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Abstract

Background: Cancer prognosis prediction is valuable for patients and clinicians because it allows them to
appropriately manage care. A promising direction for improving the performance and interpretation of expression-
based predictive models involves the aggregation of gene-level data into biological pathways. While many studies
have used pathway-level predictors for cancer survival analysis, a comprehensive comparison of pathway-level and
gene-level prognostic models has not been performed. To address this gap, we characterized the performance of
penalized Cox proportional hazard models built using either pathway- or gene-level predictors for the cancers
profiled in The Cancer Genome Atlas (TCGA) and pathways from the Molecular Signatures Database (MSigDB).

Results: When analyzing TCGA data, we found that pathway-level models are more parsimonious, more robust,
more computationally efficient and easier to interpret than gene-level models with similar predictive performance.
For example, both pathway-level and gene-level models have an average Cox concordance index of ~ 0.85 for the
TCGA glioma cohort, however, the gene-level model has twice as many predictors on average, the predictor
composition is less stable across cross-validation folds and estimation takes 40 times as long as compared to the
pathway-level model. When the complex correlation structure of the data is broken by permutation, the pathway-
level model has greater predictive performance while still retaining superior interpretative power, robustness,
parsimony and computational efficiency relative to the gene-level models. For example, the average concordance
index of the pathway-level model increases to 0.88 while the gene-level model falls to 0.56 for the TCGA glioma
cohort using survival times simulated from uncorrelated gene expression data.

Conclusion: The results of this study show that when the correlations among gene expression values are low,
pathway-level analyses can yield better predictive performance, greater interpretative power, more robust models
and less computational cost relative to a gene-level model. When correlations among genes are high, a pathway-
level analysis provides equivalent predictive power compared to a gene-level analysis while retaining the
advantages of interpretability, robustness and computational efficiency.

Keywords: Cancer prognosis prediction, Gene expression data, Pathway analysis, L1 penalized regression model,
Inter-gene correlation

Background
Cancer prognosis prediction is an important research
goal since prognosis is often heterogeneous among pa-
tients [1]. Using prognostic biomarkers such as overex-
pression of HER2 for breast cancer [2], it is possible to
subgroup patients for certain types of cancer into popu-
lations with distinct risk profiles and design optimal
treatment regimens for the heterogeneous subtypes of

cancer [3]. In cases where mutation-based biomarkers
do not exist, researchers have explored prognostic
models based on tumor gene expression data. The pro-
posed methods for selecting biomarkers include using
univariate gene selection [4], penalized Cox regression
[5, 6], supervised principal component analysis [7], par-
tial least squares algorithm [8] and some other machine
learning techniques such as Random Forest [9]. While
some expression-based models such as Oncotype Dx
have been successful, these models can be difficult to
implement due to high cost, limited performance and
complexity in their interpretation. One of the main
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shortcomings of past studies has been the failure to in-
corporate prior biological information into the predictive
model [10]. With the advent of high-throughput profil-
ing technologies, there exists a new challenge of extract-
ing information from a huge number of expressed genes
and proteins. One approach to this challenge has been
to group genes by biological functions into smaller sets
of pathways, a process that is called pathway analysis or
gene set testing [11]. Compared to an analysis using sep-
arate variables for each profiled gene, a pathway analysis
can yield greater statistical power, improved replication
and superior interpretation [12]. Analysis at the func-
tional pathway level can reduce the complexity and di-
mensions of the gene expression data resulting in
increased power due to fewer tested hypotheses and im-
proved replication of results across independent data
sets. Pathway-level variables are also more readily inter-
preted since they represent biologically meaningful
groups of genes, e.g., the genes involved in a specific sig-
naling pathway or the genes whose expression is upregu-
lated in response to a specific chemical perturbation.
Pathway analysis methods help cancer researchers iden-

tify the biological function of genes and gene sets within
malignant tissues and thereby inform the design of new
cancer therapies [13]. Most pathway analysis methods, such
as GSEA [14] and Camera [15], operate on a population
level, that is, they compute a single statistic for each path-
way that captures the association of the genes in the path-
way with an outcome of interest such as case/control status
or survival. More recently, researchers have developed so-
called single sample pathway analysis methods that com-
pute a separate pathway statistic for each sample. These
methods can transform a gene expression data set for n
samples and p genes that is represented by a n × p matrix
into an n ×m matrix of single sample scores for m path-
ways. Similar to population-based gene set testing methods,
single sample techniques can be broadly grouped into su-
pervised and unsupervised categories. In this context, su-
pervised methods evaluate the association of gene sets with
a specific outcome variable whereas unsupervised methods
ignore any sample label information. Examples of recent
single sample methods include ASSESS [16], GSVA [17],
PARADIGM [18] and Pathifier [19]. ASSESS [16] utilizes
density estimates in the calculation of sample scores relative
to a binary outcome. GSVA [17] also utilizes density esti-
mates but computes pathway scores in an unsupervised
fashion without regard for sample label information. PARA-
DIGM [18] is also an unsupervised method that uses a
probabilistic graphical model to integrate multi-omics data
and infer the altered pathway activity of individual patients.
Pathifier [19] is a supervised method and calculates the
scores by measuring the deviation of each sample from a
specified baseline condition. The pathway-level variables
produced from such single sample techniques can be used

as predictors in regression models to enable applications
such as cancer prognosis prediction for individuals on a
pathway level.
Various studies have focused on the application of

pathway-based models for cancer prognosis prediction
[12, 20, 21]. Huang et al. [20] have developed a novel com-
putational model for breast cancer prognosis by combin-
ing the Pathifier, Cox regression and Lasso penalization.
Liang et al. [21] developed a pathway-based prognosis pre-
diction model for glioblastoma using a combination of
univariate and multivariate Cox regression analysis, Pathi-
fier, and Lasso penalization. Sinnott et al. [12] proposed
multiple kernel learning methods to select informative
pathways and aggregate their signals for prediction of cen-
sored survival outcomes and applied them under the Cox
proportional hazards and semiparametric accelerated fail-
ure time models. Although various pathway-based prog-
nostic models have been developed, a comprehensive
comparison of pathway-level and gene-level prognostic
models has not been performed. To address this gap, we
sought to characterize the performance of both pathway
and gene-level cancer prognostic models across a range of
realistic gene expression structures to identify the specific
range in the cancer transcriptomic landscape where either
a gene-level model or pathway-level model can be ex-
pected to provide superior performance.

Methods
Data sources
We downloaded gene expression and clinical data from the
UCSC Xena datahub [22] for 34 cohorts profiled by The
Cancer Genome Atlas (TCGA) [23]. Among the 34 cohorts,
4 cohorts (Bile Duct Cancer cohort (CHOL), Formalin
Fixed Paraffin-Embedded Pilot Phase II cohort (FPPP),
Large B-cell Lymphoma cohort (DLBC) and Uterine Carci-
nosarcoma cohort (UCS)) were discarded because of an in-
sufficient number of samples with gene expression data. We
also analyzed three combinations of the subtype cohorts:
colon and rectum adenocarcinoma (COADREAD), which is
the combination of the colon adenocarcinoma (COAD) and
rectum adenocarcinoma (READ) datasets, brain lower grade
glioma and glioblastoma multiforme (GBMLGG), which is
the combination of the brain lower grade glioma (LGG) and
glioblastoma multiforme (GBM) datasets and lung cancer
(LUNG), which is the combination of the lung squamous
cell carcinoma (LUSC) and lung adenocarcinoma (LUAD)
datasets. After these modifications, a total of 33 cohorts
remained for analysis. The full list of these cohorts and the
corresponding sample sizes, death rates and predictive per-
formance results are provided in Table 1.
The Hallmark pathway collection, a set of 50 well

characterized biological pathways, was obtained from the
Molecular Signatures Database (MSigDB) version 6.2
[14]. For all analyses, we only kept genes existing in both

Zheng et al. BMC Bioinformatics           (2020) 21:76 Page 2 of 17



the TCGA gene expression data and MSigDB pathways.
We also discarded one gene, which was missing all ex-
pression values in the TCGA.

Prognostic models
In this study we used penalized Cox proportional haz-
ards models with either gene-level or pathway-level pre-
dictors as the prognostic models.
Our workflow for pathway-level models, illustrated in

Fig. 1, uses the single sample pathway scores generated
from tumor gene expression data to perform survival

prediction. Figure 1 shows TCGA as the source of gene
expression data and MSigDB as the source of pathway
definitions, but our approach is not limited to these
sources. One can easily conduct this workflow on other
cancer gene expression data sets and gene set collections.
The first step of the workflow converts the gene-level

expression data matrix into pathway-level variables via
the unsupervised single sample gene set method GSVA
(Gene Set Variation Analysis) [17]. After obtaining a
pathway-level data matrix, nested cross validation was
used to train and evaluate a Lasso-penalized Cox

Table 1 Predictive performance results for all 33 analyzed TCGA cohorts. For each cohort, the table includes the sample size (n),
death rate and average Cox concordance index values for both the gene-level (GLv CI) and pathway-level (PLv CI) models

Full name n Death rate GLv CI PLv CI

ACC Adrenocortical Carcinoma 79 0.37 0.77 0.77

UVM Ocular Melanoma 80 0.29 0.74 0.70

MESO Mesothelioma 87 0.84 0.70 0.71

KICH Kidney Chromophobe 91 0.13 0.53 0.59

READ Rectal Cancer 105 0.17 0.48 0.53

THYM Thymoma 122 0.07 0.57 0.51

TGCT Testicular Cancer 156 0.03 0.48 0.57

GBM Glioblastoma 172 0.78 0.52 0.54

LAML Acute Myeloid Leukemia 173 0.60 0.61 0.55

PAAD Pancreatic Cancer 183 0.55 0.59 0.60

PCPG Pheochromocytoma and Paraganglioma 187 0.04 0.52 0.51

ESCA Esophageal Cancer 196 0.41 0.49 0.50

UCEC Endometroid Cancer 201 0.16 0.50 0.48

SARC Sarcoma 265 0.38 0.66 0.62

CESC Cervical Cancer 308 0.23 0.65 0.67

OV Ovarian Cancer 308 0.57 0.50 0.50

KIRP Kidney Papillary Cell Carcinoma 323 0.17 0.79 0.77

COAD Colon Cancer 329 0.22 0.54 0.49

LIHC Liver Cancer 423 0.39 0.65 0.65

BLCA Bladder Carcinoma 426 0.45 0.60 0.60

COADREAD Colon and Rectal Cancer 434 0.21 0.53 0.55

STAD Stomach Cancer 450 0.33 0.53 0.58

SKCM Skin Cutaneous Melanoma 474 0.47 0.51 0.49

LGG Lower Grade Glioma 530 0.25 0.82 0.77

PRAD Prostate Cancer 550 0.02 0.47 0.47

LUSC Lung Squamous Cell Carcinoma 553 0.45 0.52 0.52

HNSC Head and Neck Cancer 566 0.45 0.57 0.59

THCA Thyroid Cancer 572 0.03 0.51 0.56

LUAD Lung Adenocarcinoma 576 0.34 0.61 0.63

KIRC Kidney Clear Cell Carcinoma 606 0.36 0.68 0.66

GBMLGG Lower grade glioma and glioblastoma 702 0.54 0.85 0.83

LUNG Lung Cancer 1129 0.40 0.57 0.57

BRCA Breast Cancer 1218 0.16 0.63 0.61
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proportional hazards model. Cross validation was
employed both for the training vs. test split and within
each training fold for selection of the Lasso penalty par-
ameter. The standard Lasso method [24] solves the L1-
penalized regression problem by minimizing the
expression:

Xn

i¼1
yi−

Xp

j¼1
xijβ j

� �2
þ λ

Xp

j¼1
β j

��� ���
¼

Xn

i¼1
yi−

Xp

j¼1
xijβ j

� �2
þ λ βk k1 ð1Þ

xij denotes the observed value of j th variable (j= 1, …, p)
for the i th subject (i = 1,…, n). yi denotes the observed cen-
tered outcome of subject i and ‖∙‖1 denotes the L1-norm.
The L1-penalty shrinks some of the estimated coefficients
to 0 and the amount of shrinkage is determined by the par-
ameter λ, which is in practice most often chosen using
cross-validation. This model was generalized to Cox pro-
portional hazards regression (in the case of a censored time
to event data) by replacing the term

Pn
i¼1ðyi−

Pp
j¼1xijβ jÞ2

with −l(β, γ), where l(., .) stands for the log-likelihood func-
tion and γ for the intercept [25].

Fig. 1 Workflow for pathway-level models. In this study, TCGA was used as the source of gene expression data and MSigDB as the source of
pathway definitions. The first step of the workflow converts the gene-level expression data matrix into pathway-level variables via the
unsupervised single sample gene set method GSVA. After obtaining a pathway-level data matrix, nested cross validation was used to train and
evaluate a Lasso-penalized Cox proportional hazards model. Cross validation was employed both for the training vs. test split and within each
training fold for selection of the Lasso penalty parameter. With the selected pathways and estimated parameters, we performed prediction on
the test data subset by applying the Cox proportional hazards regression model that had been identified in the training data subset
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With the selected pathways and estimated parameters,
we performed prediction on the test data subset by ap-
plying the Cox proportional hazards regression model
that had been identified in the training data subset.
Performance of the pathway-level models was evalu-

ated relative to gene-level models. The gene-level work-
flow is illustrated in Fig. 2. Similar to the pathway-level
workflow, Lasso-penalized Cox models were trained and
evaluated using nested cross validation. The expression
data used for the gene-level models was filtered to only
contain the genes mapped to the pathways considered
for the pathway-level models.

Simulation based on TCGA expression data and MSigDB
pathways
To investigate the relative cancer prognostic perform-
ance of the gene-level and pathway-level models, we de-
signed two simulation studies, which used TCGA gene
expression data and simulated survival times that were
associated with the expression values for genes belong-
ing to a MSigDB pathway or an equal sized group of
randomly selected genes. The basic assumption of our
simulation studies is that cancer progression operates
through dysregulation of key pathways and that all the
genes in specific pathways contribute to prognosis and

Fig. 2 Workflow for gene-level models. In this study, TCGA was used as the source of gene expression data. The expression data used for the
gene-level models was filtered to only contain the genes mapped to the pathways considered for the pathway-level models. Nested cross
validation was used to train and evaluate a Lasso-penalized Cox proportional hazards model. Cross validation was employed both for the training
vs. test split and within each training fold for selection of the Lasso penalty parameter. With the selected genes and estimated parameters, we
performed prediction on the test data subset by applying the Cox proportional hazards regression model that had been identified in the training
data subset
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survival. We simulated survival times based on the aver-
age expression values of either the genes in a single
MSigDB pathway or a randomly selected group of genes,
as described in formula 2 below; in both cases, the num-
ber of genes associated with survival was identical. Simu-
lations were performed using four MSigDB Hallmark
pathways, Hallmark estrogen response late (n =200, cor-
relation = 0.17 in LGG cohort), Hallmark E2F targets (n
=193, correlation = 0.34 in LGG cohort), Hallmark TGF
beta signaling (n =54, correlation = 0.22 in LGG cohort)
and Hallmark MYC targets V2 (n =58, correlation = 0.27
in LGG cohort) respectively, which were selected to rep-
resent the four combinations of large or small pathway
size and high or low mean absolute inter-gene correl-
ation. Using these simulated data sets, we evaluated how
the size and mean absolute inter-gene correlation of the
survival-associated pathway affected the relative per-
formance of the gene-level and pathway-level models.
To achieve stable results, we simulated 20 independent
sets of survival times for each pathway and noise com-
bination, and for each simulation, we evaluated pre-
dicted performance using nested cross validation as
detailed above. We used the average concordance index
[26], which can have values between 0 and 1, to quantify
the predictive power of each model. The concordance
index (CI), or c-index, is one of the most commonly
used performance measures for survival models and can
be interpreted as the fraction of all pairs of subjects
where the observation with the higher survival time has
the higher probability of survival predicted by the model
[27]. A CI of 1 indicates perfect prediction accuracy and
a CI of 0.5 represents random prediction. We used the
Fleiss kappa statistic [28] to evaluate the repeatability
and stability of the models. The kappa statistic is fre-
quently used to test interrater reliability. A Fleiss Kappa
statistic of 1 indicates perfect agreement and a value of
equal or less than 0 indicates no agreement. Measure-
ment of the extent to which raters assign the same score
to the same variable is called the interrater reliability
[29]. In our situation, each trained model is a rater that
is assigning each variable (gene or pathway) to either be-
long or not belong to the model. We conducted 20 repli-
cations of 5-fold cross validation so had 100 trained
models, or 100 raters, in total. We used the average
number of predictors in the 100 trained models to meas-
ure model parsimony.
In the first simulation study, we only simulated survival

times. Specifically, we generated the survival times as:

Ti ¼ exp

P j¼m

j¼1
Gij

m þεiþ10

� �
=10 ð2Þ

where Gij is the centered and standardized gene expres-
sion matrix with i = 1. . n samples and j = 1. . m genes

which are the genes in the specific pathway. εi~N(0, σ)
corresponds to random noise added into the simulated
survival. The standard deviation parameter σ controls
the magnitude of noise. The additive value of 10 and the
divisor of 10 ensure the generated T are around several
thousand, which are reasonable survival times in years.
To make the censoring time uninformative, we shuffled
the generated T values to get the censoring times. A
sample was considered to be censored when the censor-
ing time was smaller than the survival time. Thus, each
sample was randomly censored or dead with an average
censoring rate of approximately 0.5. With the TCGA
data, MSigDB pathway collection and the simulated sur-
vival times, we ran the pathway-level model workflow
and gene-level model workflow separately.
In the second simulation study, to investigate how the

complex correlation structure of the gene expression data
affected predictive performance, we broke the correlation
structure of the TCGA data. Specifically, we shuffled each
gene row so that the correlations between genes are
broken meanwhile the distribution of each gene among
samples was kept unchanged. Then we used the same ap-
proach to generate the survival times as in the first simula-
tion study and ran the pathway-level model workflow and
gene-level model workflow separately.

Comparative null models
To ensure the signals in the simulation studies were not
generated randomly and that the prediction accuracy
was not inflated in our analyses, we designed two com-
parative null models to evaluate the performance of
pathway-level and gene-level models, which are referred
to as the random gene model and the null model. In the
random gene model, as illustrated in Fig. 3, we associ-
ated the survival time with random genes with the num-
ber of random genes equal to the size of the pathway
that was associated with survival time in the non-null
model. In this case, j (j = 1. . m) in Eq. 2 are randomly se-
lected genes so that the pathway is no longer associated
with survival. In the null model, survival is independent of
the gene expression data. Specifically, we permuted sur-
vival times T after generating them using Eq. 2 to break
the association between T and the gene expression data.

Evaluating TCGA expression and survival data
We ran both the pathway-level model workflow and gene-
level model workflow on all the 33 TCGA cohorts using
the real survival data and the MSigDB Hallmark pathway
collection. Similar to the simulation studies, we evaluated
model predictive performance using the concordance
index, evaluated interpretative performance by model par-
simony, and evaluated model stability using the Fleiss
kappa statistic. We also evaluated the biological plausibil-
ity of the selected pathway and gene predictors.
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Results
Simulation study results
Figure 4a displays the results for the first simulation
study design using gene expression data from the TCGA
low-grade glioma cohort (TCGA LGG cohort, n = 530)
and survival times simulated from the expression values
for each of the four representative MSigDB Hallmark
pathways. Figure 4b illustrates the complex correlation
structure for these pathways in the LGG cohort. As
shown in Fig. 4a, the predictive performance of the
pathway-level and gene-level models was similar for all
four pathways and all tested simulation models. When
noise is not added to the simulated survival times, the
average concordance index (CI) can be as high as 0.9 for
both models. As the level of added noise was increased,
predictive performance decreased until the mean CI was
0.5 (the level consistent with random guessing). Com-
parison of the results from the large and small pathways
demonstrates that the performance of both the gene-
level and pathway-level models are not sensitive to path-
way size. In contrast, model predictive performance was
significantly impacted by the level of inter-gene correl-
ation with both the gene-level and pathway-level models
exhibiting better performance and less sensitivity to
noise when the correlation among gene expression
values was high.
Figure 5a displays the results for the second simulation

study design, which broke the gene expression correlation

structure, using the LGG cohort and the four representa-
tive pathways. Figure 5b shows the successful breaking of
this correlation structure. Without correlation in the ex-
pression data, the performance of gene-level model
dropped to a CI of approximately 0.5. The gene-level
model only had non-null performance when the pathway
size was small and no noise was added to the simulated
survival times. Even in this case, performance for the
gene-level model drops to 0.5 when the sample size de-
creases to around 400 as shown in Additional file 1 for
other TCGA cohorts. In contrast, the pathway-level model
retained good predictive performance (average CI of 0.9
without noise) even in the absence of inter-gene correl-
ation, although performance was more sensitive to noise
in this case.
Equivalent simulation results for all 33 TCGA cohorts

are included in Additional file 1. The results for the
other 32 cohorts follow the same general trends ob-
served for the LGG cohort. To investigate if the choice
of pathway used to simulate survival times impacts
model performance, we also tested the models on sur-
vival times generated using each of the 50 pathways in
the MSigDB Hallmark collection; these results are pre-
sented in Additional file 2 and are consistent with the
results for the four pathways shown in Figs. 4 and 5.
Besides the main findings above, it is worth noting

that, in the first simulation study, gene-level models and
pathway-level models perform equally well, irrespective

Fig. 3 Random gene model design. In the random gene model, the survival time was associated with a group of random genes whose size was
equal to the size of the pathway that was associated with survival time in the non-null model
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Fig. 4 (See legend on next page.)
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of the simulation model (non-null group, random gene
group or null group). For each of these groups, the
gene-level and pathway-level models were tested on the
identical simulated data and, for the first simulation
study, perform almost equally. For the null group, it is as
expected that both the gene-level and pathway-level
models will have c-index values of close to 0.5 given the
lack of association between the gene expression data and
survival outcomes in the simulated data. For the non-
null group, in the simulated data, the survival time is as-
sociated with the average expression of all genes in a
specific pathway. Therefore, we had expected the
pathway-level model to have better predictive perform-
ance than gene-level model and were surprised that they
in fact had very similar predictive power. We believe this
can be explained by the fact that the genes in the
MSigDB pathways are highly correlated in the TCGA gene
expression data. As shown in Fig. 4b, the lowest average
correlation of all genes in a pathway is still around 0.2.
This high inter-gene correlation makes it easier for the
gene-level model to pick out the associated gene(s) or
genes correlated with those associated genes. Our second
simulation study showed that without correlation, the
gene-level model failed to work, which provides further
support for this hypothesis. For the random gene group,
in the simulated data, randomly selected genes are associ-
ated with survival. Therefore, we had expected the gene-
level model to have better predictive performance than
pathway-level model and were surprised that performance
was in fact very similar. Similar to the non-null group sce-
nario, we believe this can be explained by the complex
correlation structure among pathway genes. Figure 6a dis-
plays the correlation among pathway scores of the first
simulation study. Even though the random genes are less
correlated than the genes in a pathway, the associated
transformed pathway variables can still be highly corre-
lated. This high inter-pathway correlation makes it easier
for the pathway-level model to pick out the associated
pathway(s) or pathways correlated with those associated
pathways. Our second simulation study showed that with-
out correlation, the pathway-level model failed to work,
supporting this hypothesis.
In addition to superior predictive performance when

inter-gene correlation is low, the pathway-level model

has the advantages of model parsimony, stability and
computational speed relative to the gene-level model. To
evaluate model parsimony, we plotted the average num-
ber of predictors in the non-null models, as shown in
Fig. 7. Overall, the pathway-level models included far
fewer predictors than the gene-level models. Comparing
Fig. 7a with Fig. 4a and comparing Fig. 7b with Fig. 5a
demonstrates that model predictive performance was as-
sociated with the number of predictors in the model, es-
pecially for the gene-level models. To evaluate model
stability, we calculated Fleiss Kappa statistics for the
non-null models with no noise; the distribution of these
kappa statistics is shown in Fig. 8. For both the first and
second simulation study designs, the pathway-level
model was more stable than the gene-level models. We
assessed the relative computational cost of the gene-
level and pathway-level models by measuring total exe-
cution time for the first simulation study design without
noise. In this case, estimation of the pathway-level model
required on average only 2.3% of the time needed to es-
timate the gene-level model, a dramatic difference in
total computational cost.

Results on real TCGA data
We also compared the predictive performance of the
pathway-level and gene-level models using the TCGA
survival data.
Figure 9 displays the predictive performance of gene-

level and pathway-level models on each of the TCGA
cohorts using real expression and survival values. Similar
to the simulation studies, predictive performance on the
real survival data was quantified by the concordance
index (CI), which was averaged over 50 replications of 5-
fold nested cross validation. In Fig. 9, the mean CI and
CI standard error for both gene-level and pathway-level
models are displayed for each of the 33 evaluated TCGA
cohorts. Table 1 includes equivalent results. As seen in
Fig. 9, the pathway-level and gene-level models had simi-
lar predictive performance on the TCGA data when tak-
ing into account the CI standard error. Mean CI values
for each cohort ranged from around ~ 0.5 to ~ 0.8.
It’s worth noting that only some of the cancer types

have a high concordance index. We believe that the ob-
served differences in the predictive power for different

(See figure on previous page.)
Fig. 4 Results of the simulation study based on gene expression data from the LGG cohort and representative pathways from the MSigDB
Hallmark collection. a Each panel plots the predictive performance of the evaluated gene-level and pathway-level models for simulation studies
that associated survival with one of four Hallmark pathways (Hallmark estrogen response late, Hallmark E2F targets, Hallmark TGF beta signaling and
Hallmark MYC targets V2 respectively) selected to represent the four possible combinations of large or small pathway size and high or low
average inter-gene correlation. In these plots, the Cox concordance index is plotted on the y-axis with the x-axis representing the standard
deviation of the Gaussian noise added to the simulated survival times. The error bars represent the standard error over 20 replications. b
Heatmaps that represent the inter-gene correlation structure of the four corresponding Hallmark pathways as computed on the LGG cohort gene
expression data
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Fig. 5 (See legend on next page.)
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cancer types may be due to factors that include survival
data quality (e.g., number of death events and likelihood
that observed deaths are in fact due to the cancer), pa-
tient clinical characteristics (e.g., smokers vs. non-
smokers), cancer clinical characteristics (e.g., benign vs.
malignant) and underlying cancer biology (e.g., cancers
driven by CNVs vs. point mutations). As an interesting
example, one can look at the relative predictive perform-
ance values for three related cancer types: low grade gli-
oma (LGG), glioblastoma (GBM), low grade glioma and
glioblastoma (GBMLGG). The GBMLGG cohort works
quite well, the c-index is as high as 0.85 for gene-level

model and 0.83 for pathway-level model. The LGG co-
hort alone drops a little to 0.82 for gene-level model and
0.77 for pathway-level model while GBM cohort alone is
almost 0.5 (0.52 for gene-level model and 0.54 for
pathway-level model). We believe that this pattern may
be partly explained by the variance of survival times of
these three cancers. As shown in Fig. 10, GBM has the
worst prognosis and little variance in survival times
while LGG has a comparatively better prognosis, longer
expected survival time and higher survival time variance.
The increased variance in survival times for LGG may
allow for the improved predictive power for this cohort

(See figure on previous page.)
Fig. 5 Results of the simulation study based on gene expression data from the TCGA LGG cohort without inter-gene correlation and
representative pathways from the MSigDB Hallmark collection. a The correlation in the gene expression data has been broken by randomly
permuting the values for each gene. Each panel plots the predictive performance of the evaluated gene-level and pathway-level models for
simulation studies that associated survival with one of four Hallmark pathways (Hallmark estrogen response late, Hallmark E2F targets, Hallmark TGF
beta signaling and Hallmark MYC targets V2 respectively) selected to represent the four possible combinations of large or small pathway size and
high or low average inter-gene correlation. In these plots, the Cox concordance index is plotted on the y-axis with the x-axis representing the
standard deviation of the Gaussian noise added to the simulated survival times. The error bars represent the standard error over 20 replications. b
Heatmaps that represent the lack of inter-gene correlation for the four corresponding Hallmark pathways after random permutation of the gene
expression values

Fig. 6 Correlation of single sample pathway scores. a Heatmap illustrating the correlation between the GSVA single sample scores for the
pathways in the MSigDB Hallmark collection as computed using the TCGA LGG cohort gene expression data. b Heatmap illustrating the single
sample pathway score correlations after breaking the inter-gene correlation structure
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Fig. 7 Average number of predictors in the non-null models. a Each plot shows the average number of predictors as a function of added noise
for the simulation studies that did not alter the inter-gene correlation structure. b The average number predictors for the simulation studies
where the inter-gene correlation structure was broken
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relative to GBM. Once the LGG and GBM are combined
into the single cohort GBMLGG, the predictive perform-
ance is further increased due to both the larger sample
size and the fact that the classification of each expres-
sion profile as either LGG or GBM provides a powerful
predictive signal.

Discussion
Impact of inter-gene correlation on predictive
performance
Our analysis of cancer prognostic models using simu-
lated and real cancer gene expression data demonstrates
that inter-gene correlation has a significant impact on
model predictive performance. Our second simulation,
which removed inter-gene correlation, and does not rep-
resent a biologically realistic scenario. Therefore, this
simulation study cannot be used to support an assertion
that a pathway-based model would generate superior
predictive performance to a gene-level model on real ex-
pression data. But we included this simulation scenario

to highlight the impact of inter-gene correlation on the
relative performances of gene-level and pathway-level
models; it should not be viewed as a scenario that re-
searchers might encounter in practice. For both gene-
level and pathway-level models, predictive performance
was positively correlated with the level of inter-gene cor-
relation, i.e., higher levels of correlation in the gene ex-
pression data were associated with improved
performance. The inter-gene correlation worked as an
amplifier of the association signal since all genes in a
correlated group became associated with survival even
when just a single gene was selected as an associated
predictor in the simulation model. This larger pool of
prognostic genes improves the ability of the penalized
estimation procedure to identify a predictive model. The
predictive performance of the gene-level models is at-
tributed largely to this amplification effect. The predict-
ive performance of the gene-level model dropped to null
when there was no inter-gene correlation in the second
simulation study.

Fig. 8 Density distribution of Fleiss Kappa statistics across 50 pathways for the non-null models when there’s no noise in the simulation. Fifty
pathways from hallmark collection have been separately used in the non-null model workflows for total 100 runs. Fleiss Kappa was calculated to
measure the agreement among these 100 runs. a Distribution of Fleiss Kappa in the first simulation study. Pathway-level model has better model
stability than gene-level model. b Distribution of Fleiss Kappa in the second simulation which broke the inter-gene correlation. Without inter-
gene correlation, pathway-level model became more advantageous in model stability compared with gene-level model
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Fig. 9 Predictive performance of gene-level and pathway-level models for 33 TCGA cohorts. Each point represents the average Cox concordance
index of 50 replications for the pathway-level and gene-level models for a given TCGA cohort. Error bars represent the standard error of the
estimates across50 replications

Fig. 10 The distribution of survival times for LGG, GBM, GBMLGG cohorts
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Besides, our simulation approach of generating the
survival time using the average of a random group is
substantially more challenging than the case where the
survival time is simulated using the correlated genes
within a pathway. It is therefore expected that predictive
performance for the random genes models is signifi-
cantly lower than for the non-null model. The link be-
tween inter-gene correlation and predictive performance
is also expected for similar reasons.

Impact of pathway size on predictive performance
To investigate if the choice of pathway used to simulate
survival times impacts model performance, we tested the
models using survival times generated using each of the
50 pathways in the MSigDB Hallmark collection, pre-
sented in Additional file 2. The pathway sizes ranged
from 32 to 200. Comparison of the results from the large
and small pathways demonstrates that the performance
of the pathway-level models is not sensitive to pathway
size. Although the performance of gene-level models
was not sensitive to pathway size in the first simulation
study that included moderate inter-gene correlation, it
became sensitive in the second simulation study that
lacked inter-gene correlation. For this case, the gene-
level model only had non-null predictive performance
when the pathway size was small and no noise was
added to the simulated survival times, which implies that
the gene-level models can only work when the number
of associated variables is small and signal is strong, and
it also demonstrates that the inter-gene correlation
works as amplifier of the association signal.

Impact of sample size and death rate on predictive
performance
As expected, the predictive performance for both the
real data analysis and simulation studies improved with
larger sample sizes. For the second simulation study
when sample size was lower than 400, the gene-level
prognostic model had close to null predictive perform-
ance, even when the number of associated variables was
small and no noise was added to the simulated survival
times. Although there was no strong correlation between
sample size and predictive performance, or between
death rate and predictive performance, there was a
strong correlation between death rate and the standard
error (for pathway-level model, the Spearman correlation
was − 0.57 and for gene-level model, the correlation was
− 0.61) since lower death rates imply a higher censoring
rate and thus greater uncertainty. The incomplete anno-
tation of patient clinical data and relatively short-term
follow-up interval for most TCGA cohorts has been
noted by several studies [30, 31] and may increase the
standard error in our analysis. Although some studies
have attempted to avoid this data quality issue by using

a curated and filtered clinical and survival data [32], this
is still an impactful issue.

Limitations
One limitation of the pathway-level models is that not
all genes are mapped to pathways and, because our ana-
lysis only included genes that exist in at least one path-
way, the models may fail to consider some genes that
have a true association with patient survival. Moreover,
the misspecification of pathways in existing databases
also affects the performance of pathway-level model. Un-
known driver genes may be missed and irrelevant genes
may be included. One possible solution to this limitation
involves the use of de novo enrichment methods, such
as [33] which could extract de novo pathways from mo-
lecular interaction networks in the context of pathway-
based prediction. Although the pathway-based predic-
tion is used for cancer subtypes classification, it is a
great inspiration for other pathway-based prediction
models, such as cancer prognosis prediction. Another
issue is that when Lasso deals with correlated variables,
it tends to retain just one random variable from each
correlated group of variables [34]. Therefore, when a
specific pathway or gene is selected by a model, it may
not be the only pathway or gene that could have been
considered. For prognostic evaluation, the specific choice
of pathway may not matter, but if pathway analysis is
used for selecting therapies for patients, then identifying
the full range of pathways that may be helpful for man-
aging a patient is important. In that case, other predict-
ive modeling techniques, such as random forests or
other variants of Lasso [35, 36], may help.

Conclusions
In this study, we used penalized Cox proportional haz-
ards models with either gene-level or pathway-level pre-
dictors for cancer prognosis prediction from tumor gene
expression data. We evaluated and compared the gene-
level and pathway-level models using tumor gene-
expression data from the TCGA and either real or simu-
lated survival times. We found that models using
pathway-level predictors were more interpretable, stable
and computationally efficient as compared to models
using gene-level predictors. For realistic gene expression
correlation structures, the pathway-level and gene-level
models had similar predictive performance. In cases
where the level of correlation between the expression
values of prognostic genes is low, the pathway-level
model had superior predictive power relative to the
gene-level model. These findings provide guidance for
researchers who are interested in building prognostic
models from tumor gene expression data. If researchers
expect a high level of inter-gene correlation in the ex-
pression data, both the gene-level method and pathway-
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level models can provide good prognosis prediction with
the pathway-level model having the benefits of parsi-
mony, stability and efficiency and the gene-level having
the advantage of identifying specific genes for down-
stream experiments. If the level of inter-gene correlation
is low, a pathway-level model may also outperform a
gene-level model in predictive power. The gene-level
model may work when the number of variables is small
and the signal is strong but will be worse than the
pathway-level model without inter-gene correlation
structure in the data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3423-z.

Additional file 1. Supplementary results of the simulation studies for all
TCGA cohorts.

Additional file 2. Supplementary results of associating different
pathways in the simulation studies for LGG cohort.
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