creased the number of clusters from two to 20 until we

found two large spatial clusters occupying more than
cluster_percent (method parameter) percent of all pixels.
Third, we assigned the resulting clusters to either “off-
sample” or “on-sample” class. For the two large clusters,
the cluster with a larger number of border pixels was
assigned to “off-sample”; the other large cluster was
assigned to “on-sample”. For a smaller cluster, the clus-
ter was classified as off-sample if its border pixels occu-
pied more than border_percent of all border pixels or
more than full percent of all small cluster pixels; other-
wise it was assigned to “on-sample”. Biclustering of
pixels and ions immediately provided assignment of ions
to either “off-sample” or “on-sample”. Note that biclus-
tering is an unsupervised method and requires no train-
ing. For selecting the parameters cluster_percent,
border_percent, and full _percent, we used the five-fold
cross validation. The resulting parameters were averaged
over the five folds.

Molecular co-localization method

The “molecular co-localization” method assumes that
off-sample ions are similar across datasets in terms of
which ions they are co-localized with. We considered
all ions annotated in at least one gold standard data-
set with an FDR<= 50%. Within each dataset, we
considered each ion as a vector of its intensities in all
pixels. We represented all ions in a molecular space
of all molecular formulas in all gold standard datasets
as follows. First, we computed pairwise cosine similar-
ities between all ions. Then, for each ion I and each
molecular formula M (corresponding to a dimension
of the molecular space), we considered the maximal
similarity between the ion I and the ions M_n corre-
sponding to the molecular formula M. Then, once the
ions were mapped into this molecular space, we con-
sidered we considered a variety of classifiers from the
scikit-learn Python package v0.19.1, including the
Nearest Neighbors, linear SVM, RBF (radial basis
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function) SVM, Decision Tree, Random Forest, Naive
Bayes, AdaBoost, QDA (quadratic discriminant ana-
lysis), Gaussian Process, Neural Net classifiers, and
evaluated them on the gold standard images as de-
scribed later in section “Classifiers evaluation”.

Deep residual learning method

In the last method, we exploited Deep Residual Learn-
ing, a recently introduced deep learning approach to
image recognition [7]. The advantage of the residual
learning is faster training of a network which at the same
time is deeper than comparable networks. Residual
learning was demonstrated to outperform other deep
learning approaches in the tasks of image recognition
and segmentation in several competitions in 2015. We
used the fastai library (v1.0.34) with the PyTorch frame-
work (v1.0) with the ResNet-50 model from the torchvi-
sion library (v0.2.1). First, all ion images of non-
rectangular datasets were padded with zeros. Then, the
images were normalized with the ImageNet statistics
(per channel mean and std), resized and cropped to
224 x 224 and, per requirement of the model, converted
into RGB three-channels images by pasting the same ion
image into all three channels. In order to increase the
training set, we applied data augmentation with the set-
tings default for the fast.ai library that included the fol-
lowing transformations: image random crop/pad,
horizontal and vertical flip, image warping, rotation,
zooming, brightness and contrast adjustment. We used
the ResNet-50 network pre-trained on the ImageNet im-
ages [16]. The training is described in detail in Supple-
mentary Data D1. The validation was performed as
described later. The trained deep learning model as well
as a microservice implementation are available at
https://github.com/metaspace2020/offsample.

Classifiers evaluation

The considered classifiers were optimized to maximize
the F1 score for the off-sample class. We also calculated
the precision and recall to provide more detailed infor-
mation about the performance. For each algorithm, we
performed five-fold cross-validation when the whole
gold standard was randomly split into five parts, each
subsequently taken out for evaluation of the classifier
trained on the rest of the data. To avoid overfitting, we
used a grouped five-fold cross validation where ion im-
ages from the same dataset were all assigned either to
the training or validation part.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-020-3425-x.

[ Additional file 1 : Supplementary Figures S1-S4 ]
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Additional file 2 : Supplementary Tables S1-S6

Additional file 3 : Supplementary Data D1-D5: D1: “Supplementary
methods and results.pdf”. D2: “Interactive tagging of ion images using
web app.mov’, video of a tagger using the TagOff web app. D3: “Gold
standard datasets.csv’, metadata of 87 public datasets from METASPACE
selected for the gold standard. D4: “DHB matrix clusters frequencies.csv’,
results of annotation of 31 gold standard datasets acquired using the
MALDI DHB matrix and positive ion mode and off-sample recognition for
DHB matrix clusters generated according to a combinatorial model. D5:
“DESI offsample ions frequencies.csv’, a file showing for each molecular
formula the number of DESI imaging datasets from the gold standard
where ions with such molecular formula were classified as off-sample.
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