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Abstract

Background: Duplex sequencing is the most accurate approach for identification of sequence variants present at
very low frequencies. Its power comes from pooling together multiple descendants of both strands of original DNA
molecules, which allows distinguishing true nucleotide substitutions from PCR amplification and sequencing
artifacts. This strategy comes at a cost—sequencing the same molecule multiple times increases dynamic range but
significantly diminishes coverage, making whole genome duplex sequencing prohibitively expensive. Furthermore,
every duplex experiment produces a substantial proportion of singleton reads that cannot be used in the analysis
and are thrown away.

Results: In this paper we demonstrate that a significant fraction of these reads contains PCR or sequencing errors
within duplex tags. Correction of such errors allows “reuniting” these reads with their respective families increasing
the output of the method and making it more cost effective.

Conclusions: We combine an error correction strategy with a number of algorithmic improvements in a new
version of the duplex analysis software, Du Novo 2.0. It is written in Python, C, AWK, and Bash. It is open source and
readily available through Galaxy, Bioconda, and Github: https://github.com/galaxyproject/dunovo.
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Background
Numerous, often clinically important, research scenarios
require detection of sequence variants that are present
in a minute fraction (10− 5–10− 9) of molecules under
study. Examples include detection of cancer-related mu-
tations in liquid biopsies, identification of fetal DNA in a
mother’s bloodstream, assessing dynamics of the im-
mune system, tracing mutational landscape of bacteria
through the evolution of antibiotic resistance, studying
genomic changes in viral pathogens and many others

(for a comprehensive review see [7]). Conventional ap-
proaches, where a sample is sequenced and resulting
reads are aligned against a reference genome to find dif-
ferences, are ill suited for variants present at frequencies
below 1% [6, 9]. A number of techniques has been devel-
oped to circumvent this issue with Duplex Sequencing
(DS) being currently the most sensitive [7, 8]. DS is
based on using unique tags (also called barcodes
throughout this manuscript) to label individual mole-
cules of the input DNA. During amplification steps that
are required for the preparation of Illumina sequencing
libraries, each of these molecules gives rise to multiple
descendants. The descendants of each original DNA
fragment are identified and grouped together using
tags—one simply sorts tags in sequencing reads lexico-
graphically and all reads containing the same tag are
bundled into a family. These families (with at least three
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members or more) form single stranded consensus se-
quences (SSCS) for the forward or the reverse strand, re-
spectively. Complementary SSCSs are then grouped to
produce duplex consensus sequences (DCSs; see Fig. 1).
A legitimate sequence variant is found in the majority of
the reads within a family. In contrast, sequencing and
amplification errors will manifest themselves as “poly-
morphisms” within a family and so can be identified and
removed (yellow rectangles in Fig. 1).
Despite its power DS is a complex technique. Reliable

identification of sequence variants requires each initial
fragment to form a family with at least three members
for each strand. To achieve this, it is necessary to pre-
cisely quantify the amount of input DNA during the

library preparation step. Too much DNA results in small
family sizes and makes variant identification impossible,
while too little creates very large families at the expense
of sequencing coverage. Furthermore, because DS bar-
codes are a part of the sequencing read, they accumulate
PCR and sequencing errors. These errors prevent match-
ing barcodes and therefore artificially split DS read fam-
ilies (red dots in Fig. 1) decreasing the efficiency of the
procedure. In this manuscript we describe a new, effi-
cient approach to the analysis of DS data that includes
barcode error correction. It significantly improves the
yield and performance of the technique. We also de-
scribe new quality control approaches designed to in-
crease output of DS experiments.

Fig. 1 Effect of errors on the Duplex Sequencing procedure. Here input DNA is sheared and barcodes are ligated to the ends of the DNA
molecules (colored rectangles in Barcoded DNA). After paired-end library preparation and sequencing each original molecules gives rise to
multiple reads (Paired-end reads pane). This process also inadvertently generates sequencing errors represented by yellow rectangles and red
circles. The yellow rectangles and red circles are used to depict errors arising inside read compartments corresponding to original DNA and
adapters, respectively. Reads are then grouped by barcode to produce “families”. In this example each family is required to contain at least three
reads. As shown here one of the reads contains an error (red circle) within the barcode. The error makes this particular barcode different from
others. As a result it cannot be added into the family and remains a singleton (the error correction algorithm described here was developed
specifically to correct such errors and allow singletons to be joined with their respective families). Each family is subsequently reduced into a
Single Strand Consensus Sequence (SSCS) and each respective SSCS is merged with its counterpart from the opposite strand to generate Duplex
Consensus Sequences (DCS)
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Results and discussion
Datasets
To test our results we used two previously published
datasets. The first dataset was produced by Schmitt et al.
[9], who employed DS to identify a rare mutation at the
ABL1 locus responsible for resistance to a chronic mye-
loid leukemia therapeutic compound imatinib. The sec-
ond dataset was produced by our group as a part of an
experimental evolution study where DS was used to
track frequencies of adaptive mutations in plasmid
pBR322 [5].

Barcode errors result in lost data
Typical DS tags are randomized 12-mers. Since each
DNA fragment is labeled by two tags, one at each end,
the theoretical upper bound for the number of unique
combinations is 4(12 + 12). However, the input DNA in a
standard DS experiment contains ~ 106 – 1011 mole-
cules, creating a large tag-to-input excess (424≫ 1011).
Because of this excess it is highly unlikely to observe dis-
tinct input DNA molecules tagged by barcodes that are
highly similar to each other. In fact, we can use this as-
sumption to identify barcodes containing sequencing er-
rors: barcodes that differ from each other by just a few
nucleotides are likely descendants of the same original
sequence with differences introduced by PCR and/or se-
quencing errors.
To check the validity of this reasoning, we analyzed

barcodes from the two datasets mentioned above—ABL1
and pBR322. To do so we trimmed barcodes off of all
sequencing reads generating a list of 12 + 12 barcode
combinations. We then selected 1000 random combina-
tions from this list to reduce the time required for sub-
sequent computation (out of 1,492,080 and 671,290
barcode combinations for ABL1 and pBR322 datasets,
respectively). Because duplex reads derived from differ-
ent strands of the same original fragment contain the
same two 12 mers but in different order (Fig. 1) there is
a total of 2000 tags we chose for this analysis. This is be-
cause for each 12 + 12 bp combination ab (a is the first
12-mer and b is the second) we also selected a comple-
mentary arrangement ba. Next, we compared each of
the 2000 tag combinations (concatenated into a single
24 nucleotide fragment) against all other tag combin-
ation in the entire dataset. At each comparison we calcu-
lated the number of differences (edit distance). Results
of this analysis are given in Fig. 2 (dark blue bar “0 mis-
matches”). One can see that ~ 100 barcode combinations
(62 and 104 for ABL1 and pBR322, respectively) out of
2000 tested have counterparts that differ by a single nu-
cleotide, a difference that is likely introduced by a se-
quencing and/or PCR error. Because of this difference
reads with error-containing tags will not be included
into families during the standard duplex data analysis

and will be effectively lost. Figure 3 (dark blue bars “0
mismatches”) illustrates this point. Here we sorted all
combinations of barcodes in lexicographic order and
counted the number of times each combination appears
in this list. There is a striking abundance of combina-
tions that appear only once. Such singletons cannot be
used in an analysis and are discarded. However, they ac-
count for a large fraction of total sequencing output of
the two experiments. Our goal was to see if barcode
error correction can reduce such waste by recovering
reads forming singleton families and returning them into
analysis.

Barcode error correction increases yield
Forming families of reads descended from the same
original fragment requires grouping reads by barcode
(Figs. 1 and 3). This is straightforward when no se-
quencing errors are present and can be done by sim-
ple lexicographic sorting. Yet as we have shown in
the previous section, errors are widespread and this
eliminates sorting as a legitimate analysis strategy. An
alternative approach will involve performing all-
versus-all comparison of all barcodes to identify those
that differ by just a few nucleotides and further
checking them to see if they are potentially derived
from the same DNA fragment with differences being
introduced by PCR or sequencing errors. The chal-
lenge is that the all-versus-all comparison has O(n2)
time complexity and thus is prohibitive as a routine
analysis strategy. There are several tools that ap-
proach this problem in different ways. The most com-
mon strategy is to reduce the search space by first
aligning the raw reads to the reference genome. One
can then consider barcodes of only those reads that
align to one region of the reference. This does not
change the time complexity of the search, but reduces
the search space from the millions of barcodes in the
entire sample to the dozens that may be aligned to a
particular genomic location. Several tools are available
which use this strategy [1, 12, 15]. However,
reference-based approaches are inevitably biased and
it was our main impetus to avoid the use of a refer-
ence sequence [13]. Alternatively, a strategy imple-
mented in MAGERI, a tool which does not require a
reference sequence to form consensus sequences, is
able to perform efficient barcode error correction
with the use of a custom seed-and-extend alignment
algorithm [10, 11]. However, it only forms single-
strand consensus sequences, not the duplex consensus
sequences required in our analysis.
To overcome these limitations we have adopted

Burrows-Wheeler k-mer indexing implemented in Bow-
tie [2] to quickly perform all-versus-all comparison of
duplex tags. We are using the original version of Bowtie
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(not Bowtie2) that was optimized for very short reads.
Specifically, we create an FM-index for all barcodes in
the sample and then align individual barcodes (as if they
were reads) against that index. Results of this alignment
are represented as a graph where each vertex
corresponds to a barcode. An edge is drawn between
two vertices if an alignment exists between two bar-
codes. An alignment should have a user-defined

minimum mapping quality and maximum edit distance,
with default values set to 20 and 1, respectively (in the
discussion below we vary edit distance values from 1 to
3). The resulting graph contains a large number of dis-
connected clusters, each of which theoretically repre-
sents a single barcode together with all its derivatives
created due to PCR and sequencing errors. A correct
barcode can therefore be chosen by picking the vertex

Fig. 2 Analysis of inter-barcode edit distances with and without error correction. A randomly selected set of 2000 barcode combinations were
compared against all barcodes in ABL1 and pBR322 datasets before (0 mismatches) and after (1, 2, or 3 mismatches) error correction. The Y-axis is
the number of barcodes and the X-axis is the edit distance. For example, without error correction 104 barcodes differ by one nucleotide from
barcodes in the entire pBR322 dataset. Error correction completely abolishes barcodes with 1 nucleotide difference
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whose barcode tags the highest number of reads. To as-
sess the effectiveness of this error correction strategy we
have developed a tool for producing simulated DS data
(see Methods). Using this simulator we produced 400,000
duplex reads and analyzed them using our error correc-
tion approach. We then proceeded to calculate how many
families (and thus, DCSs) were added to the analysis

because of the correction. This increase in yield—the most
important consequence of error correction— was substan-
tial. The 400,000 simulated duplex reads produced 43,344
DCSs without correction. Running error correction by set-
ting edit distance to one, two, or three mismatches re-
sulted in 52,896, 53,420, and 53,454 DCSs, respectively.
This constituted a 23% increase in yield (at three

Fig. 3 Distribution of SSCS family sizes with and without error correction. Single stranded consensus sequences (SSCS) are created when reads
with identical barcodes are bundled together. A common practice requires at least three reads with identical barcodes to form a SSCS. Without
error correction (0 mismatches) there is a striking abundance of singletons: single reads with a barcode that is different from all other barcodes in
the sample. Applying error correction with progressively higher number of allowed mismatches (from 1 to 3) significantly decreases the number
of singletons by re-uniting them with other reads
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mismatches) compared the an uncorrected analysis. Ef-
fectively the error correction algorithm “shrinks” the pool
of singletons (family size, FS, of 1) by reuniting them with
families containing correct barcodes, increasing the likeli-
hood that a group of reads surpasses the minimal member
number (family size [FS] ≥ 3) for calling a SSCS.
Next, we proceeded to test our approach on real du-

plex sequencing datasets we used above. We specifically
explored if tag error correction improves the number of
consensus bases in SSCS and DCS, when allowing for 1,
2, or 3 mismatches in the tags. The results of error cor-
rection are summarized in Table 1, Figs. 2 and 3. The
error correction decreased the number of singletons
(FS ≥ 3) while increasing the numbers of DCSs by re-
incorporating singletons into duplex families. This was
particularly striking in pBR322 dataset, where the num-
ber of DSC increased from 77,164 to 89,513 (Table 1).
One can also see that increasing the edit distance during
error correction to 2 or 3 did not have such a drastic ef-
fect in reducing the number of singletons and increasing
the overall SSCS and DCS.

Du novo corrects most barcode errors
With the simulated dataset, we were able to examine the
accuracy of barcode correction. Using Du Novo, we cor-
rected the simulated data using three different thresh-
olds for edit distance. Because the dataset was simulated,
we were able to compare the corrections made by Du
Novo to the ideal set of corrections (Table 2). We can
classify these into true and false positives and negatives
by considering a correction to be a “positive” and an
omitted correction a “negative”. When setting a stringent
edit distance threshold of 1, erroneous corrections (false
positives) occurred only five times (out of 816,335 cor-
rections). But the tradeoff was that Du Novo was only
able to catch and correct 67.28% of barcodes containing
errors. Setting a more aggressive edit distance threshold
of 3 allowed 77.97% of erroneous barcodes to be cor-
rected, but this caused 2740 barcodes to be wrongly cor-
rected (0.29% of 936,582 corrected). So even with the
most conservative threshold, over two thirds of errone-
ous barcodes are rejoined with their true families, and
only 1 in 163,267 of these newly formed families are
artifactual.

New alignment engine improves consensus generation
The first version of Du Novo had a number of limita-
tions resulting in poor performance. It was taking close
to 24 h to analyze a single duplex experiment. There
were two primary reasons for this: the use of MAFFT
aligner and inadequate parallelization strategy for exe-
cuting multiple consensus generating jobs.
First, we sought to increase the performance of con-

sensus generation step by employing a different multiple
alignment tool that can be integrated into Du Novo
codebase. We evaluated two candidate tools: SeqAn
(https://github.com/seqan/seqan) and Kalign2 [4]. SeqAn
is a library of algorithms, including a multiple sequence
aligner, specifically written to be incorporated into other
genomics tools. Written in C++, it can be compiled and
its functions called from Python. Kalign2 is an aligner
using the Wu-Manber approximate string-matching al-
gorithm [14] to significantly speed up alignment while
maintaining accuracy. Kalign2 is written in C and can
also be compiled and called from Python. With some
modification, it is possible to communicate with its func-
tions directly from Python, without temporary files. This
allows the greatest efficiency and greatest integration
into a Python process. SeqAn and Kalign2 were evalu-
ated against MAFFT, the existing algorithm in use by
Du Novo. The aligners were tested by performing a mul-
tiple sequence alignment on a duplex read family ex-
tracted from a duplex experiment sequencing the whole
human mitochondrial genome [13]. The family con-
tained 74 reads, 41 single nucleotide substitutions rela-
tive to the consensus, and no indels. The number of
reads in the alignment was varied from 1 to 74, and the
time taken to perform the alignment was measured. Fig-
ure 4 shows the results of this experiment. SeqAn was
the slowest at all alignment sizes, with the worst per-
formance at handling of large alignments. It took 58×
more time than MAFFT at 10 reads, and 427× more at
40 reads. The fastest for all sizes was Kalign2. At 10
reads, it took less than 10 milliseconds. At 30 reads it
was 9× faster, but at 60 reads it was only 4× faster than
MAFFT. Since the median family size for an ideal duplex
experiment is only around a dozen reads, Kalign2’s ad-
vantage is significant and we chose it as the default
alignment engine for Du Novo.

Table 1 Effect of error correction on duplex datasets analysis as the number of single strand consensus sequences (SSCS) and
duplex consensus sequences (DCS) called after no error correction (0 errors) and error correction with three thresholds of 1, 2, and 3
mismatches allowed

Sample ABL1 pBR322

# errors 0 1 2 3 0 1 2 3

SSCS ab 38,493 37,803 37,007 36,280 84,231 81,929 78,481 73,647

SSCS ba 38,202 37,496 36,772 36,080 84,085 81,741 78,234 73,160

DSC 20,745 21,299 22,151 23,180 77,164 80,640 84,359 89,513
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Smarter parallelization improves speed
Du Novo uses the multiprocessing Python module for
parallel processing. In order to maintain the ordering of
the aligned families, the old algorithm would start N align-
ment jobs in parallel, then check each job in order for re-
sults. This created a bottleneck at the slowest job: the N
jobs would take as long as the slowest one. The new algo-
rithm maintains a queue of jobs executing or waiting to
be executed. In order to maintain ordering the algorithm
keeps an ordered list of submitted jobs. It fills the queue,
then begins processing outputs in order of submission.
This still requires waiting for all jobs in a batch to finish
before continuing, but to reduce the bottleneck, the queue

is made larger than the number of available workers. As
soon as a job finishes and a worker is freed, it begins work
on a new job. This lets new jobs run on CPUs freed by the
fastest jobs while the slowest job is still running. If W is
the number of workers and M is a multiplier such that
M × W is the queue size, then a single batch of M × W
jobs will take less time than M batches of W jobs.
Diminishing returns occur as M grows, so M is set to
eight by default. To show the combined effect of the
change in alignment and queueing algorithms, Du
Novo 2.15, using Kalign2 and the default queue size
was compared with Du Novo 0.4, using MAFFT and
the old queueing algorithm. Table 3 shows that the
combination of the two changes results in an over 9× fas-
ter performance at low levels of parallelization. The trend
in memory usage is the same as when comparing Kalign2
vs. MAFFT.
Next we used the simulated dataset to test whether

the change in alignment algorithm affects the accur-
acy of the pipeline. The simulated experiment was the
same, but with 40,000 fragments generated instead of
400,000. Because the input was one homogenous se-
quence with no minor variants, any differences from
the input must be due to incorrect consensus base
calls. Using the previous multiple sequence aligner,
MAFFT, resulted in an error rate of 0.00563 differ-
ences per output base (Table 4). Using Kalign2 in-
stead resulted in 0.00561 differences. Adding barcode
error correction improved this figure slightly to
0.00525 while also increasing the yield. The standard

Fig. 4 Alignment engine comparison. Comparison of the three aligners tested for use in the Du Novo pipeline

Table 2 Robustness of barcode error correction, measured
through simulated data

Edit distance Positive (%) Negative (%)

1 True 99.999 67.281

False 0.001 32.721

2 True 99.983 74.971

False 0.017 25.033

3 True 99.710. 77.972

False 0.290. 22.033

The barcodes of 400,000 simulated duplex reads were corrected with Du Novo
2.15 with three different edit distance thresholds: 1, 2, and 3. Corrected and
uncorrected barcodes were compared to the original, true barcode sequences.
For each corrected barcode, if the correction assigned it to its true family, this
was counted as a true positive. Otherwise it was a false positive. Uncorrected
barcodes which were not one of the original, true barcodes were counted as
false negatives. The rest of the uncorrected barcodes were counted as true
negatives. Each family was counted once, rather than each raw read
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pipeline published by Loeb et al. [8] was also com-
pared, resulting in 0.0114 differences per output base.

Conclusions
In this manuscript we have introduced an error correc-
tion approach to the analysis of duplex sequencing data.
This allows correcting errors in barcodes thereby redu-
cing data loss and increasing the yield of duplex sequen-
cing experiments. We made a number of other
improvements including a new alignment engine and ad-
vanced parallelization. Finally, we made the new soft-
ware readily available to a wide audience of users. To
achieve this goal we are distributing Du Novo in three
complementary ways:

– Interactive pipeline at http://usegalaxy.org. Here
users can upload datasets of any size and process
using the complete Du Novo pipeline to produce
SSCS and DCS sequences. The Galaxy system
contains all tools for downstream processing
including mapping and variant calling. To help users
effectively use our system we have developed a
detailed step-by-step tutorial that can be found here:
http://bit.ly/dunovo-tutorial.

– Bioconda package. Du Novo code relies on a
number of software components that need to be
installed before the tool can be used. Conda package
eliminated the need to install these dependencies by

automatically installing all components using conda
install dunovo command (see http://bit.ly/
dunovo-bioconda).

– Source code for the package can be found in GitHub
at https://github.com/galaxyproject/dunovo. It is
distributed under Academic Free License.

Methods
Barcode error analysis
The edit distance quantifies similarity or dissimilarity be-
tween two DNA sequences of equal length by calculating
the number of differences between them:

Di,j is the number of sites where Xi and Xj do not
match, k is the index of the respective site out of a total
number of sites n. The input data was in tabular format
organized into family size, the sequence of the tag, and
the direction of the tag in the SSCS (ab = forward or
ba = reverse). Each tag represents a family of paired-end
sequences forming SSCS. Since the whole dataset con-
tained more than one million tags, the comparison of all
tags was computationally too demanding. Thus, we par-
allelized the algorithm and only selected 1000 random
tags from the data set and compared them to the whole
dataset to estimate the minimum edit distance between
tags. A sample of 1000 tags gives a very similar estimate
to the edit distance estimated for a sample of 10,000 and
~ 130,000 tags.

Error correction
The script baralign.sh performs an alignment of all
barcodes against themselves (all scripts mentioned in this
section can be found at https://github.com/galaxyproject/
dunovo). First, it extracts all unique barcode sequences

Table 3 Time and memory usage of different versions of align-families.py, using different multiple sequence alignment
algorithms

version aligner time/ memory CPUs

1 2 4 8 16 32

0.4 MAFFT time (seconds) 28,638 15,769 8912 5173 3038 1747

2.15 MAFFT 28,754 14,282 7079 3463 1686 854

Kalign2 4731 1777 945 600 381 246

0.4 MAFFT memory (MB) 23,704 12,299 6622 3755 2284 1602

2.15 MAFFT 23,927 12,599 6850 3985 2541 1810

Kalign2 24,648 23,220 12,408 6668 3781 2327

At low levels of parallelization, Kalign2 made the process over 8 times faster, with a memory usage less than twice as much as MAFFT. The new algorithm sped
up the tool between 1 and 2.05x. Naturally, at higher levels of parallelization, the reduction of the job queue bottleneck made more of a difference. Memory
usage appeared to not be affected, which is expected due to the small size of the job queue compared with the rest of memory usage. To attempt to disentangle
the effects of the job queueing algorithm from all the other changes between 0.4 and 2.15, the two versions were compared with all parameters set as similarly
as possible. In both cases, the number of --processes was set to 32 and MAFFT was used as the aligner. Crucially, the --queue-size for the 2.15 version
was set to be 32, the same as the number of --processes. This approximates the bottleneck in the pre-2.0 version of Du Novo’s job queueing algorithm.
Comparing the median of 3 trials of each, the wallclock time of 2.15 was 27% higher than that of 0.4. This could be because of the higher overhead in the more
complicated parallelization algorithm, or other changes between 0.4 and 2.15

Table 4 Effect of aligner on “correctness”

Method Aligner Barcode error correction Errors per base

Du Novo MAFFT Uncorrected 0.563%

Du Novo Kalign2 Uncorrected 0.561%

Du Novo Kalign2 Corrected 0.525%

Loeb N/A Uncorrected 1.140%
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(concatenations of a + b tags) as FASTA sequences.
Then it indexes them, along with their reversed
(b + a) versions, with bowtie-build and aligns them
to the index with bowtie -v 3 --best -a. This
alignment is then read by correct.py, which uses
the networkx module to construct graphs where each
vertex is a barcode and each edge is a high-quality
alignment between two barcodes. The definition of a
high-quality alignment is configurable and based on
the MAPQ mapping quality, the edit distance given
by the NM tag, and the distance between the aligned
starting positions of the two barcodes. The default
values for these filters is 20, 1, and 2, respectively.
Then, for each graph, a “correct” barcode is chosen
by one of two methods. The default method is to
choose the barcode which tags the largest number of
reads. An alternative is to choose the barcode with
the most edges to other barcodes.

Generating simulated duplex data
To validate the effectiveness of our approach we have
first applied it to a simulated duplex sequencing dataset
generated with a duplex sequencing simulator developed
to test the correctness of the Du Novo algorithms
against known duplex sequencing behavior and sources
of errors. It simulates an entire duplex sequencing ex-
periment but taking a reference genome sequence as in-
put, randomly fragmenting it, adding random barcodes
to the ends of these fragments, simulating PCR and se-
quencing errors to produce a set of simulated duplex
reads. To randomly fragment the reference sequence, it
uses wgsim (https://github.com/lh3/wgsim) in error-
free mode (options -e 0 -r 0 -d 0), using the − 1 op-
tion to set the length of the fragments. Then it simulates
random oligomer synthesis to produce duplex barcodes
using a uniform 25% probability for each base. It concat-
enates these oligomers, along with a constant linker se-
quence, with the fragment sequence to produce starting
fragments. These simulated tagged fragments then
undergo in silico PCR in order to introduce amplifica-
tion errors. First, a family size is chosen from an empir-
ical distribution observed in a previous duplex
experiment. Then, the phylogenetic tree relating these
reads is generated. For a family size of n, the process
starts with n reads at the root node representing the ori-
ginal fragment molecule. Each read is randomly assigned
to a daughter molecule with 50% probability. Then the
process repeats with each daughter, using the number of
reads assigned to the daughter instead of n. Because
amplification efficiencies decline as PCR cycles continue,
the probability of replication starts at 1 and is divided by
1.05 each cycle, a realistic value compared with observed
reactions [3]. Once a tree is generated, errors are simu-
lated at each node and propagated to their descendents.

Then, sequencing is simulated, also with errors, and
reads are output. A log of the errors is also saved, in
order to allow checking results against the “truth”. Un-
less noted otherwise, simulated data presented here were
generated with a sequencing and PCR polymerase error
rate of 0.001 errors per base. Twenty five cycles of PCR
were simulated, the fragment lengths were set to 400 bp,
and the read lengths to 100 bp. Using this approach we
have generated a dataset containing 400,000 simulated
duplex reads and applied our error correction strategy.

Du novo 2.0
The basic algorithms in Du Novo 2.15 remain as described
in [13], except the addition of barcode error correction, the
Kalign2 multiple sequence aligner, and the replacement of
the parallel job queueing algorithm. In all experiments de-
scribed here, the threshold required to form a consensus
base (make-consensi.py’s --cons-thres) was
0.7, 3 reads were required to create a consensus se-
quence (−-min-reads), and a PHRED score of at
least 25 was required to count a base toward the con-
sensus (−-qual).
When consensus reads were filtered, the script

trimmer.py was used from the bfx directory of
Du Novo’s distribution. Unless noted otherwise, the
script was set to remove the 5′ end of reads when
the proportion of N’s in a 10 base window exceeded
0.3 (−-filt-base N --window 10 --thres 0.3).
If either of the reads in a pair was trimmed to less than 75
bases, both were removed (−-min-length 75).
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