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Abstract

Background: Omics-profiling is a collection of increasingly prominent approaches that result in large-scale biological
datasets, for instance capturing an organism’s behavior and response in an environment. It can be daunting to manually
analyze and interpret such large datasets without some programming experience. Additionally, with increasing amounts
of data; management, storage and sharing challenges arise.

Results: Here, we present ShinyOmics, a web-based application that allows rapid collaborative exploration of omics-data.
By using Tn-Seq, RNA-Seq, microarray and proteomics datasets from two human pathogens, we exemplify several
conclusions that can be drawn from a rich dataset. We identify a protease and several chaperone proteins upregulated
under aminoglycoside stress, show that antibiotics with the same mechanism of action trigger similar transcriptomic
responses, point out the dissimilarity in different omics-profiles, and overlay the transcriptional response on a metabolic
network.

Conclusions: ShinyOmics is easy to set up and customize, and can utilize user supplied metadata. It offers several
visualization and comparison options that are designed to assist in novel hypothesis generation, as well as data
management, online sharing and exploration. Moreover, ShinyOmics can be used as an interactive supplement
accompanying research articles or presentations.
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Background
Omics-profiling is becoming increasingly prevalent in
many subfields in biology. For example, genome-wide
transcriptomics have been used in studies of gene ex-
pression during embryonic stem cell differentiation,
host-pathogen interactions, identification of biomarkers
associated with antibiotic resistance and cancer disease
progression [1–8]. Similarly, proteomic screens can iden-
tify proteins relevant for virulence, or cancer biomarkers
[9–12]. Furthermore, phenotypic profiling using trans-
poson insertion sequencing (Tn-Seq) in human patho-
gens has identified genes involved in colonization,
infection, and intrinsic antibiotic resistance; and has
been used in genetic interaction mapping [13–18].
Since genome-wide multi-omic profiling is paving the

way to such varied and clinically relevant applications,
considerable effort has gone into establishing analysis
pipelines that process the resulting data. Tools such as

DESeq2 [19] and MAGenTA [20] are used for statistical
analysis of differential gene expression and fitness
changes respectively. However, the volume of the ana-
lyzed data can make interpretation and comprehensive
evaluation non-trivial. Moreover, these tools often do
not accommodate easy incorporation of metadata per-
taining to genes and/or experimental conditions. This
makes it time consuming and labor intensive to apply
custom analysis protocols on each dataset, especially if
the user has limited programming experience.
Existing tools for user-friendly data exploration and

visualization include Stemformatics [21], Metascape
[22], and mixOmics [23]. Stemformatics is an online
portal that assembles gene expression data from stem
cell datasets. While it provides an interactive visual
interface, Stemformatics is tailored for stem cell research,
and hosts a specific and focused dataset that does not ex-
pand to fields other than stem cell research. Metascape
does allow users to supply their own datasets (often in the
form of a gene list extracted from differential expression
or other omics profiling data), and can merge information
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from public databases as well as perform functional en-
richment and network analyses. The heavy dependence on
well-curated annotation and information on public data-
bases can be a limitation for researchers working with less
well-characterized organisms, where these annotations
may not be readily available; or available to the user but
not yet made public. Moreover, even though the user can
provide gene lists extracted from different omics screens,
these analyses are performed independently. mixOmics is
an R package that allows the user to interact with and
analyze their own (potentially unpublished) data with less
reliance on public databases, and consider multi-omics
data simultaneously. It provides multiple pipelines focused
on dimensionality reduction and feature selection, which
can be extremely valuable in determining what signatures
are associated with for instance disease outcome. How-
ever, if a researcher’s interests are more specific, e.g. ask-
ing what expression changes are observed for a specific set
of genes, a more customizable platform may be better
suited.
To complement existing tools, we present ShinyOmics,

a browser-based interface that allows for customizable
visualizations of genome-wide profiling data, incorporat-
ing user-supplied metadata from genes and experimental
conditions, and network connectedness of genes. It is
straightforward to swap out the existing datasets loaded
in ShinyOmics with user-generated custom data; e.g.
standard output from DESeq2 can directly be incorpo-
rated. This feature of ShinyOmics also facilitates data
management and sharing; for example, a lab can host a
fully interactive instance of ShinyOmics with their own
data making it accessible to collaborators across the
world through a URL. This creates a convenient alterna-
tive over transferring and describing a large number of
spreadsheets and data files between labs. Moreover,
ShinyOmics can be deployed with new data obtained in
a research project, as an interactive supplement that can
be included in a manuscript submission, or academic
presentation.

Implementation
ShinyOmics was developed in R version 3.4.3 [24], using
RStudio version 1.1.419 [25]. Running the app locally re-
quires the packages ggplot2 [26] (v3.1.0), visNetwork
[27] (v2.0.5), RColorBrewer [28] (v.1.1), igraph [29]
(v1.2.2), heatmaply [30] (v.0.16.0), shinyHeatmaply [31]
(v.0.1.0) and shiny [32] (v1.2.0).
An example of the app with data from [33–35] is avail-

able at [36]. The source code for the app and detailed
usage notes can be accessed from [37]. Detailed usage
notes are also provided in the aforementioned link.
There are three types of custom data that can be

added; genome-wide profiling data, strain metadata, and
network data. The main reference file for the app is

“exptsheet.csv” under the “data” subdirectory. Any added
experiment needs to be recorded in this file, with the
corresponding profiling and metadata file locations spe-
cified. At minimum exptsheet.csv should have columns
“Experiment”, “Time”, “Name”, “DataFile”, “Strain”, and
“MetadataFile”. There can be as many additional col-
umns as desired to record metadata of the experiments.
For profiling data files, the standard output of DESeq2
can be directly transferred to the “data” directory. Alter-
natively, a file with at least the columns “Gene”, “Value”
(e.g. log2 fold change of expression), and “padj” can be
provided. While the data source can be any organism or
strain, eukaryotic datasets with tens of thousands of
genes are likely to cause significant lag in the application
loading. We therefore recommend, in the case of
eukaryotic data, filtering the dataset (based on the num-
ber and quality of reads, or variability among replicates)
and working with only a subset of a few thousand genes
at most. There needs to be one metadata file per strain,
and the minimum requirement for each metadata file is
one column labeled “Gene”. Each metadata file can have
as many columns as desired, all selectors on the app will
adjust accordingly. Finally, the networks should be speci-
fied as edge tables, with two columns: “source” and “tar-
get”, and be named “[Name]_Edges.csv” in the “data/
networks/” subdirectory. The network statistics will be
computed automatically.
When the app is first loaded in the browser, all data/

metadata files and the experiment sheet will be screened
and validated for the requirements mentioned above. If
the files provided do not fit these specifications, pop up
error messages will indicate what caused the validation
to fail, in which file(s), and the app will load with no
data.

Results
We provide a version of ShinyOmics pre-loaded with
multi-omic data from two human pathogens; Streptococ-
cus pneumoniae and Mycobacterium tuberculosis. The S.
pneumoniae dataset includes Tn-Seq and RNA-Seq data
from two strains (TIGR4 and 19F) that were exposed to
1x Minimum Inhibitory Concentration (MIC) of kana-
mycin (KAN), levofloxacin (LVX), rifampicin (RIF),
vancomycin (VNC) and penicillin (PEN) for 2–4 h [33].
Differential expression (DE) on the RNA-Seq data was
evaluated as the fold change in transcript abundance
comparing antibiotic conditions to a no-antibiotic
control using DESeq2 [19]. Fitness change (dW) on the
Tn-Seq data was evaluated comparing antibiotic to
no-antibiotic conditions as described in [17]. The M.
tuberculosis dataset includes microarray data [34] and
proteomics data [35] under hypoxic conditions over a
span of up to 20 days of culture in vitro. In its
current configuration there are four panels that allow
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for different types of visualization: Single Experiment,
Comparison of 2 Experiments, Comparison of All
Experiments, and Network Visualization.
In ShinyOmics the first panel is designed to explore rela-

tionships between a value associated with all genes (e.g. DE,
dW, protein abundance) and any other user supplied meta-
data (Fig. 1). The metadata variables and their descriptions
can be found in Additional file 1: Table S1. The user can in-
clude other genome-wide profile data (e.g. change in fitness,
dW) in the metadata fields, or as a separate experimental
data file. In the Single Experiment panel, DE is plotted
against the selected metadata type. For instance, in the pre-
loaded dataset, one can answer whether there are signifi-
cant DE changes appearing in a specific cellular function,
by selecting “Tag1” (primary functional tag of the gene)
from the dropdown menu labelled “Variable” (Fig. 1). The
resulting scatter plot has each gene as a point, with the cat-
egorical variable “Tag1” on the x-axis and DE on the y-axis.
The plot is faceted by timepoints, i.e. each timepoint in the
selected experiment is a separate panel. The user can select
which timepoints to display or hide using the checkboxes
on the right. There are several visualization tuning options,
such as changing the transparency of points, or in the
case of categorical x-axis variables, adding some noise

(or “jitter”) to the x-coordinate of each point (such that
individual points do not overlap) and/or superimposing
a violin plot. It is also possible to display only a subset
of genes by pasting a gene list in the text box (“Paste
gene list”), subsetting the genes by a metadata variable
(“Select genes by metadata variable”), or to select genes
directly from the plot by dragging a rectangle to define
a region of interest (or “brushing”) the plot. The
brushed genes will be displayed in the table below.
Clicking anywhere on the plot will reset the brushing.
In the example provided, it is possible to identify a set
of genetic information processing genes that are upreg-
ulated drastically when S. pneumoniae is exposed to
kanamycin (Fig. 1). Kanamycin, an aminoglycoside, is a
protein synthesis inhibitor that triggers the incorporation of
erroneous amino acids during protein synthesis, leading to
an accumulation of misfolded proteins [38]. In S. pneumo-
niae TIGR4, the Clp protease ATP-binding subunit (SP_
0338) is upregulated 256-fold (Fig. 1), indicating a response
by this organism to alleviate the antibiotic stress through
the destruction of misfolded proteins. This is accompanied
by the simultaneous upregulation of chaperones dnaK and
grpE (SP_0517 and SP_0516), whose function it is to repair
denatured and misfolded proteins [39].

Fig. 1 Single Experiment panel of ShinyOmics. The tabs above allow the user to navigate to different panels. On the left, there is an experiment
selector (where options are populated from the experiment sheet supplied by the user), a gene list selector (when empty, all genes are displayed), a
variable selector, and several visualization customization options. Here, the T4 kanamycin (“T4_KAN”) experiment is displayed as a scatterplot. Setting
the x-axis variable to “Tag1” splits genes by functional Tag. 4 genes are brushed at timepoint 240 (blue rectangle), whose identity and metadata are
displayed in the table (bottom)
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The Compare 2 Experiments panel allows for quick
pairwise comparisons of experiments (Fig. 2). Here, one
can plot the DE of one experiment against another, for
the timepoints that are in common in both experiments.
There is a selector for the color of the points (e.g. one
can color each gene by functional category, or any other
metadata feature). The plot is brushable, similar to the
Single Experiment panel. As an example, the DE of two
antibiotics are compared in Fig. 2. Vancomycin and
penicillin are both cell wall synthesis inhibitors, and the
transcriptomic changes in response to these antibiotics
appear highly correlated, especially in the later time-
points (Fig. 2). This global similarity in transcriptional
profiles is unique to the PEN-VNC pair, and is not ob-
served when comparing antibiotics of different classes.
In contrast, at 90-min a group of genes are brushed (SP_
0044-SP_0054, Fig. 2) belonging to the category “Nu-
cleotide metabolism” that turn out to be downregulated
across most of the tested antibiotics, including the RNA
synthesis inhibitor Rifampicin, and the DNA synthesis
inhibitor Levofloxacin. This set of genes are part of the
purine biosynthesis pathway, and their downregulation
might point to a common antibiotic response in S. pneu-
moniae TIGR4.
It is also possible to see whether different systems

under the same condition harbor similar responses using

the Compare 2 Experiments panel. Comparison of Tn-
Seq and RNA-Seq data from S. pneumoniae antibiotic
experiments and a comparison of microarray and prote-
omic data from M. tuberculosis shows a lack of similarity
in the responses in the different screens (Additional file 1:
Figure S1). This is in accordance with previous findings
that systems-level data are often quite distinct, and differ-
ent systems should not be taken as substitutes of one
another, but rather complementary parts of the organism
as a whole [18, 40].
To identify general patterns across many experimental

conditions, the Compare All Experiments panel can be
used (Fig. 3). On the left of this panel, a heatmap shows
all genes across all conditions, with optional dendro-
grams showing hierarchical clustering. The heatmap on
the bottom is interactive, and shows only a user-
specified set of genes, and conditions. On the right side
of the panel, principal component analysis (PCA) results
are visualized. The first scatter plot shows all experi-
ments on any combination of the top 10 principal com-
ponents. The user can select which components to plot,
and a metadata variable to color the points by (e.g. in
order to see whether the experiments are separated by
antibiotic, one can select “AB” as the color variable in
the pre-loaded dataset). For instance, Fig. 3 shows clear
separation of Rifampicin from the other 4 antibiotics.

Fig. 2 Comparison of 2 experiments. On the left are selectors for the two experiments to be compared, and a color variable. Here, DE from
vancomycin (VNC) and the penicillin (PEN) are being compared for T4. Blue box on the plot indicates a set of brushed points. The table below
the plot (cropped) displays all available information regarding the brushed points
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Rifampicin, being an RNA synthesis inhibitor, elicits the
most dramatic changes in expression out of the 5 antibi-
otics included. The last plot shows the percent variance
explained by each principal component. The informative
components will be those that explain more of the vari-
ance in the data. A common way of selecting important
components is to look for an ‘elbow’ in the last plot (i.e.
a relatively clear point on a line where the slope changes
drastically) and consider the components before the
elbow [41].
In order to evaluate whether genes with for instance

significant DE (DEGs) or dW are related to one another in
a network context, the last panel (Network) allows
visualization of a user supplied network of genes. Common
types of biologically meaningful networks include protein-
protein interaction [42], transcription regulatory [43] meta-
bolic [44] and genetic interaction [45] networks. Depending
on the organism, these networks can be manually curated,
inferred bioinformatically [46–48], or might already be

experimentally mapped out. The preloaded metabolic net-
works were generated by Jensen et al. [18]. It is also import-
ant to keep in mind what kind of network is being used, in
order to draw meaningful conclusions from the network
analysis. For example, all DEGs localizing on a certain part
of the transcription regulatory network may be a result of
the DEGs belonging to the same regulon. However, the
same phenomenon on a metabolic network may mean a
specific metabolic pathway is being activated, which would
imply a functional relationship between DEGs. The panel
allows the user to select the experiment, timepoint and net-
work, leading to DEGs marked on the network as red and
blue nodes for up- and down-regulation respectively. On
the example metabolic network of S. pneumoniae 19F (ini-
tially generated in [18]), the 120-min VNC response is over-
laid (Fig. 4). It is possible to pick out numerous groups of
interconnected genes that are up- or down-regulated to-
gether, although there are also examples of upregulated
genes being adjacent to downregulated or non-DE genes.

Fig. 3 Comparison of all experiments from the same strain. The heatmap shows DE of all experiments included in the experiment sheet for a
specific strain (T4: TIGR4). The dendrogram on the heatmap and the PCA (colored by antibiotic) shows that the RNA synthesis inhibitor rifampicin
(RIF) is most dissimilar to other antibiotics. AB: antibiotic. KAN: Kanamycin. LVX: Levofloxacin. VNC: Vancomycin. PEN: Penicillin
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On the left, the network itself will be visualized in an inter-
active plot that allows zooming, selecting and dragging of
nodes. On the right, a set of selectors allow for a custom
scatter plot to be made, relating network characteristics of
nodes (e.g. degree) to DE or any other metadata supplied
by the user. As an example, network degree is plotted
against sequence diameter (how variable the sequence is
across multiple strains of S. pneumoniae), and genes are
colored by whether or not they are essential in 19F (Fig. 4),
showing a lack of relationship between these variables.
Similar to scatter plots in the other panels, this plot is also
brushable, and brushed points are displayed in the table
below.

Conclusions
While genome-wide profiling can be incredibly valuable in
a variety of applications, initial exploratory analysis of
large datasets can be a daunting task. For instance, enu-
merating the DE of each gene with tools such as DESeq2
is a necessary but insufficient step in such analyses.
ShinyOmics is a simple platform for facilitating initial ex-
ploratory analysis of omic-profiling data and hypothesis

generating. The emphasis on relating genome-wide profil-
ing to custom, user supplied metadata enables the user to
make functional associations between any set of features
of genes. Moreover, ShinyOmics serves as a convenient
data management and sharing tool. Deploying an instance
of ShinyOmics with data from a new study results in an
interactive supplement for research articles or presenta-
tions. For example, a modified version of ShinyOmics ac-
companying a manuscript with the full antibiotic response
dataset from [33] can be found at [49].

Availability and requirements
Project name: ShinyOmics
Project home page: https://github.com/dsurujon/

ShinyOmics
Operating system: Platform independent
Programming language: R (v.3.4.3)
Other requirements: ggplot2 v.3.2.0, visNetwork

v.2.0.7, RColorBrewer v.1.1, igraph v.1.2.4, heatmaply
v.0.16.0, shinyHeatmaply v.0.1.0, shiny v.1.3.2
License: Affero GPLv3
Any restrictions to use by non-academics: None

Fig. 4 Network visualization of significant DE. The selectors on the upper left allow the user to select a network to display, and a specific
experiment and timepoint to overlay. Each gene is a node, and links are defined by the type of network used. The 19F Metabolic (“Metab19F”)
network has two genes linked, if their gene products participate in the same reaction, or subsequent reactions in the metabolism of 19F. In the
Vancomycin experiment shown (at 120 min), significantly up- and down-regulated genes appear as red and blue nodes respectively. The selectors
on the right help generate a scatter plot (lower right) that can relate network-related information (e.g. network degree) to metadata. In the
example plot, degree is plotted against sequence diameter i.e. variability of homologous sequences across different strains of S. pneumoniae
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3360-x.

Additional file 1: Table S1. Metadata variables included in the
example application, and their descriptions. Figure S1. Lack of overlap
between different omics data. A. For the TIGR4 KAN experiment, RNA-Seq
(Experiment 1) is plotted against Tn-seq (Experiment 2). B. For the M. tu-
berculosis hypoxia experiment, microarray data (Experiment1) is plotted
against proteomics data (Experiment 2).

Abbreviations
DE: Differential expression; DEG: Differentially expressed gene; dW: Difference
in fitness; KAN: Kanamycin; LVX: Levofloxacin; PEN: Penicillin; RIF: Rifampicin;
VNC: Vancomycin
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