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Abstract

Background: The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many
biological processes like tissue development and cancer metastasis. Previous studies, both modeling and
experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits
intermediate phenotypes between E and M states. The number and importance of such states is subject to intense
discussion in the epithelial-mesenchymal transition (EMT) community.

Results: Previous modeling efforts used traditional bifurcation analysis to explore the number of the steady states
that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has
dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of
states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures
Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing
summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria,
that E and M states dominate across parameter space, but that bistability and multistability are common. Even at
extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at
which an E or an M state co-exists with other stable steady states.

Conclusions: Our results suggest that the multistability is broadly present in the EMT network across parameters and
thus response of cells to signals may strongly depend on the particular cell line and genetic background.
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Background
The epithelial-to-mesenchymal transition (EMT) and
mesenchymal-to-epithelial transition (MET) are essential
processes of cellular plasticity. This plasticity manifests
itself in embryonic development [1, 2] and wound healing
[3,4], but it is also of great interest for its role in carcinoma
metastasis [5]. Activation of the EMT program leads to a
tumor-initiating state sometimes termed cancer stem cell
(CSC) [6, 7]. In addition, the EMT program modulates the
immune response of the organism [8, 9] and negatively
affects immunotherapy.

The epithelial phenotype is characterized by apical-
basal polarity and tight cell adhesion to the other cells
in the tissue. The hallmarks of the transition to the
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mesenchymal phenotype are the loss of adhesion, gain of
motility, and acquisition of invasive capabilities. In EMT,
cells may not complete the transition to the fully mes-
enchymal phenotype, but acquire one of possibly many
partially epithelial and partially mesenchymal states (E/M
states or intermediate states). At least one intermedi-
ate state has been experimentally documented in several
tissues [10-12]. These tissues exhibit the presence of
biomarkers for both mesenchymal and epithelial states on
the level of a single cell [11-14], observed in lung cancer
[15] as well as in metastatic brain tumors [16]. There-
fore an E/M state is not just a mixture of cells of both
phenotypes.

There is evidence that cells in an intermediate state
exhibit a different phenotype. They retain some adhesive-
ness to their neighbors and seem to migrate in clusters.
This intermediate phenotype has consequences for can-
cer prognosis; when cells migrate in the intermediate
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phenotype it usually indicates poor prognosis. While it is
clear that initiation of the EMT program plays a key role in
initiation of metastasis, the reverse MET program occurs
during the last step of the process, colonization of the new
niche, adapted to the micro-environment of the invaded
tissue. Why certain cells succeed in colonization, while
the majority probably do not, is not clear. Some cells may
fortuitously develop adaptive programs while still in the
primary sites and may maintain them during colonization;
the diversity of the E/M states and cellular background
may play a decisive role in colonization success [5, 17].

It is therefore important not only to characterize the
intermediate E/M states, and the pattern of activation that
leads to each of them, but also the pattern of activity of
other elements of the network in each of these states. It
may be that the activity of genes not directly connected
to known biomarkers is decisive in the success or fail-
ure of colonization of a new tissue. Furthermore, one of
the potential treatments for EMT-induced cellular motil-
ity and carcinoma metastasis is induction of MET. Apart
from the possibility that this treatment would make colo-
nization easier for the cells that have already migrated, it is
not clear if the final state after the treatment would indeed
be the epithelial state or some form of intermediate state
due to hysteresis in nonlinear systems.

Because of the clinical significance, there is great inter-
est in understanding the networks that are responsible for
this phenotypic transition and to characterize the inter-
mediate E/M states [17]. It has been suggested that these
states are only metastable [3, 18] and cannot be main-
tained in the long term. On the other hand, extensive
modeling work has shown that an E/M state is repre-
sented by a stable state of a network [11, 12, 19-21]. These
papers analyzed the contributions of miR34-Snaill and
miR200-Zeb1 bistable modules [19, 20] to EMT and MET
processes and the contribution of Ovol2 and GRHL2 to
the existence and robustness of this state [21], as well as
the extent to which this intermediate state is connected
to the development of stemness, a cellular trait associ-
ated with increased invasiveness [6, 22, 23]. Hong et al.
[11] modeled a network that includes Ovol2, Zebl1, Snaill,
miR34a, miR200 and TGEFp depicted in Fig. 2a. They show
in their model, and also find experimental evidence, that
there exists not one, but two intermediate states I; and I5.
Using ODE models they show that both states are sensi-
tive to Ovol2 levels and overexpression of Ovol2 leads to a
transition of the system to the epithelial state. Similarly, a
high level of TGFg induces the mesenchymal state, while
a low dose of TGFS induces the appearance of coexisting
populations of I and M states.

Mathematical models based on ODEs of complex net-
works like the EMT network face significant challenges.
The simulation of differential equations requires precise
parameterization and initial conditions; these are difficult
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to ascertain in cellular systems. Bifurcation analysis, such
as that presented in [11, 21], allows one or two parameters
to vary at a time, but the other parameters (often num-
bering in the dozens) need to be fixed. Many important
insights were obtained using careful bounds on parame-
ters and sensitivity analysis, but the challenges of inter-
pretability and generality of the results remain. To address
these challenges, Huang et.al. [24] developed a compu-
tational method RACIPE that samples random kinetic
models corresponding to a fixed circuit topology, and then
uses statistical tools to gain insight into properties of the
circuit that are robust with respect to choices of kinetic
parameters. An alternative approach to study the behavior
of a large EMT network without knowledge of the kinetic
parameters is to study a Boolean network model [25]. This
study employed energy associated to glassy states to study
the robustness and number of steady states associated to
E, M, and E/M states.

In this paper we present an alternative analysis of the
complex EMT network based on the software package
DSGRN (Dynamic Signatures of Gene Regulatory Net-
works) [26-31]. DSGRN uses a continuous description
of network dynamics that lends itself to a discrete and
exhaustive description of all the ways in which the net-
work can function, specified only by inequalities between
network parameters. For each such set of parameters
DSGRN characterizes network dynamics in terms of a
state transition graph that can be reduced to an acyclic
graph called a Morse graph. A state transition graph can
be interpreted as an asynchronous update of a corre-
sponding monotone Boolean map. Therefore DSGRN can
be viewed as examination of a collection of monotone
Boolean maps consistent with the network topology. On
the other hand, the underlying continuous time descrip-
tion of dynamics allows one to relate DSGRN parameters
to parameters of Hill function kinetic models that are sam-
pled in the statistical approach of Huang et.al. [24] (see
Remark 1 of “Methods” section).

The leaves of a Morse graph represent invariant
sets of the system, including steady states. Results
of DSGRN computation allows us to find representa-
tives of epithelial, mesenchymal, and intermediate states.
Rather than computing bifurcation diagrams for one
or two varying parameters, our results describe possi-
ble dynamics at all combinations of parameters. Our
results are coarse; as explained in “Methods” section,
we assume each edge in the network has a threshold
and the effect on the downstream gene has two lev-
els, low and high, all of which are real-valued parame-
ters. However, the methodology behind DSGRN allows
us to decompose parameter space into a finite (but
very large) number of parameter domains over each
of which the Morse graph is constant. We represent
this decomposition as parameter nodes in a parameter
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graph, where each node is associated to a Morse graph.
This computational output is then interrogated to find
equilibria, other types of attractors, bistability, and multi-
stability.

Our first result is that in all parameter nodes the only
attractors in the system are steady states. We also detect
the presence of potential oscillatory behavior, but it is
always unstable within our framework.

While we compute the entire collection of dynamics
across parameter space, we present them as four sepa-
rate projections over parameters that represent Ovol2,
Snaill, TGFB, and Zebl expression levels, in a way that
is analogous to a one-parameter bifurcation analysis. The
difference is that the remaining parameters are allowed to
vary across all of parameter space, rather than being fixed.
We present our results in terms of percentages, or pro-
portions, of parameter nodes from a given ensemble with
a given property. For instance, we report the percentage
of parameter nodes that have highest level of TGES that
admit an M state. This can be interpreted as a percent-
age of cell lines with the mesenchymal phenotype, with a
caveat that the biologically realizable cell lines may be a
strict subset of the ensemble that we consider.

As expected, E and M states dominate at the appropriate
highest or lowest levels of Ovol2, Snaill, TGFS and Zebl..
In fact, the E (or M) state is present in 100% of the appro-
priate extremal levels of Ovol2, Snaill, Zebl and TGEB,
but in 45-75% of the corresponding parameter nodes this
state coexists with intermediate states This multistability
has consequences for the induction of EMT, since differ-
ent initial parameter regimes, representing different cell
lines or different genetic background, will lead to either
the M or an intermediate E/M state, and likewise for MET.

Our characterization of multistability shows that the E
state is exhibited in 100% of a range of parameter nodes,
and likewise for M. The range depends on whether the
parameter that varies is the expression of Ovol2, Snaill,
Zebl and TGFgB. In such a situation, even when other
stable states are present, induction and then reversal of
the induction will recover the original state. For instance,
under TGFp induction, only after TGFS is raised to the
highest level may the epithelial state transition to another
state. However, in 20% of the parameter nodes at this
extreme level of TGFpB, there will be no transition out
of the E state. In another 25%, the mesenchymal state is
monostable (i.e. it is a single, global attractor), guaran-
teeing complete EMT. In the other 55% of the parameter
nodes, the model indicates that the final state can be one
of the intermediate states. This may explain the diversity
of outcomes of EMT under induction across cell lines and
across individuals.

Finally, we address the question of the number of inter-
mediate states. In our calculations the maximal number
of steady states is 8 and suggests the possibility of up to
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7 experimentally observable intermediate states in some
cell lines. The multistability tends to concentrate at inter-
mediate expression levels, while monostability is almost
exclusively present at the extreme values of expression
levels.

Modeling framework

We describe briefly the mathematical framework of
DSGRN. The details can be found in “Methods” section
and in [26, 27]. The DSGRN approach is motivated
by switching system models, introduced by Glass and
Kaufmann [32, 33], where the rate of change of each reg-
ulatory network node is governed by a piecewise constant
function. The effect of node j onto node i changes from
low value L; to a high value Uj; at a threshold 6;. In
addition to the three parameters 0 < L;; < U;; and 0 < 6;
that are associated with each edge of a network, DSGRN
also considers decay rates 0 < y; associated to each node
of the network.

Parameter graph

The parameter space is a subset of Rik“ for a net-
work with # nodes and k edges. The structure of the
piecewise constant switching functions induces an explicit
decomposition of parameter space into a finite number of
regions defined by sets of inequality relationships among
parameters. Each region is represented as a node in the
parameter graph, and two nodes are adjacent if the corre-
sponding regions share a boundary. An important feature
of the parameter graph PG is that it is a product of factor
parameter graphs on each node

PG = I, PG(i)

where PG(i) is the parameter graph for node i of the
network. For more detailed and mathematically rigorous
description of PG and PG(i), see “Methods” section and
[26, 27]. An example of a factor graph is shown in Fig. 2d
and is explained in more detail in “EMT model” section.

State transition graph

A consequence of the decomposition of parameter space
is that every real-valued parameter set in R“j’rkJr” belongs to
one of a finite number of parameter regions. Dynamics at
all real valued parameters in the same region share certain
important characteristics. These are captured by a state
transition graph, which we describe in this section. The
analysis of the collection of state transition graphs over all
parameter nodes in the parameter graph then provides a
characterization of the dynamics of a network over all of
parameter space Rik“' .

A state transition graph is a summary of trajectories
that represent time evolution of gene products in the net-
work. These trajectories evolve in phase space, which is
the non-negative orthant R’ for a network with # node.
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Because of the form of the switching system, the phase
space is divided into a finite number of domains, and
the directions of transitions between these domains are
identical for all real-valued parameter sets in a parame-
ter region corresponding to a single DSGRN parameter
node. The state transition graph may be different at dif-
ferent parameter nodes. The collection of these domains
can be represented as nodes of a state transition graph
(STG), where two nodes may be (but are not necessar-
ily) connected by a directed edge when the corresponding
domains are adjacent i.e. share a boundary. The direction
of the edge reflects the direction of the transition between
the two domains. It can be shown [26] that every trajec-
tory of the associated switching dynamical system must
respect the direction of these transitions and therefore
trajectories of gene expression levels are represented by
paths in the STG.

More formally, the collection of thresholds divides the
phase space R} into a finite number of #-dimensional cells
«k that can be labeled by an integer vector s = (sy, .. .,8x),
where s; is the number of thresholds 6;; below the ith
component of any point x € «. Let S; be the range of
numbers from 0 to the number of thresholds (out-edges)
associated to the i node in the network. Then the set S :=
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[T, Si can be thought of as the nodes in the state tran-
sition graph. Through a procedure using the switching
system, these nodes are connected by edges that represent
the dynamics of the system at the chosen parameter graph
node. See “Methods” section for detailed definitions.

Figure 1 shows an example of the relationship between
phase space and the nodes S for a two node network
in which each node actuates (either represses or acti-
vates) itself and the other node. This means that there
are two actuation thresholds per node, and each node
can achieve states S; = {0,1,2}. The collection of 2-
dimensional cells «, created by the division of R? by
the four thresholds (Fig. 1b) gives rise to the nodes of
any STG for the network, which are the nine states S =
{(0,0), (1,0),(2,0), (0,1), (1, 1), (2,1),(0,2), (1,2), (2,2)}
in Fig. 1a.

It is useful to represent the cells « as a discrete, colored
grid, where the lower left and upper right corners repre-
sent the extreme values in S. These are (0, 0) colored blue
in Fig. 1c and (2,2) colored orange. Using colors along
the diagonals, we represent constant Hamming distances
from each of the extreme values. This is relevant when we
talk about paths through phase space in “Results” section
where we reference Fig. 1d.

0,2) (12) (22)

(0,1) (L1 (2,1)

(0,0) (1,0) (2,0)
(A)

state is in the upper right-hand corner in the back

Fig. 1 State transition graph representation of dynamics. a The nodes of all STGs (the set S) in a network with two genes that both regulate
themselves and each other. b The corresponding embedding into two-dimensional phase space. ¢ The discrete grid construction of phase space
with constant Hamming distances from the extreme corners represented by color. d The projection of the states in the six-dimensional phase space
of the EMT network to 3 dimensions corresponding to Zeb1, Snail1 and Ovol2. The colors divide this 3D cube into nine diagonals, each of which has
a fixed Hamming distance from the extreme values representing E and M states. The E state is in the lower left-hand corner in the front, and the M

Zebl
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Morse graph

Each state transition graph is finite, but can be quite large,
and the STG grows rapidly with respect to the number of
nodes and edges in the regulatory network. Therefore, to
compress the information, for each STG we construct the
associated Morse graph that retains only its set of recur-
rent components, which form the nodes of a Morse graph.
Recall that a recurrent component in a directed graph is
a maximal collection of nodes that are mutually reach-
able. Therefore reachability between components, when
it occurs, must occur in only one direction. This reach-
ability between the components gives rise to the Morse
graph, where we assign edges between Morse nodes based
on reachability in the STG between the components. Since
reachability between components is directed, the Morse
graph is acyclic.

The Morse graph summarizes the recurrent dynamics of
the network. In particular, all stable steady states as well as
periodic orbits will be represented as one of the nodes of
the Morse graph. Stability is determined by the presence
or absence of out-edges in the Morse graph. An absence of
out-edges means that no other recurrent component can
be reached from given recurrent component, and there-
fore we consider such a component stable. Otherwise, we
consider it unstable.

An example Morse graph of the EMT system that we
consider in this paper is given in Fig. 2c. Each node has
an inscription of either FP, followed by a sequence of six
numbers that represents a label in S, or XC. The annota-
tion FP stands for a fixed point representing a steady state,
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and XC for a partial cycle; that is, a cycle where the state
s; is constant for at least one i. We append to each fixed
point the state label in S corresponding to the location
of the fixed point in phase space. In the Morse graph in
Fig. 2c there are six stable steady states denoted by FP and
five unstable periodic states denoted by XC. The param-
eter graph together with the corresponding Morse graph
at each node of the parameter graph forms a DSGRN
database.

EMT model

We study the EMT network in Fig. 2a, taken from [11],
subject to a few modifications. First, we remove the neg-
ative self-edge on Snaill, in order to define STGs unam-
biguously, see Remark 2 in “Methods” section. This may
cause our model to miss some of the intermediate states.
Second, we remove the negative regulation from Ovol2
to the edge between TGFgS and Snaill. In our modeling
paradigm, that regulation is captured by the direct nega-
tive regulation from Ovol2 to TGEB. Third, we separate
the influences of external and internal TGFS. The internal
TGEpB concentration is a regular dynamic variable, whose
low (high) levels may or may not activate Snaill, depend-
ing on the choice of DSGRN parameter. The influence of
external TGFB is modeled as a shift in DSGRN parame-
ters from (1) a DSGRN parameter where the expression
of TGEB is never high enough to activate Snaill, through
(2) a DSGRN parameter where only high level of TGFp
expression activates Snail, to (3) a DSGRN parameter
where TGFp is always high enough to activate Snaill.

TGF

/N

!

[ miR200 | —— [ Snail1 |
AN
| \l| miR34a

owa][zan

B)

| FP(3,2,0,1,1,1) |

| FP(1,2,0,1,1,2) | : ; : . .

Layers i the factor parameter graph for Ovol2

| FP(0,0,2,1,0,2) | | FP(3,3,0,0,1,1) | (D)

(©

Fig. 2 Parameter graph representation of the parameter space. a The EMT network from [11]. b The EMT network that we use for the analysis in this
manuscript. ¢ An example of the many possible Morse graphs for the network in (b). d The factor parameter graph for Ovol2. Each node represents
one way in which the inputs of Ovol2 are integrated and affect the downstream nodes of Ovol2. Each node is characterized by the corresponding
inequalities given in (1). Nodes colored in red are associated to essential parameters
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Recall that we characterize the dynamics by a state
transition graph where the level of expression is dis-
cretized using output edge thresholds. The biomarkers
Ecad and Vimentin characterize the mesenchymal and
epithelial states respectively, but do not have output
edges.Therefore there is no natural way to subdivide their
expression levels into discrete classes. We chose to char-
acterize the E and M phenotypes without the biomark-
ers Ecad and Vimentin in the following way. Instead of
directly tracking Ecad and Vimentin, we track the expres-
sion levels of their regulators Zeb1, Snaill and Ovol2 (see
Fig. 2a). Since Vimentin, a biomarker for the mesenchy-
mal state, is up-regulated by Zebl and Snaill and down-
regulated by Ovol2, the highest expression of Vimentin
will happen when Zeb1 and Snaill are at their highest lev-
els and Ovol2 is at its lowest level. This represents the
mesenchymal state. The opposite pattern with Zeb1 and
Snaill low and Ovol2 high indicates the epithelial state
where Ecad is high. Note that this is a conservative choice.
It is possible, for instance, that the expression of Vimentin
that characterizes the mesenchymal state does not require
all three conditions (high Zeb1, Snaill and low Ovol2); it
is also possible that extreme levels of expression of these
regulators are not required to induce the cell into the mes-
enchymal state. Making a different choice would require
detailed knowledge of the numerical values of parameters
that we do not have. If such information becomes avail-
able, it would restrict the set of parameter nodes that we
consider to a smaller set of those that would be consistent
with such data.

We assign the highest and lowest levels of expression in
terms of the state labels in S. After the removal of Ecad
and Vimentin, Zebl has three output edges in the net-
work, and hence Zeb1 can attain four states 0,1,2,3. Snaill
also has three output edges after the additional removal of
the negative self-regulation, so it also can attain four states
0,1,2,3. Finally, Ovol2 has two output edges and so it can
attain states 0,1,2. By choosing the order of the states of
the genes to be

(Zebl, Snaill, miR200, miR34a, TGF B, Ovol2),

we represent the mesenchymal state by an FP state of the
form

M =FP(3, 3, %,%,%,0),
and the epithelial state by an FP state of the form
E = FP(07 0) *, X, X, 2):

where the symbol * allows any state of the other genes.
The regulator miR200 has a highest state of 2, miR34a has
a highest state of 1, and TGFp has a highest state of 1.
Notice that the epithelial state is present in the Morse
graph in Fig. 2c in the lower left. The Morse graph shows
multistability between E together with five intermediate
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E/M states. For example, FP(2,0,1,1,0,1) represents a FP
steady state where Snaill and TGFS are at their lowest
level, miR200, Ovol2, and Zebl are at intermediate lev-
els, and miR34a is at its highest level. In “Results” section
we will discuss our findings regarding intermediate E/M
states in detail.

Since the EMT network in Fig. 2b has 6 nodes and
12 edges, parameter space is 6 + 3 * 12 = 42 dimen-
sional. The corresponding parameter graph has more
than 21 billion parameter nodes, each associated to a
region in 42-dimensional parameter space. If we want
to query the parameter graph for changes in steady
states induced by changing expression level of a partic-
ular gene, like TGFS, we will use the factor parameter
graph PG (i) for the gene i to represent these changes (see
“Modeling framework” section.)

As an illustration, we describe an example of PG(k)
where node k has one input edge and two output
edges, as is true for Ovol2 in the EMT network. This
factor graph is shown in Fig. 2d. Ovol2 has a sin-
gle in-edge from Zebl and two out-edges to Zebl
and TGEFB. For simplicity, denote yp,o, the degra-
dation rate of Ovol2, by y, and denote Loyy,zen1
and Uoye,zept by L and U, respectively. Recall that
parameter nodes are associated to regions in parame-
ter space defined by inequalities (see “Parameter graph”
section for more detail). The inequalities corresponding to
each of the parameter nodes in the factor parameter graph
for Ovol2 are:

Al: (L < U <y - Ozeb1,0v0i2 < V * OTGFB,0v0i2)
A2: (L <y Ozebr,0v0i2 < U <y - O1GFB,0v0i2)
A3 : (v - Ozepr,0v02 < L < U <y - 01GFB,0v012)
Ad: (L <y - Ozebr,0v0i2 < ¥V * OTGFB,0v0i2 < U)
A5: (Y - Ozep1,0v02 < L < ¥ - O1GFB,00012 < U)
A6 : (Y - Ozeb1,0v0i2 <V * O1GEB,0v012 < L < U)
Bl: (L <U <y -01GFp,0v0i2 <V * 0zeb1,0v0i2)
B2: (L <y -01Grp,0v0i2 < U <y - Ozeb1,0v0i2)
B3 : (y - 01Grg,0v0i2 <L < U <y - 0z¢p1,0v012)
B4 : (L <y -01GFg,0vei2 <V *Ozeb1,0v0i2 < U)
B5: (y - O1GFg,0v012 < L <y - Ozeb1,0v0i2 < U)
B6 : (v - 091GEg,0v012 < ¥V * Ozeb1,0v02 < L < U)

(1)

Note that the difference between the A and B nodes is
simply the ordering of the two thresholds.

Importantly, some of these inequalities represent
parameter choices when the network does not work as
depicted in Fig. 2a. For instance, node A1l implies that the
output edges from node Ovol2 will never get actuated for
any choice of inputs. On one hand this does represent
a very low level of expression of gene Ovol2 which is a
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valid state of this gene. On the other hand, at this param-
eter node the output edges from node Ovol2 do not carry
any information. Therefore removing these edges will pro-
duce the same dynamics. In other words, the dynamics of
the network at this parameter node are equivalent to the
dynamics of a subnetwork. We say that this node is an
inessential parameter node. Nodes that are not inessential
are essential. In the above example, the nodes A4 and B4
are essential, while the other nodes are inessential. There-
fore A4 and B4 comprise the essential factor parameter
graph for Ovol2.

An essential parameter graph is a product of essen-
tial factor parameter graphs. This is usually much smaller
than the entire parameter graph, since the latter describes
not only dynamics of the network, but also dynamics of
all its subnetworks. In the EMT network, the full param-
eter graph, which includes both essential and inessential
parameter nodes, represents over 21 billion parameter
regions. The essential parameter graph has only about 21
million parameter regions, a thousand-fold reduction in
size. For overall statistics of the EMT network, we will use
the essential parameter graph. When tracking the chang-
ing abundance of a gene product, we will compute the
parameter graph with essential and inessential parameter
nodes for that gene, and only essential parameter nodes
for all other genes.

Results

One of the key questions in the EMT process is under-
standing the diversity of the intermediate steady states
between the epithelial and mesenchymal phenotypes and
how these states are activated and deactivated during the
EMT and MET transitions [17]. These states may repre-
sent partial phenotypes that could be experimentally char-
acterized and then perhaps pharmacologically controlled.
Previous modeling work using differential equations mod-
els considered one or two parameters at a time and found
up to two intermediate steady states. In the following
analysis, we characterize the number and location of inter-
mediate E/M states as found by DSGRN using the network
in Fig. 2b. Our method is somewhat analogous to a one-
parameter bifurcation analysis, but the difference is that
the remaining parameters are allowed to vary across all of
parameter space, rather than being fixed.

We choose to concentrate on four key variables: TGEp,
Ovol2, Snaill, and Zebl. TGFp is a well-known inducer
of EMT [12, 17, 19] and recent work has shown that
over-expression of Ovol2 restricts EMT and drives MET
[11, 34]. In [34] the authors performed bifurcation anal-
ysis to explore the response of the miR200/Zeb1/Ovol2
circuit to different levels of Snaill. They have shown that
as Snaill increases EMT is induced. Furthermore, during
MET, when Snaill levels are decreased, mesenchymal cells
initially undergo a partial MET to attain an intermediate
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E/M phenotype and after a further decrease in Snaill,
MET is completed.

We compute four DSRGN databases. In the first, we
allow the Ovol2 factor parameter graph to include both
essential and inessential nodes, while all the other fac-
tor parameter graphs corresponding to the other genes
are essential. We call this the Ovol2-general parameter
graph. We then compute the Snaill-, TGFS- and Zebl-
general parameter graphs as well. Clearly, the intersection
between all four of these parameter graphs is the essential
parameter graph.

The Ovol2 parameter factor graph is shown in Fig. 2d,
and the extreme points A1 and B1 correspond to Ovol2
at its lowest level. In other words, A1 and Bl repre-
sent parameter regions in which Ovol2 is always below
all thresholds at which it actuates its downstream genes.
Likewise, the points A6 and B6 represent parameter
regions where Ovol2 is at its highest level, and above
all thresholds for the actuation of downstream targets.
The parameter nodes in between these extremes represent
a gradual increase in Ovol2 expression levels as mea-
sured by the number of downstream genes it actuates. To
facilitate graphing dynamical properties as functions of
increasing abundance of Ovol2, we compress the structure
of the factor graph (Fig. 2d) into five layers denoted by the
numbers on the horizontal axis representing qualitative
Ovol2 expression levels. As the layer number increases by
one, the Ovol2 expression level is able to actuate more of
its downstream genes. The layers of the factor parameter
graphs for other genes are also compressed in this way.
The complexity of the factor parameter graph and thus the
number of its layers depends on the number of inputs and
outputs of the node; more complex nodes have more com-
plex factor parameter graphs. We will report prevalence of
different dynamical features for each layer.

We tabulate where different types of FPs occur in
parameter space. For every parameter in the Ovol2-
general parameter graph, the projection of that parameter
onto the Ovol2 factor graph in Fig. 2d occurs in one of
the five layers. For each layer in the Ovol2-general param-
eter, we count how many times a given type of FP occurs.
That is a measure of the prevalence of that FP within the
parameter graph as a function of increasing Ovol2.

In addition to the location in a layer of the Ovol2 fac-
tor parameter graph, every FP has a location in phase
space. The location in phase space is encoded in the
6-dimensional vector of integers that places the FP in the
discrete grid given by the thresholds of the system. See
Fig. 1a-c for a 2D example, and Fig. 1d for the discrete grid
for the EMT network in TGFS, Ovol2, and Snaill, and see
“Methods” section for more mathematical detail.

Because the expression of the mesenchymal marker
Vimentin and the epithelial marker Ecad are fully deter-
mined by the expression of Ovol2, Snaill and Zebl, the
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degree to which an FP state is mesenchymal vs. epithelial
is determined by the projection of the 6-dimensional vec-
tor onto these three variables. In this projection (Fig. 1d)
the extreme points on the opposing ends of a diagonal
represent the E state (0,0, %, %, *,2) (dark blue) and M
state (3, 3, x, *, x,0) (orange). Furthermore, the Hamming
distances from these extremes characterize the degree to
which any of the intermediate states resemble mesenchy-
mal vs. epithelial states. We depict the Hamming distance
one diagonal away from the epithelial state in light blue,
distance two in violet, distance 3 in light orange, etc. We
will report the number of FPs in each phase space diagonal
to show the distribution of various types of intermediate
steady states across this projection of phase space.

Our first result justifies our restricted definition of the
epithelial state given in “Modeling framework” section. In
all our queries for all essential nodes in Snaill-general,
TGEFB-general, and Zebl-general cases, any state of the
form (3,3,%%**) is actually a state with last component
(Ovol2) equal to zero (3,3,%**,0). In addition, every state
of the form (0,0,%***) is actually of the form (0,0,***2).
So in these cases by requiring that in the epithelial state
Ovol2 expression is high we did not lose any epithelial
states.

Our second set of results concerns the types of attrac-
tors that the EMT network can exhibit, the frequency with
which we observe the E and M states, and how often the E
and M states are monostable. An attractor is monostable
if it is the only stable node in the Morse graph. Multista-
bility of attracting states means that multiple stable Morse
nodes are present in the Morse graph (see e.g. Fig. 2c). We
observe that in all parameter nodes there are only fixed
point attractors. As illustrated in Fig. 2c¢ there are Morse
nodes with signature XC, which correspond to closed
state transition paths along which several gene product
abundances oscillate. However, these are always unstable
in the model and so likely not experimentally observable,
or observable only as transients. Therefore the EMT net-
work structure robustly exhibits stable steady states FP
despite the complicated feedback interactions, and oscil-
lations play a role only as parts of the boundary between
basins of attraction of different FPs.

Interestingly, all 21 million nodes in the essential param-
eter graph exhibit only multistability and never monosta-
bility. Furthermore, every one of the essential parameters
has both E and M states as stable steady states, indicat-
ing that the epithelial and mesenchymal states are highly
prevalent across parameter space. When we start examin-
ing inessential parameter nodes, we do see monostability,
although most parameters still exhibit multistability. The
appearance of monostability only at the inessential nodes
indicates that our EMT network model is subject to con-
trol via low or high levels of particular gene products,
consistent with experimental results [11, 12, 20, 34].
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We now describe monostability vs multistability of FPs
over the phase space as a function of parameters. In Fig. 3
we present results for the TGFS-general parameter graph,
in Fig. 4 results for the Ovol2-general parameter factor
graph, in Fig. 5 results for Snaill-general parameter graph,
and in Fig. 6 results for Zebl-general parameter graph.
In each figure we present a frequency of particular FP
states (vertical axis) as a function of layers of the factor
parameter graph.

The factor graphs for TGFS, Snaill and Zebl are dif-
ferent than the one for Ovol2 in Fig. 2d. TGFB has two
in-edges and one out-edge, Snaill has two in-edges and
three out-edges, and Zebl has three in-edges and three
out-edges, as shown in Fig. 2b, unlike the one in-edge, two
out-edge topology of Ovol2. The factor graph of TGFg is
isomorphic to the A1-A6 half of the Ovol2 factor graph in
Fig. 2d, and so has five layers like Ovol2. Snaill has a far
more complex factor graph with 300 nodes and 13 layers.
Zebl factor graph has 4242 nodes in 25 layers.

Figures 3, 4,5 and 6 show the overall distributions of
the E, M and intermediate E/M states. Before we go into
the details, we point out that the results we will discuss
shortly are in broad agreement with previous theoretical
and experimental results [11, 12, 19, 21, 34]. In particular,
over-expression of Ovol2 restricts EMT and drives MET,
knockdown of Ovol2 may lead to EMT, an increase in the
expression level of TGFB may drive EMT, and an increase
(decrease) in the expression level of Snaill and Zebl can
potentially drive EMT (MET).

In part (A) of each figure we present the frequencies of
monostable E and M states. At those parameters exhibit-
ing monostability, no other phenotypic state is achievable.
These states are more prevalent at the extremes of the
parameter space: the monostable E state occupies 25% of
low levels of TGFp (Fig. 3a) and 33% of the high expres-
sion levels of Ovol2 (Fig. 4a). Interestingly, for TGES all
the monostable E states are at the lowest value, while
Ovol2 experiences a sharp drop-off in number of monos-
table E states at the third layer. The situation is more
interesting for Snaill and Zebl. The E state dominates at
low levels of Snaill but the frequency of the monostable
E state only gradually decreases as Snaill levels increase.
We remark that this may partially be an artifact of the
larger number of factor graph layers in Snaill and Zebl..
However, it is also notable that >50% parameters exhibit
monostable E at the lowest levels of Snaill. Therefore, the
monostable E state does seem to be substantially more
prevalent in the Snaill-general parameter graph. Situation
is similar for Zeb1. The E state dominates at low levels of
Zebl where 62% parameters exhibit monostable E at the
lowest levels of Zeb1. The frequency of the monostable E
state only gradually decreases as Zeb1 levels increase. The
M state dominates at the opposite values of these three
variables, with the identical frequencies.
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Fig. 3 Epithelial and mesenchymal states as a function of level of
TGFB. The horizontal axis is the five layers in the factor parameter
graph for TGF 8, which is isomorphic to half of the factor parameter
graph for Ovol2 in Fig. 2d. a: Proportions of parameter nodes with
monostable E (dark blue) or M (orange) states. b: Proportions of
parameter nodes with the occurrence of E or M in each layer of the
TGF B factor parameter graph. ¢: Proportions of parameter nodes with
monostable FP in color coded layers of the 3D projection of the
phase space in Fig. 1d. d: Proportions of parameter nodes that exhibit
an FP, not necessarily monostable, in color coded layers of the 3D
projection of the phase space in Fig. 1d
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Fig. 4 Epithelial and mesenchymal states as a function of level of
Ovol2. The horizontal axis is the five layers in the factor parameter
graph for Ovol2, see Fig. 2d. a: Proportions of parameter nodes with
monostable E (dark blue) or M (orange) states. b: Proportions of
parameter nodes with the occurrence of E or M in each layer of the
Ovol2 factor parameter graph. ¢: Proportions of parameter nodes with
monostable FP in color coded layers of the 3D projection of the
phase space in Fig. 1d. d: Proportions of parameter nodes that exhibit
an FP, not necessarily monostable, in color coded layers of the 3D
projection of the phase space in Fig. 1d
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Fig. 5 Epithelial and mesenchymal states as a function of level of
Snaill. The horizontal axis is the 13 layers in the factor parameter graph
for Snail1. a: Proportions of parameter nodes with monostable E (dark
blue) or M (orange) states in each layer of the factor parameter graph
on Snaill. b: Proportions of parameter nodes with the occurrence of £
or M in each layer of the Snail1 factor parameter graph. ¢: Proportions
of parameter nodes with monostable FP in color coded layers of the
3D projection of the phase space in Fig. 1d. d: Proportions of
parameter nodes that exhibit an FP, not necessarily monostable, in
color coded layers of the 3D projection of the phase space in Fig. 1d
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Fig. 6 Epithelial and mesenchymal states as a function of level of
Zeb1. The horizontal axis is the 25 layers in the factor parameter graph
for Zeb1. a: Proportions of parameter nodes with monostable E (dark
blue) or M (orange) states in each layer of the factor parameter graph
on Zeb1. b: Proportions of parameter nodes with the occurrence of E
or M in each layer of the Zeb1 factor parameter graph. ¢: Proportions
of parameter nodes with monostable FP in color coded layers of the
3D projection of the phase space in Fig. 1d. d: Proportions of
parameter nodes that exhibit an FP, not necessarily monostable, in
color coded layers of the 3D projection of the phase space in Fig. 1d
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In each Figure panel (B) extends the analysis in panel
(A) by including not only monostable E and M states, but
all E and M states that occur in the system. The differ-
ence between panels (A) and (B) describes those E and M
states that are parts of multistable configurations of steady
states FP. In all three projections the middle layers include
a significant proportion of states E and M participating in
multistable configurations.

It is remarkable that both E and M states are present in
all parameter nodes in the middle three layers of the TGFS
projection in Fig. 3b. This indicates that if a system starts
in the epithelial state at low expression of TGFg (layer 1)
and then TGEF is raised to second to highest value (layer
4), the system will stay in the epithelial state. Even more
remarkably, if TGFS is raised to its highest value (layer 5)
there are still 20% of parameter nodes where the E state
exists. This can be interpreted to mean that 20% of the
cell lines do not convert to the mesenchymal state even
under very high TGEB levels, unless there is a secondary
external perturbation not modeled by this network. Fur-
thermore, out of the remaining 80% of the parameter
nodes, only 25% are in the monostable mesenchymal state,
which guarantees the completion of EMT. In the remain-
ing 55% of the parameter nodes, the model indicates that
even under a high level of TGFS some cells lines may
not complete the full transition to the mesenchymal state.
This may explain the diversity of outcomes of EMT under
induction across cells lines and across individuals.

An increase in Snaill also induces EMT, but the epithe-
lial state does not continue across all layers. Increasing
Snaill to layer 11 will perturb the system away from the
epithelial state. However, since the mesenchymal state is
monostable only in about 30% of layer 11, 70% of the
parameter nodes have the potential to go to one of the
intermediate E/M states upon leaving the epithelial state.
Even at the highest values of Snaill, just above 50% of
parameter nodes lead to the monostable M state; for other
parameters, the system may not be in the M state at a
very high level of Snaill. Similarly, an increase in Zebl
induces EMT and increasing Zebl1 to layer 23 will perturb
the system away from the epithelial state; at the high-
est levels of Zebl, at 48% the system may not be in M
state.

Similarly, induction of MET by increasing concentration
of Ovol2 is guaranteed to transition out of the mesenchy-
mal state, since there is no mesenchymal state in layers 4
and 5 in Fig. 4b. The state the system transitions to is guar-
anteed to be the epithelial state in 33% of parameter nodes,
since 33% of parameter nodes are monostable E states in
Fig. 4a. In other cases the final state of the MET induction
can be one of the intermediate states, represented in layer
5 of Fig. 4d, most of which are in domains that are close
(in Hamming distance) to E. This is compatible with the
results of Hong [11], who experimentally observed that
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the mesenchymal state is “lost” before the epithelial state
is reached under Ovol2 expression.

To understand the distribution of intermediate FPs in
the three dimensional projection depicted in Fig. 1d we
present panels (C) and (D) in Figs. 3, 4, 5 and 6. The
colored frequency bars in panels (C) and (D) refer to the
number of parameters with an FP that lies within the
associated diagonal in Fig. 1d. In panel (C) we show pro-
portions of parameters with monostable FPs including the
E/M intermediate states in each layer, and in panel (D)
all FPs in these layers, including E/M intermediate pheno-
types in multistable configurations. While the monostable
intermediate states concentrate in the middle layers, what
is remarkable is that in a significant percentage of param-
eter nodes there are intermediate states at the extreme
values of all three gene products. This is especially signif-
icant in Ovol2. This shows that based on the parameters
of the system, the induction of an epithelial state may
not end in a mesenchymal state, but in one of the many
intermediate states. Note that in all extremal parameter
regimes each intermediate state is in a multistable regime
where one of the other steady states is either an M state
or an E state, since these occur in 100% of the extremal
parameters. These observations may explain the diver-
sity of outcomes of EMT under induction across cells and
across individuals. Moreover, the wide distribution of the
intermediate states in various phase space diagonals and
the gradual disappearance of the parameter nodes with E
or M state in extremal layers confirm the possibility that
EMT and MET produce cells residing within a spectrum
of intermediate phenotypic states, where cells advance to
differing extents through these programs, progressively
acquiring the new phenotypic features as they shed the
features of their original state, as stated in [17].

We offer a general picture of the multistability in the
EMT network by presenting a summary of the number
of fixed points FP in a Morse graph as a function of
the layers in the factor parameter graphs. In Fig. 7 we
show proportions of parameters in different layers of the
parameter graphs of TGFS, Ovol2, Snaill and Zebl that
exhibit k-multistability (i.e. k stable fixed points). Two
main observations are that the multistability is not evenly
distributed in the parameter graph. The extreme values
of parameters are dominated by monostability and low k
multistability. For Ovol2 extreme values there are at most
five stable FP steady states, for Snaill and Zebl extreme
values there are at most three stable FP states, but for
TGEpB there is also 6-multistability. The proportions of
the parameters for some of the higher-multistability cases
can be too small to be visually distinguished in Fig. 7. All
the highest k multistability is concentrated in the central
regions of the parameter graph. For essential parameter
nodes, which lie in the intersection of all three presented
data sets, the maximal number of coexisting stable FP
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steady states is seven. Since these always include both E
and M states, for the essential nodes there are at most
five intermediate FP states (intermediate phenotypes).
However, if we allow the parameter nodes for Ovol2 or
TGEB to be inessential, we find eight coexisting FP steady

states, where for the Ovol2-general parameter graph, only
one of the E and M states has to occur among the eight
stable coexisting FP states. Hence there are seven interme-
diate stable steady states FP in Ovol2-general graph that
can coexist. In the TGF8-general parameter graph, both E
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and M states are always among the eight, hence there are
at most six intermediate stable FP states.

Finally, we asked if an FP can occupy any state in six
dimensional phase space. That is, given any possible col-
lection of six integers denoting the level of each gene
product, is there some parameter where that state is a
fixed point? There are 576 possible domains in the phase
space and therefore 576 possible six dimensional FP anno-
tations. Out of these 576 domains, the FPs generated by
Ovol2-general parameter graph occur in 238 (41.3%), FPs
generated by the Snaill-general parameter graph occur in
162 (28.1%) and FPs generated by TGFS-general parame-
ter graph occur in 124 (21.1%). Therefore only a minority
of the domains admit an FP.

Discussion

Mathematical models based on ODEs face significant
challenges when modeling complex networks. The selec-
tion of nonlinearities is not based on first principles,
parameters are largely unknown, and initial conditions are
mostly not measurable. Given that the simplified EMT
network has six dimensional phase space and dozens of
parameters, making inferences about the model dynam-
ics from network structure by sampling parameters and
sampling initial data leads to clear challenges of inter-
pretability and generality of the results.

In this paper we present an alternative analysis of the
complex EMT network, which is based on a different
approach to dynamical systems. In dynamical systems, the
first major transition from an emphasis on finding indi-
vidual solutions to seeking understanding of invariant sets
and long-term dynamics took place more than 100 years
ago and was initiated by Poincaré. However, in the 100
years since then we have learned that the invariant sets do
not behave robustly with respect to parameters [35, 36].
To address the lack of robustness of invariant sets with
respect to parameters, another change in perspective is
needed. Initiated by C. Conley [37] and developed over the
last 40 years [38—41] the emphasis shifts from invariant
sets to positively attracting sets.

This theory has found a computable implementation in
DSGRN (Dynamic Signatures of Gene Regulatory Net-
works) [26, 28—31] which enables computation of lattices
of attracting sets and Morse graphs across all parame-
ters for a given regulatory network. This approach has
been applied [27] to the E2F-Rb signaling network that
controls the G1/S transition in mammalian cell cycle. We
are not aware of any other approach, apart from sam-
pling parameter space [24] and simulation, to understand
how a complex system behaves with respect to (dozens of)
parameters.

This approach allows a global view of the dynamics. We
investigate monostability and multistability and find that
monostability dominates at the low and high expression
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levels of Ovol2, Snaill and TGFB. In the middle val-
ues we see the presence of k-multistability with k < 8.
Multistability with smaller k is present even at the extreme
values of the expression levels. This can be interpreted as
an indication that the effect of the induction of the EMT
(or MET) may not be the target E or M state, but some of
the intermediate states.

In our approach, the phase space is divided into a
fixed number of domains based on thresholds of activa-
tion/deactivation of different genes. Attractors in the state
transition graph that consist of a single domain are inter-
preted as stable states of the system and are assigned a
signature that identifies the domain. Therefore by design
there are only a finite number of types of steady states
that the system may have. We identify two such sig-
natures FP(3,3,%**0) and FP(0,0,**%2) as mesenchymal
and an epithelial states, respectively, since they represent
the appropriate mixture of highest and lowest expression
levels of Zebl, Snaill and Ovol2. This rigidity has the
advantage of a clear definition of what E and M states
are; however, it is not immediately clear if this is a valid
biomedical interpretation. For instance, it may be that the
states having slightly smaller expression levels of either
Snaill or Zeb1 FP(3,2,***,0) and FP(2,3, *,*,*,0) also repre-
sent epithelial states. The same comment applies to inter-
mediate states. The fact that we found parameter nodes
with six intermediate stable states in addition to E and M
states is an indication of richness of the EMT dynamics,
but it is not clear if there indeed are six clinically distinct
intermediate E/M states.

Each DSGRN state transition graph can be related to
the limit of a Hill function model at a particular set of
parameters as the Hill coefficient grows without bound.
Each DSGRN parameter node describes a set of inequal-
ities which generate a particular state transition graph.
Therefore each parameter node that exhibits dynamics of
interest can be translated to a set of Hill function models
whose parameters satisfy the same inequalities and differ
only by a choice of the Hill coefficient.

This correspondence can be used to focus attention
on particular parts of the parameter graph. For instance
[20] has shown the central role of the bistable modules
miR200-Zebl and miR34a-Snaill in the EMT transition.
They found that the first is tristable, while the second is
monostable. In the DSGRN approach, this corresponds to
a subset of parameter nodes in parameter factor graphs
for miR200, Zeb1, miR34a, and Snaill. With these param-
eter nodes fixed, one can then investigate how a choice
of parameter node in parameter factor graphs for Ovol2,
TGEp affects the number and type of steady states, as well
as the sequencing of transitions between E and M states [19].

Our approach opens up possibilities for studying impor-
tant questions about how multistability in the EMT net-
work affects the diversity of outcomes after induction.
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Multistability is always accompanied by hysteresis and
thus potential lack of reversibility of the partial induction.
Furthermore, the difference in network parameters at the
start of the induction may result in a different sequence of
intermediate states during the process of induction as well
as a different final state. The same is true for partial induc-
tions; the initial network parameters will determine how
much of partial induction is fully reversible, and what the
final state is.

Conclusions

We present an alternative analysis of the complex EMT
network, which is based on an approach that allows a
coarse representation of the dynamics across the entire
range of parameters. This global view of the dynamics
indicates that multistability is highly prevalent in the EMT
network. Multistability, when accompanied by a complex
web of hysteresis relationships, can lead to a greatly vari-
able final state of the system under variable sequences of
increases and decreases of induction signals. This suggests
that the cellular state subject to a partial induction of EMT
transition, or repeated increase and decrease of the induc-
tion signals, may transition to states which may sensitively
depend on the initial state, amount, and duration of the
periods of increases and decreases of induction signals.
These states, in turn, may lead to highly variable clinical
outcomes.

Methods
In this section we describe our mathematical model and
the basic concepts of DSGRN, which allows a finite
description of the network dynamics across phase space
and parameter space. The details can be found in [26, 27].
A regulatory network RN is a finite directed graph with
edges annotated by j — i orj - i, representing node i acti-
vated or repressed by node j, respectively. There is at most
one edge from one node to another. Let # be the number
of nodes in a regulatory network throughout this section.

Switching system

In this work we use a particular differential equation
model for network dynamics, called a switching system,
introduced by Glass and Kaufmann [32, 33]:

i=1,...,n,

()

where x; represents the concentration of node i, y; denotes
the rate of degradation of x;, and each instantiation of o=
is either o or o, representing either up- or down- regu-
lation of x; by x;, , respectively. The number g = g(i) is the
number of input edges in RN to node i.

To each edge j — i orj - iin a regulatory network,
DSGRN assigns three parameters Lj, U and 6, with

& = =yt Ao (), 05 (67,)),
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0 < Lj < Uj; representing low and high levels of growth
of x; that are determined by the value of x; relative to
the threshold 6;; > 0. The collection of decay parameters
Yi» i =1,...,n,and triples (Uj, L, ), one for each edge
j — iorj - i forms a parameter space for the network.

The piecewise constant functions o= are written
o (%)) = Ly %ij > Oy , o (%) = Ly .iij > O;
Y Lij lij < 9,’/ Y Uij lij < Qij-

The function A; in (2) is a multi-linear function describ-

ing how the values U;F are combined. Based on biological

considerations we assume that A; = HZU;E(X/) is a
product of sums, where each subscript (ij) occurs at most
once (see [26] for more detail). The collection of functions
Aj, i = 1,...,n must be specified along with the struc-
ture of the network. For a node i with g incoming edges,
the domain of A; is a set of 299 input sequences:

A= (e, - o) 2oy € {Lyg, Uy 1, 1 < k < q()}.
The switching system that we use to model EMT is
&= —Ve€ + 05 (0004, (12)

§ = —¥ss + 0 ()05, (1)

&= 722+ 0 ()0, (M2) 0 (0)
0=—Y0+0,,2
my = —yYmm + 0, ,(2)0,, (s)
12 = — Y3 + Oy (D)0 (5),

where variables g (=[TGFp]), s (=[Snaill]), z (=[Zebl]), o
(=[Ovol2]), m; (=[miR34a]) and my (=[miR200]) repre-
sent the indicated concentrations.

Remarks 1 Note that a; (x) can be viewed as a limit of

Hill functions f," (x) = Lj + %
i

aij_ (%) is a limit of Hill functions f,” (x) = Lij + (U — Ly)

asn — oo, and

ﬁ as n — oo. This observation allows a transla-
ij

tion between DSGRN model and Hill type model, with the

exception of Hill coefficient n.

Phase space and the state transition graph

The thresholds {#;;} decompose the phase space [0, 00)”"
into finitely many n-dimensional cells . In order to avoid
degenerate cells, we assume that for all j # &,

jS#eki,iZL...,l’l.

Let S; := {0,...,pi} be the set of integers indexing the
set of p; outgoing edges and hence the set of thresholds
of variable x;. We label any cell ¥ by an integer vector s =
(S15...584),8; € S;, where s; is the number of thresholds
0j; below the x; component of arbitrary x; € . We call s a
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state of the vertex i. Then the state transition graph (STG)
has the set of vertices

n
S = HSL»,
i=1

which is the set of labels of all cells .

Now assume that the parameters of (2) are fixed. Note
that each A; is constant for x € «, and so is A(k) :=
(A1(Kk), ..., Au(k)). If A(k) is a constant then straight-
forward inspection of (2) shows that the solutions of (2)
in « will cross each of the » — 1 dimensional boundaries
of k either in one or the other direction given a generic
assumption

0 # —yifii + Ai(k)  foralli, j, «,
explained further in Remark 2. We now describe the con-
struction of the state transition graph that reflects the
dynamics of (2).

Consider cells «, k/, with state labels s, s’, that share an
(n — 1)-dimensional face g in the x; direction, and whose
x;-coordinate value is 6j;. Then the edge is pointing from s
to s’ if
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e the x;-coordinate values of the points in « are below
jS and —)/1'91‘1‘ + Aj(k) > 0; or

e the x;-coordinate values of points in « are above 6;;
and —y;0;; + Ai(x) < 0.

Remarks 2 To achieve consistency in these rules so that
for every pair of neighboring cells «,«’ there is an edge
eithers — s/, or s’ — s we assume that

A regulatory network does not admit negative self-
regulation.

It is easy to see that the inconsistency can only happen
if the value of Aij(k) > Ai(k’) for x; < y; forx € k,y €
k', This can only happen when node i negatively regulates
itself.

If there is k _for which all edges from its neighboring cells
are incoming, we assign a self-edge to its state s.

Parameter graph

The parameter space of our system is the collection of
degradation rates y;, i = 1,...,n, and triples (Uj;, Ly, 0;),
one for each edge fromj to i withi,j = 1, ..., n. Recall that
pi is the number of downstream genes of node i in the net-
work. We denote by o; a particular ordering of actuation

(A)

FP(1,0)

FP(1,0)

FP(1,1)

Y1021 < L12 < Ur2
L21Uz1 < 72012

Y1021 < L12 < U2
Lo1 < 2012 < Uxn

Y1021 < La1 < Uiz
v2012 < Lo1 < Uz:

FP(1,0)

FP(0,1)

FP(1,0)

FP(0,1)

L2 < 71021 < Uso
Lo < Uz < y2012

L1z < 11021 < Usz
Lot < v2012 < Uz

L1z < 1021 < Uiz
Y2012 < L2y < Uy

FP(0,0)

FP(0,1)

FP(0,1)

L1z < Uiz < 71621
Loy < Uz < 2612

Ly < Uiz < 71621
Loy < 2012 < Ua:

L2 < Uz < 71621
Y2612 < Loy < Uy

(B)

Fig. 8 Parameter graph for toggle switch. a Toggle switch network. b Parameter graph for the toggle switch has 9 parameter nodes. Each
parameter node correspond to a domain in the parameter space given by the inequalities listed in the node. Morse graph description is above the
line in each node. FP (a,b) denotes a stable fixed point in the domain (a,b), where a, b are integers. The node exhibiting bistability is in the center
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thresholds 0;,; < -+ < 6j,,i for the p; out-edges of node i,
and collect o; for all nodes i = 1, ..., n of the network as

O :=(01,02,...,0;).

A nonempty region defined by a particular set O of
orderings of actuation thresholds and a particular instan-
tiations of the inequalities

0 < —yili + Ai(k) or0 > —y;0;,; + Ai(x),

one choice for every combination of k = 1,...
i=1,...,n andk

is a parameter region. A;(x) is defined in “Switching
system” section. Each set of inequalities unambiguously
determines the vector field (2) in each domain « [26]. The
collection of all parameter regions decomposes parame-
ter space into a collection of open domains whose closure
covers the parameter space.

In Fig. 8b, we show the parameter graph for the tog-
gle switch network in Fig. 8a. There is one threshold for
each of the two variables in phase space, which is divided
to four domains. Therefore, the state transition graph has
four nodes. The combinations of switching functions A;
can each take two values: A1 € {Lip, Uiz} and Ay €
{L21, U21}. The parameter graph for the toggle switch has 9
parameter nodes. Each parameter node corresponds to a
region in parameter space given by the inequalities listed
in the node. The Morse graph description is above the line
in each node. FP(a,b) denotes a stable fixed point in the
domain (a,b), where a, b are integers. The node exhibiting
bistability is in the center.

The parameter graph is a graph where each vertex,
which is called a parameter node, corresponds to a
nonempty parameter region, and there is an edge between
two parameter nodes if and only if the corresponding
regions share a co-dimension one boundary. This means
that the defining set of inequalities differ in a sign of
exactly one inequality. This graph captures all the different
patterns of actuation that are compatible with the network
structure. Details about how to construct a parameter
graph can be found in [26].

,pi and
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