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Abstract

Background: Chronic diseases are becoming more widespread each year in developed countries, mainly due to
increasing life expectancy. Among them, diabetes mellitus (DM) and essential hypertension (EH) are two of the most
prevalent ones. Furthermore, they can be the onset of other chronic conditions such as kidney or obstructive
pulmonary diseases. The need to comprehend the factors related to such complex diseases motivates the
development of interpretative and visual analysis methods, such as classification trees, which not only provide
predictive models for diagnosing patients, but can also help to discover new clinical insights.

Results: In this paper, we analyzed healthy and chronic (diabetic, hypertensive) patients associated with the
University Hospital of Fuenlabrada in Spain. Each patient was classified into a single health status according to clinical
risk groups (CRGs). The CRGs characterize a patient through features such as age, gender, diagnosis codes, and drug
codes. Based on these features and the CRGs, we have designed classification trees to determine the most
discriminative decision features among different health statuses. In particular, we propose to make use of statistical
data visualizations to guide the selection of features in each node when constructing a tree. We created several
classification trees to distinguish among patients with different health statuses. We analyzed their performance in
terms of classification accuracy, and drew clinical conclusions regarding the decision features considered in each tree.
As expected, healthy patients and patients with a single chronic condition were better classified than patients with
comorbidities. The constructed classification trees also show that the use of antipsychotics and the diagnosis of
chronic airway obstruction are relevant for classifying patients with more than one chronic condition, in conjunction
with the usual DM and/or EH diagnoses.

Conclusions: We propose a methodology for constructing classification trees in a visually guided manner. The
approach allows clinicians to progressively select the decision features at each of the tree nodes. The process is guided
by exploratory data analysis visualizations, which may provide new insights and unexpected clinical information.
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Background
The increase in life expectancy in developed countries
is originating multiple chronic conditions, which may
appear both independently and jointly in individuals.
Their analysis is important for several reasons [1]: (1) they
account for 60% of global deaths; and (2) they trigger 75%
of public health expenditure (for instance, 80% of primary
care consultations, and 60% of hospital admissions, are
related to chronic diseases).

Essential hypertension (EH) and diabetes mellitus (DM)
are among the most common chronic conditions nowa-
days. Furthermore, it is expected that the number of
patients suffering from these chronic conditions will
increase, reaching the figure of 1.56 billion hypertensive
patients in 2025 [2], and 552 million diabetic patients
in 2030 [3]. In addition, EH and DM frequently occur
together. For example, in the US population, EH is present
in approximately 30% of patients with type 1 diabetes, and
in 50–80% of patients with type 2 diabetes [4, 5]. Fur-
thermore, the consumption of antihypertensive drugs may
increase the probability of suffering from DM [6].

There are several strategies in the literature for identify-
ing patients with chronic conditions. For example, Smith
et al. [7] uses questionnaires, while [8, 9] are based on
electronic health records (EHR). In the latter, clinical pop-
ulation groupers take into account data from the EHR in
a specific period of time, and assign patients to a unique
and mutually-exclusive health status. The population clas-
sification system called Clinical Risk Groups (CRGs) [10,
11] distinguishes more than one thousand health statuses
(groups) and is orientated towards categorizing chronic
patients.

In this work we consider the CRGs system not only
because it has been internationally validated, but also
since it defines groups that include patients with several
chronic conditions (comorbidities). Specifically, the CRGs
system uses demographic data (age and gender), as well
as information about diagnoses, procedures, and drugs,
in order to determine a patient’s health status during a
period of time (typically, one year).

The stratification provided by the CRGs system has
been used in several works to create non-parametric
models for classification through statistical learning tech-
niques. Fernández-Sánchez et al. [12] use age, gender and
diagnosis codes in order to classify patients into three
health statuses (healthy, hypertensive, and hypertensive
with comorbidities) by using Support Vector Machines
(SVMs). Since the models provided by SVMs can be con-
sidered as “black boxes”, it can be difficult to extract
clinical knowledge from them. Therefore, Soguero et al.
proposed the use of classification trees (also called deci-
sion trees), which are statistical models that are easy to
interpret [13]. The particular approach was based on the
C4.5 algorithm [14], which is one of the simplest methods

for constructing classification trees automatically (with
no human supervision). Additionally, the work in [13]
extends the analysis in [12] by considering larger sets of
features and chronic conditions. In particular, it evalu-
ated four kinds of features (age, gender, diagnosis codes,
and drug codes), and two chronic conditions (EH and
DM), also considering comorbidities with other chronic
diseases.

In this paper we extend the analysis of classification
trees in [13] by allowing clinicians to select the decision
features (i.e., the ones used to partition the dataset) at
each of the nodes of a tree. In particular, we propose using
data visualizations to guide the decision feature selection
process when constructing the trees, and where clinicians
can rely on their domain knowledge when selecting the
decision features.

Specifically, the process of choosing the most discrim-
inative features at each level of the tree is guided by
star coordinates (SC) plots [15, 16]. SC is a multivari-
ate visualization method based on radial axes [17–19]
that produces linear projections of data samples (which
are usually depicted as dots). In this work, every sam-
ple corresponds to one patient, who is represented by a
high-dimensional data point mainly composed of clini-
cal codes. In addition, the approach also shows a set of
two-dimensional vectors graphically, each associated with
one feature. This set of vectors specifies a particular linear
projection that maps high-dimensional data points onto a
plane. Since SC can be coupled with any linear projection
method (see [20–22]), in this paper we consider a com-
bination of SC with linear discriminant analysis (LDA)
[23]. LDA is a renowned linear classification and visu-
alization technique that produces projections that try to
separate classes as much as possible. By coupling SC and
LDA, analysts can gain insight regarding the discrimina-
tive power of the features by examining the length and
orientation of the vectors that define a linear projection.
In particular, analysts simply focus on the longest vectors
that are oriented in the direction that better separates the
classes, and choose one of these vectors according to their
expertise. Thus, the visualizations allow clinicians to carry
out feature selection interactively (see [21, 24–26]), where
they can take advantage of their domain knowledge when
selecting discriminative features.

Methods
This section describes the dataset used in our study, and
the visually guided approach for building classification
trees.

Dataset description
In this work we analyze data from healthy and chronic
patients compiled during the year 2012 by the Univer-
sity Hospital of Fuenlabrada (UHF), in Madrid, Spain. The
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following information was recorded for each encounter
of the patient with the public health system: age, gender,
pharmacological dispensing (coded using the Anatomical,
Therapeutic, Chemical (ATC) classification system [27]),
and diagnoses collected by the hospital and by associated
primary care centers. In particular, the diagnoses collected
by the hospital were coded according to the International
Classification of Diseases - 9th revision-Clinical Modifi-
cation (ICD9-CM) [28], whereas the diagnoses associated
with primary care centers were coded in accordance with
the International Classification of Primary Care (ICPC).
Therefore, a clinical coding expert converted the ICPC
codes into ICD9-CM codes, by considering free text writ-
ten by primary-care physicians.

The ICD9-CM codes are categorized according to the
disease type. Although the syntax of ICD9-CM codes
allows us to consider categories and subcategories, in this
work we omit subcategories in order to have a reasonable
number of patients with the same codes. Thus, patients
diagnosed in the same category (coded by three alphanu-
meric characters), but in different subcategories, will have
the same diagnosis code. As a result, we consider a total
of 1517 different ICD9-CM diagnosis codes. We followed
the same approach for ATC codes. Although there are
3430 different ATC codes (composed of a combination of
seven letters/digits), we have only worked with 746, by
omitting the last two digits of the code, which refer to the
chemical substance. All of these codes (i.e., features) are
binary.

Based on demographic, diagnosis, and pharmacological
dispensing data, each individual was assigned to a single
mutually exclusive risk group (CRG). There are a total of
1080 categories of CRGs, identified by a five-digit num-
ber. The first digit refers to one of the following core
health status groups: (1) healthy; (2) history of significant
acute disease; (3) single minor chronic disease; (4) minor
chronic diseases in multiple organ systems; (5) significant
chronic disease; (6) significant chronic diseases in multi-
ple organ systems; (7) dominant chronic disease in three
or more organ systems; (8) dominant/metastatic malig-
nancy; and (9) catastrophic. The second to fourth digits
represent the base-CRG, whereas the fifth digit identifies
the illness severity level.

In order to have a reasonable and sufficient number
of patients in each category, in this paper we discarded
the fifth digit (severity level), reducing the number of
categories from 1080 to 242 (commonly known as base-
CRG). In addition, out of these 242 base-CRG categories,
we focused on only four related to EH and DM: CRG-
5192 (hypertension), containing 12447 patients; CRG-
5424 (diabetes), including 2166 patients; CRG-6144 (dia-
betes and hypertension), with 3179 individuals; and CRG-
7071 (diabetes, hypertension, and other dominant chronic
disease), which contains 547 patients. Furthermore, for

comparison purposes, we also considered CRG-1000
(healthy), containing 46835 individuals.

Figure 1 shows the presence rate per base-CRG for
the three diagnoses and three ATC codes with the high-
est presence rates in the dataset. We define these rates
as the ratio between the number of patients with a par-
ticular code in the base-CRG and the total number of
patients in the same base-CRG. The most common diag-
noses (ICD9-CM code) are EH (‘401’); DM (‘250’); and
disorders of lipoid metabolism (‘272’). The most com-
mon drugs (ATC codes) are Biguanides (‘A10BA’), which
is a blood glucose lowering drug; HMG CoA reductase
inhibitors (‘C10AA’), used for the treatment of hyperc-
holesterolemia; and Anilides (‘N02BE’), which includes
drugs such as paracetamol. Regarding the colors used in
the figures throughout this paper, we will use the fol-
lowing coding for the different classes: brown identifies
CRG-1000; orange, CRG-5192; purple, CRG-5414; green,
CRG-6144; and blue, CRG-7071.

As shown in Fig. 1, although CRG-1000 only con-
tains healthy individuals, note that some of them have
diagnoses and drugs related to DM and EH. In addi-
tion, around 25% of patients classified as hypertensive
(CRG-5192) by the CRG system do not have the diag-
nosis code related to hypertension (‘401’). Furthermore,
11.8% of patients do not have ATC codes associated with
hypertension, meaning that they are not undergoing any
treatment. It is also interesting to note that about 15%
of the patients in CRG-5424 do not have the diagnosis
code related to DM (‘250’). This diversity in diagnoses and
drugs for patients with the same chronic condition reflects
the complexity of the task tackled in this paper.

Visually guided classification trees
Statistical learning techniques are powerful tools for find-
ing highly complex predictive functions that may be
too difficult to model by a human being. Instead, these
techniques “learn” the functions automatically by rely-
ing on examples provided in datasets. Among them,
classification methods model the relationship between
a finite set of samples, each characterized by a collec-
tion of n features, and a discrete target output cate-
gory for each sample (its class or label). In this paper
we will focus on the well-known classification trees,
where the samples are patients and the output classes
are provided by CRGs. Thus, we will build classifiers
for predicting the health status (CRG) associated with
a particular patient. Technically speaking, our classifica-
tion trees learn predictive functions that map patients to
CRG classes.

In this work we initially considered representing each
patient by a set of n = 2265 features: gender (1), age (1),
diagnosis codes (1517), and drug codes (746). However,
we discarded those (around half ) that had a zero count for
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Fig. 1 Presence rates. Presence rates for diagnoses codes ‘401’, ‘250’ and ‘272’ and ATC codes ‘A10BA’, ‘C10AA’ and ‘N02BE’. These features have the
highest presence rates in the dataset

all patients. In addition, in order to employ visualization
methods effectively, we reduced the number of features
even further by computing the entropy gain of each one
according to Rauber and Steiger-Garção [29], and select-
ing the 50 features with the highest gain. Both diagnosis
and drug codes were converted to binary features. Thus,
they represent the presence or absence of a code, and not
the number of times a patient has been diagnosed with
a particular illness, or how many times a drug has been
dispensed to a patient.

In general, when building a statistical learning classi-
fier, the finite dataset of samples and labels is divided in
two subsets: the training and test datasets. The training
dataset is used to find the predictive function (i.e., to con-
struct the model through a learning process), while the
test set is used to evaluate the quality of the trained clas-
sifier. Generally speaking, a classifier is better the greater
its accuracy predicting the classes of the samples in the
test set. In other words, a good classifier should be able
to generalize, providing correct outputs for samples that
it has not seen in the training stage. However, in cer-
tain domains, such as in medicine, it is also important
for analysts to interpret a classifier (i.e., understand how
it works). For example, clinicians may need to compre-
hend and explain the decisions that the learning technique
employs when classifying patients. In this regard, this
paper focuses on classification trees, which are easier to
interpret than the majority of statistical learning models.

Classification trees are methods used to partition
a high-dimensional data space hierarchically, and are

depicted graphically through a collection of nodes con-
nected through branches in a hierarchical manner. All of
the nodes are associated with some subset or region of the
data space. Firstly, the root node corresponds to the entire
data space. This initial space is then split into several dis-
joint regions that are related to the corresponding children
nodes. This recursive structure is repeated at each node,
partitioning the data space hierarchically. Note that a par-
ticular region of the data space related to a node will also
be contained in the regions associated with its parent and
its ascendant nodes.

In order to partition the data space, the internal nodes
of a classification tree (those that have children nodes)
encode conditions on the features that specify how to par-
tition the data space related to a node. Thus, the data
spaces associated with each node will be split into two
disjoint regions: those for which the condition is satisfied
or not. The partitioning process halts at leaf (or termi-
nal) nodes, which do not have any children nodes. Lastly,
each leaf node specifies an output class, which is the one
associated with the majority of the samples in the train-
ing set that belong to the region related to the leaf node.
Figure 2 illustrates an example of the partitioning of a
two-dimensional data space as a classification tree is con-
structed. Firstly, the entire data space (the plane created
by features X1 and X2) is associated with the root node
of the tree, and depicted as the gray area in (a). The sam-
ples belong to three classes, shown as circles, squares, and
triangles. The first decision feature considered in the tree
is X1, and the particular condition for splitting the data
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Fig. 2 Data space partitioning by classification trees. The first step when creating a tree begins by considering the entire data space, represented in
(a) for a two-dimensional dataset (with features X1 and X2), where at this point the tree only consists of a root node. The graphics also show samples
belonging to three classes, which are coded as circles, squares and triangles. The first condition for splitting the data space is ‘X1 < 30’, as shown in
(b). In one region, all samples will have values for X1 less than 30, while in the other the values for X1 will be greater than or equal to 30. This creates
two additional children nodes associated with each subregion, which can be further divided by considering mode conditions on the features. In (c),
the two regions in (b) are split according to X2, generating two additional internal nodes and four leaves in the tree. Each leaf represents the most
predominant class in their associated region

space is ‘X1 < 30’, which splits the data space in two
disjoint regions, as shown in (b). Subsequently, in (c) the
two regions in (b) are split according to feature X2, which
creates two additional internal nodes and four leaves in
the tree, and generates a non-linear classification func-
tion. In this paper we will generate binary trees (the
internal nodes will have two children nodes), where the
condition will involve only one feature, and whose out-
come will be either true or false.

Given a classification tree, the process of classifying a
sample simply consists of applying the conditions at the
nodes of the tree sequentially in a top-down manner, from
the root node to a leaf. At each node, the decision of
descending to a particular child node depends on the out-
come of the node’s condition for the sample. Finally, the
output of the classifier will be the class associated with the
leaf node.

It is important to note that the size of a tree is related
to the model’s complexity and its interpretability. In gen-
eral, it is not convenient to provide neither big nor small
trees, since they can generalize poorly. On the one hand,
big trees can be too adapted to the samples used for
learning, and can “memorize” training samples instead of
generalizing for unobserved samples (this phenomenon

is known as “overfitting”). Moreover, big trees can also
be difficult to interpret. On the other hand, although
small trees are quite interpretable, they are usually too
simple and may not provide accurate predictions. Accord-
ing to Occam’s razor [30], simpler models are preferred
over more complex ones whenever both types of mod-
els provide reasonable generalization (i.e., classification)
capabilities.

In this paper we propose to construct classification trees
in an interactive and visually guided way, where clinicians
can benefit from their domain knowledge. Instead of auto-
matically obtaining the feature to better classify samples
in a node (as is carried out by the majority of the methods
that generate classification trees), in our case clinicians
can select the most suitable feature by observing a SC plot
that represents the different classes in the data. SC is a
multidimensional visualization method that generates lin-
ear mappings from a high n-dimensional data space onto
a lower two-dimensional plane in order to represent the
data graphically. In particular, it constructs plots through
a set of two-dimensional vectors vi, for i = 1, . . . , n, with a
common origin point, where vi is associated with the i-th
feature (see Fig. 3). The interpretation of the axis vectors
is straightforward: the orientation determines the direc-
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Fig. 3 SC linear mapping. A data sample defined by five features
x = (0.2, 0.7, 1.5, 0.5, 0.3) gets mapped onto the two-dimensional
point p by adding scaled versions of the vectors vi , where the scaling
factors are the values of x associated with each feature

tion in which a feature increases, and the length specifies
the amount of contribution of a particular feature in the
resulting plot.

SC allows analysts to generate arbitrary layouts by inter-
actively modifying the axes. This can also be used to
couple SC with any linear projection method such as LDA
[21, 22]. LDA is a popular linear statistical method used
to find a combination of features that separates the sam-
ples belonging to different classes, by maximizing the ratio
between the inter-class and intra-class variance.

In this paper, we combine SC with LDA in order to
provide a projection that separates the samples optimally
according to their classes. In addition, the visualizations
allow analysts to determine the contribution of the differ-
ent features to the classification, by examining the lengths
and orientations of the SC axis vectors. Although the
longer axis vectors are more relevant to the plot in gen-
eral [21], their orientations should also be considered
when determining the most discriminative features that
contribute more to separating the classes [26].

Clinicians can therefore examine the two-dimensional
vectors associated with the variables when deciding which
is the most important one for separating certain classes,
according to the plot and their expert knowledge. Once
the variable is selected, a new internal tree node is created
and samples in that node are assigned to different classes.
When a feature is binary (as most in our dataset), the divi-
sion is simply carried out according to the two values of
the feature. In the case of non-binary characteristics (i.e.
age), the cut-off value is provided by the highest infor-
mation gain ratio. In order to construct the classification
tree, the clinicians recursively analyze each subset of data
obtained through the splitting process, until they consider
that most of the samples in a resulting subset belong to

the same class, or when it contains just a few samples. In
these cases a leaf node is created.

For example, we analyzed which features contribute
more to creating a simple classification tree among
patients with CRGs-5192-6144-7071. Regarding the train-
ing set to build the tree, we randomly chose 80% of the
available dataset. However, since statistical learning tech-
niques are affected by an imbalance in the number of
samples per category, we followed an undersampling strat-
egy to balance them, by selecting the same number of
samples from the minority class. The size of the training
set was therefore fixed by the number of samples of the
class with less instances (CRG-7071), multiplied by the
number of classes.

Figure 4 shows an example of the SC plot associated
with LDA for the training data of CRGs 5192-6144-
7071, where the classes are separated fairly well (note
that overlaps occur frequently when working with real-
world datasets). In this plot clinicians can identify the
different health statuses graphically, and can select the
most important and discriminative features when cre-
ating the classification tree. In this case, ‘250’ (DM) is
the longest axis vector, and is oriented in the direc-
tion separating CRG-5192 from the rest. The ICD9-
CM code ‘250’ is therefore the most suitable feature
for dividing the dataset. This is in accordance with
domain knowledge, since the diagnosis code ‘250’ makes
it possible to distinguish between patients belonging
to CRG-6144-7071 (two or more comorbidities, includ-
ing DM) and CRG-5192 (hypertensive patients with
absence of DM).

As illustrated in Fig. 5, the dataset used in Fig. 4 is split
in two subsets by the presence or absence of the ICD9-CM
code ‘250’. Below the LDA plot we show the correspond-
ing decision node, which we have colored according to
the predominant class. The hue is determined by the spe-
cific class, and its lightness depends on the percentage of
patients belonging to the class (the higher the percentage,
the darker the color). Finally, we use white to color nodes
when there is not a clearly predominant class. Since most
of the patients without the diagnosis code ‘250’ belong to
the class CRG-5192, this subset could be considered as a
leaf node. Instead, since there is not a clear majority class
among patients who have the code ‘250’, a new LDA plot
can be displayed in order to select another discriminative
feature, which will cause the tree to grow in that branch. In
this case we observe a similar number of samples belong-
ing to CRG-6144 and CRG-7071. We can see that the drug
‘N05AL’ (antipsychotics) is the longest axis vector in the
direction separating both classes. All patients in the train-
ing dataset who have codes ‘250’ and ‘N05AL’ belong to
CRG-7071, leading again to a leaf node. For the samples
where the drug code ‘N05AL’ is absent, we can display
a new LDA plot. In that case the diagnosis code ‘496’
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Fig. 4 Combination of SC and LDA for CRGs 5192-6144-7071. The
mapped points (dots) correspond to an LDA plot, which separates
the classes in an optimal way. In addition, the SC radial axis vectors
(the specific set of vectors is chosen in order to generate the LDA
mapping when applying SC) provide information about the features.
Their length and orientation indicate the contribution of the features
to the LDA class separation task. In this case the longest vector
corresponds to the diagnosis code ‘250’, and points to the direction
that better separates the points in CRG-5192 (orange) from the rest.
The plot also shows that points of the CRG-6144 (green) and
CRG-7071 (blue) classes are highly overlapped

(chronic airway obstruction) is the most suitable feature
to separate the classes. For this new subset of samples, the
ICD9-CM code ‘496’ indicates that most of them belong
to CRG-7071. Observe that in each tree branch the LDA
visualization process can be carried out recursively, allow-
ing analysts to select the axis vector (i.e., the feature) to be
used for splitting the subsets related to the nodes of the
tree. In this simple example we halted the process at this
point, creating the last leaf node.

Results
In this section we present the results provided by the visu-
ally guided classification trees. We analyzed performance
in terms of accuracy, F1-score and confusion matrices,
and drew clinical conclusions regarding the features con-
sidered in each decision tree. Specifically, clinicians con-
structed five visually guided decision trees to discriminate
patients among health statuses: (1) CRGs 5192-6144-
7071, in other words, classify patients into CRG-5192,
CRG-6144, or CRG-7071; (2) CRGs 1000-5192-6144-
7071; (3) CRGs 5424-6144-7071; (4) CRGs 1000-5424-
6144-7071; and (5) CRGs 1000-5192-5424-6144-70717.

For simplicity, instead of showing all of the LDA plots
needed to create the trees, we only show the features
selected by the clinicians in the decision nodes. Each
decision node generates two branches when evaluating
a particular feature: the left branch refers to samples
that satisfy the decision rule displayed within the inter-
nal node, whereas the right branch represents the subset
of samples that do not satisfy the node’s condition. Leaf
nodes show the name of the predominant base-CRG class,
and the percentage of the node samples belonging to it (in
brackets). In addition, for a better visual understanding of
the tree, we colored every node according to its predom-
inant associated class, setting its lightness in accordance
with the percentage of samples labeled with the majority
class.

Evolution of hypertension
We firstly explored the potential to predict the evolu-
tion of hypertension. Towards that goal, clinicians built a
decision tree supported by visualizations when only con-
sidering CRGs 5192-6144-7071 (see Fig. 6). Observe that
this tree is an extension of the example shown in Fig. 5.
Similarly to Fig. 4, the ICD9-CM code ‘250’ is the most
discriminative feature since it allows us to separate the
CRG-5192 class from the rest. In contrast, the diagnosis
code ‘401’ does not appear since it is generally present in
the three considered classes.

The tree obtained when including healthy patients
(CRGs 1000-5192-6144-7071) is shown in Fig. 7. The
initial LDA plot at the top of the tree provides insight
regarding which variables are most discriminative (i.e.,
more relevant regarding class separation). In the LDA plot
there are two clearly separated groups of elements on the
left that represent CRG-1000 and CRG-5192. CRG-7071
is located on the right, although it is clearly overlapped
with CRG-6144. In this scenario, the vector for diagnosis
code ‘250’ is the longest one separating the first two classes
from the rest, and this is the reason why clinicians selected
this variable to start the tree. Afterwards, they continued
the process shown below to create the classification tree
according to the LDA plots. In contrast to Fig. 6, the diag-
nosis code ‘401’ allows clinicians to separate the healthy
patients from the chronic hypertensive ones, and for this
reason it appears in Fig. 7.

Evolution of DM
We secondly explored the potential to predict the evo-
lution of DM considering individuals categorized by the
CRG system as diabetic, and where in some cases they
may have multiple chronic conditions (see Fig. 8). The
classification model was extended by constructing a tree
that also considered the group of healthy patients (see
Fig. 9 for details). Both LDA plots show a clearly defined
group for CRG-5424 on the left. When CRG-1000 is
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Fig. 5 Visually guided classification tree. Example of the design of a classification tree guided by visual LDA plots. In each node we show the total
number of samples contained in its associated region, and in square brackets the number of samples per class [CRG-5192, CRG-6144, CRG-7071].
Initially the dataset is balanced (there are the same number of samples per CRG). The root node splits the dataset in two by the presence or absence
of the diagnosis code ‘250’ in a guided way, considering the LDA plot above the node (also shown in Fig. 4). Most of the samples of the left branch
belong to CRG-5192, and thus this node can be a leaf node representing that class if the clinician considers it appropriate. In the right branch, a new
LDA plot is computed with the data subset for which the code ‘250’= 1 (i.e., is present). In this case, the drug code ‘N05AL’ is the feature that better
separates samples from CRG-6144 and CRG-7071. Thus, we consider a new split based on this feature. Its right branch (presence) only contains
CRG-7071 samples, and therefore constitutes a leaf node. Subsequently, we generate a new LDA plot with the remaining data for which ‘N05AL’ is
absent. In this case, the diagnosis code ‘496’ is the longest axis vector that points towards the direction that better helps to separate the classes, and
it is selected to split the corresponding region. Since most of the samples in the right branch belong to CRG-7071, we consider that it should be a
leaf node. In the left branch, this process could be performed recursively until each node is defined as a leaf. In this case, since most of the samples
belong to CRG-6144, the process could be halted, creating the leaf node
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Fig. 6 Classification tree considering age, gender, and diagnosis and drug codes for CRGs 5192-6144-7071. The tree shown in this figure is more
complex than the one shown in Fig. 5, which mainly identifies patients in CRG-5192 in the left branch of the root node. The extension of this branch
with the ATC code ‘A10BA’ allows a more detailed classification, allowing us to identify patients who also suffer from DM. The right branch of the
root node tries to establish the conditions for separating patients from CRG-6144 and CRG-7071, where the diagnosis code ‘496’ and/or ATC code
‘N05AL’ are the most relevant features for discriminating between these two CRGs
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Fig. 7 Classification tree considering age, gender, and diagnosis and drug codes for CRGs 1000-5192-6144-7071. The LDA plot at the top of this
figure is shown to understand why clinicians chose the diagnosis code ‘250’ as the condition in the root node. The plot shows that samples of CRGs
1000-5192 can be easily separated from those of CRGs 6144-7071 by means of the longest axis vector, representing the diagnosis code ‘250’ (DM).
This tree is similar to the one constructed for CRGs 5192-6144-7071 (see Figure 6). The main difference is found in the left branch of the root node
(non diabetic patients), which now includes healthy patients (CRG-1000). The most discriminative feature between CRG-1000 and CRG-5192 is the
diagnosis code ‘401’ (hypertension), which is associated with that chronic condition

included, it is the left-most group. In addition, patients
belonging to CRG-6144 and CRG-7071 are still overlap-
ping, showing that they share similar values for many

features. Regarding the diagnosis code ‘250’, on the one
hand, it does not appear in Fig. 8 since all of the patients
analyzed are diabetic, and therefore the code ‘250’ is
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Fig. 8 Classification tree considering age, gender, and diagnosis and drug codes for CRGs 5424-6144-7071. The initial LDA plot shows that samples
of the different CRGs appear overlapped. It may be because corresponding patients share a common chronic condition (diabetes). The absence of
diagnosis code ‘401’ (hypertension) and drug code ‘C09AA’ (based on the treatment of mild-moderate hypertension) leads directly to CRG-5424,
since it is the only CRG that does not consider the chronic condition EH. Furthermore, the ATC code ‘N05AL’ is the most discriminative feature for
identifying CRG-7071 patients, which is the class that corresponds to patients with the highest number of chronic conditions (among the
considered CRGs)

not suitable for separating the classes. Instead, the use
of antipsychotics (‘N05AL’) was the most important fea-
ture for clinicians because it is the longest vector in the
direction that separates most of the patients of CRG-
7071 from the rest. On the other hand, similarly to the
trees associated with hypertensive patients, the diagnosis
code ‘250’ is the most discriminative feature when includ-
ing CRG-1000, as shown in Fig. 9. In this case, it is the
most relevant vector for separating healthy patients from
the rest.

Evolution of DM and EH
Since EH is related to DM, we also built a tree encom-
passing healthy individuals and patients suffering from EH
and DM. As shown in Fig. 10, the LDA plot is more com-
plex than the previous ones. Nevertheless, there are some
small groups on the right, like CRG-1000 and CRG-5192.
These can be easily identified as the groups for which code
‘250’ is absent, since the corresponding axis vector is the
longest that points towards the left (note that the direc-
tion in which the vector points indicates presence). Thus,
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Fig. 9 Classification tree considering age, gender, and diagnosis and drug codes for CRGs 1000-5424-6144-7071. Clinicians can easily separate
patients belonging to CRG-1000 from the rest based on the diagnostic code ‘250’, since its absence identifies healthy individuals. However, its
presence in conjunction with the absence of codes ‘401’ , ‘496’ and ‘N05AL’ leads to patients in CRG-5424. The presence of the last three codes
identifies patients in CRGs 6144 and 7071
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Fig. 10 Classification tree considering age, gender, and diagnosis and drug codes for CRGs 1000-5192-5424-6144-7071. The LDA plot shows that
samples in CRGs 1000 and 5192 are separated from the rest (see the right part of the plot). Note that these CRGs are associated with the leaf nodes
on the left branch of the tree. As expected, the absence of diagnosis codes related to DM (‘250’) and EH (‘401’), together with the absence of drug
codes related to DM (‘A10BA’) and EH (‘C09AA’) leads to healthy patients, which is consistent with domain knowledge. The presence of the
diagnosis code ‘401’ or the presence of the drug code ‘C09AA’ identifies patients in CRG-5192. Also, in accordance with previously designed trees,
the presence of diagnosis code ‘496’ or drug code ‘N05AL’ helps us to identify the patients belonging to CRG-7071. Since this is the tree that
considers more health statuses, the relationships among features and CRGs may be more difficult to interpret, and to verify whether they agree with
current clinical knowledge

the diabetes code ‘250’ was selected to appear at the first
level of the tree. At the second level we have drug codes
that allow clinicians to classify the patients better. On the
one hand, the absence of code ‘250’ is complemented by
the presence of the drug code ‘A10BA’ (drug for lowering
blood glucose), which allows us to identify patients suf-

fering from diabetes. Instead, the absence of both of these
codes allows us to identify non-diabetic patients (CRG-
1000 and CRG-5192). Note that in this case, the presence
of EH (‘401’) is associated to hypertensive patients (CRG-
5192). On the other hand, the presence of codes ‘250’ and
antipsychotics (‘N05AL’) helps us to identify the patients

Table 1 Mean and standard deviation (in brackets) for the classification accuracy on 50 trials when using the trees to discriminate
among different classes (columns)

Features CRGs
5192-6144-
7071

CRGs
1000-5192-
6144-7071

CRGs
5424-6144-
7071

CRGs
1000-5424-
6144-7071

CRGs 1000
5192-5424-
6144-7071

Age, gender, ICD9 and ATC codes 82.19 (1.92) 87.45 (1.66) 76.04 (1.95) 85.32 (2.05) 78.93 (1.59)
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in the CRG-7071 class. As expected, the diagnosis code of
chronic airway obstruction (‘496’) leads to CRG-7071.

Classification performance
We analyzed the performance of the visually guided trees
from a predictive perspective in terms of accuracy on a
test set [31]. This set was obtained by considering the
same number of samples by class, which was 20% of the
size of the minority class (CRG-7071). Since the dataset
is unbalanced, and in order to avoid biases in perfor-
mance, we randomly selected 50 different test sets. Thus,
we report mean (and standard deviation) accuracy scores
over 50 trials.

Table 1 shows the performance of the trees for the
five mentioned scenarios. As expected, we obtained bet-
ter results when considering healthy patients since they
have a clearly different pattern of features from that of
patients suffering from chronic conditions. Thus, it is eas-
ier to detect healthy patients, which improves the overall
classification accuracy. The mean accuracy for discrimi-
nating CRGs related to hypertensive patients when con-
sidering healthy patients (CRG-1000) was 87.45%, while
it was 82.19% when not considering them. These per-
formance measurements are in line with those obtained
with a traditional classification tree over the same dataset.
For instance, the work in [13] considers the automatic
algorithm C4.5, which chooses the features providing the
highest information gain ratio when creating the decision
nodes. This algorithm is commonly used to build classifi-
cation trees in a non-guided way. Instead of using the C4.5
algorithm, in our approach clinicians rely on visualizations
and can take advantage of their domain knowledge when
selecting features in the decision nodes.

We also analyzed the performance of the classifica-
tion tree through confusion matrices, which are C × C
tables that show true versus predicted classes, for classi-
fication problems involving C different classes. Entries in
the diagonal cells report the percentage of samples with
correct predictions (accuracies), whereas those on the
off-diagonal cells represent percentages of misclassified
samples. We also present the corresponding F1 score (in
particular, means and standard deviations over 50 trials)
as another measure of the accuracy of each model. This
measure takes into account both the precision (true posi-
tive results obtained divided by the total predicted positive
results) and the recall (true positive results divided by all
of the elements that should have been identified as pos-
itive). The F1 score is a value between 0 and 1, where 1
indicates perfect classification performance.

Table 2 shows the confusion matrix for the trees con-
structed to classify samples in CRGs 5192-6144-7071,
both for the extended (final stage in Fig. 6) and for the
nonextended trees (first stage in Fig. 5). In this table
the rows are the true classes (provided by the CRGs),

Table 2 Confusion matrix for CRGs 5192-6144-7071, in the first
and final stages of the classification tree, showing mean (and
standard deviation) on 50 trials

CRG
Predicted

5192 6144 7071

5192 First stage 99.82 (0.80) 0.18 (0.68) 0 (0)

Final stage 99.54 (0.76) 0.40 (0.74) 0.05 (0.21)

6144 First stage 12.86 (3.06) 86.99 (3.12) 0.15 (3.86)

Final stage 3.39 (1.66) 90.37 (2.82) 6.24 (2.38)

7071 First stage 14.7 (3.33) 47.42 (5.02) 46.88 (4.49)

Final stage 7.46 (1.78) 39.68 (5.03) 61.86 (4.99)

F1 score for the first stage: 0.76 (0.018). F1 score for the final stage: 0.85 (0.016)

whereas the columns are the classes predicted by our
classifier. As expected, we obtained worse results with
the tree created in the first stage since it could be too
small to capture the complexity of the dataset, specially
for the class with more chronic conditions (GRG-7071).
In contrast, the most complex tree (final stage) correctly
classified 99.54% of the patients in CRG-5192 (on aver-
age), misclassifying only 0.40% in CRG-6144, and 0.05%
in CRG-7071. For CRG-6144 the percentage of patients
correctly classified is 90.37%, where 3.39% and 6.24% of
the patients were predicted to belong to CRGs 5192 and
6144, respectively. We obtained lower accuracies when
considering the more complex scenario involving more
comorbidities. In that case, only 61.86% of the patients
in CRG-7071 were correctly classified, where almost 40%
of them were associated to CRG-6144, and around 8%
belonged to CRG-7071.

Comparing Tables 2 and 3 we observe that predict-
ing hypertension is an even more challenging task if
healthy patients are considered. Indeed, only 58.55% of the
patients encompassed in CRG-7071 were predicted cor-
rectly (see Table 3). The predictions were also lower for
CRGs 5192 and 6144, with percentage classification accu-
racies of 73.65% and 89.85%, respectively. Lastly, observe
that healthy patients are classified exceptionally well.

Table 3 Confusion matrix for the CRGs 1000-5192-6144-7071
classification tree, showing mean (and standard deviation) on 50
trials

CRG
Predicted

1000 5192 6144 7071

1000 99.82 (0.80) 1.14 (1.12) 0.04 (0.17) 0.02 (0.13)

5192 25.03 (4.17) 73.65 (4.11) 0.84 (0.86) 0.02 (0.13)

6144 2 (1.05) 0.73 (0.78) 89.95 (2.98) 7.49 (2.27)

7071 3.78 (1.38) 2.86 (1.52) 34.81 (3.91) 58.55 (4.00)

F1 score: 0.80 (0.016)
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Table 4 Confusion matrix for the CRGs 5424-6144-7071
classification tree, showing mean (and standard deviation) on 50
trials

CRG
Predicted

5424 6144 7071

5424 91.19 (2.83) 8.09 (2.67) 0.72 (0.67)

6144 17.95 (3.32) 74.72 (3.51) 7.34 (2.39)

7071 17.67 (3.15) 21.78 (3.66) 60.55 (4.66)

F1 score: 0.755 (0.02)

Similar results are obtained when considering DM (see
Tables 4 and 5 for details). Finally, Table 6 shows the
confusion matrix related to the classification tree for
all analyzed CRGs 1000-5192-5424-6144-7071. The clas-
sification accuracy is higher for healthy, hypertensive,
and diabetic patients than for those in CRG-7071 and
CRG-6144. These results are in accordance with the cor-
responding LDA plot, where the CRGs-7071-6144 are
highly overlapping.

Clinical insights
Finally, we analyzed in detail the set of selected features
and their position in a tree when classifying patients
according to a health status. Table 7 shows the selected
features in the tree nodes (first column), their description
when they correspond to a code (second column), and
their presence in the trees (the next five columns, where
each one corresponds to a different tree). For each tree,
blank cells indicate that the feature has not been selected
in that tree, while the numbers in brackets denote the tree
levels where the feature is considered.

The level denotes the depth of a node in the tree, where
the root node is at level 1, its children are at level 2, and
so on. We can interpret that the lower the level of a node,
the more discriminative its related feature is regarding the
entire data set. Alternatively, since nodes in higher lev-
els are associated with fewer samples, their corresponding
decision feature is likely to be less discriminative. Lastly,
features with more than one number in parenthesis appear
at several different levels of the tree.

Table 5 Confusion matrix for the CRGs 1000-5424-6144-7071
classification tree, showing mean (and standard deviation) on 50
trials

CRG
Predicted

1000 5424 6144 7071

1000 99.96 (0.17) 0.02 (0.13) 0.02 (0.14) 0 (0)

5424 3.30 (1.66) 77.41 (4.11) 18.39 (3.45) 0.90 (0.74)

6144 2.88 (1.65) 11.68 (10.72) 78.68 (3.90) 7.72 (2.72)

7071 6.84 (2.51) 9.01 (2.37) 27.36 (4.05) 56.79 (4.20)

F1 score: 0.78 (0.017)

Table 6 Confusion matrix for the CRGs
1000-5192-5424-6144-7071 classification tree, showing mean
(and standard deviation) on 50 trials

CRG
Predicted

1000 5192 5424 6144 7071

1000 98.70 (1.01) 1.23 (1.04) 0.07 (0.25) 0 (0) 0 (0)

5192 18.5 (4.37) 82.26 (4.05) 0.24 (0.44) 0.50 (0.79) 0.04 (0.17)

5424 2.92 (1.33) 0.37 (0.61) 83.49 (3.33) 10.94 (3.14) 2.29 (1.50)

6144 1.32 (1.00) 1.52 (1.08) 16.00 (3.36) 70.18 (4.09) 10.97 (2.95)

7071 2.57 (1.39) 3.80 (1.49) 6.31 (1.94) 27.19 (2.75) 60.13 (3.46)

F1 score: 0.79 (0.016)

Note that the presence of the diagnosis code ‘250’
(DM) always appears in the first node, when discriminat-
ing healthy patients versus chronic patients who suffer
from one or both conditions (hypertension/diabetes), with
the exception of CRGs 5424-6144-7071. The reason is
that patients in these three classes are diabetic, and the
code ‘250’ is not relevant for discriminating among these
groups. A similar situation occurs regarding the presence
of code ‘401’ when only CRGs 5192-6144-7071 are
considered.

It is interesting to point out that the diagnosis code
‘496’ (chronic obstructive pulmonary disease) is quite dis-
criminative in all trees. Since CRG-7071 includes patients
suffering from EH, DM, and other dominant chronic dis-
eases, it is likely that code ‘496’ appears for characterizing
the other dominant chronic diseases.

Table 7 also shows the drug codes appearing in the trees.
Note that the number of drug codes is much higher than
the number of diagnosis codes, though some of the drug
codes are used to treat the same disease. Thus, as an exam-
ple, ATC codes ‘A10AE’, ‘A10BA’ and ‘A10BD’ are used for
treating DM, while ATC codes ‘C03CA’, ‘C07AA’, ‘C07AB’,
‘C09AA’, ‘C09BA’ are employed for EH. The ATC codes
‘R01AX’, ‘R03BB’ and ‘R05CB’ are drugs related to chronic
obstructive pulmonary disease, and allow us to discrimi-
nate patients associated with CRG-7071. Furthermore, it
is also interesting to point out that the ATC codes related
to antipsychotics and antidepressants (such as ‘N05AL’,
‘N05CD’, ‘N06AB’, ‘N06AX’ and ‘N06DA’) allow us to iden-
tify patients in CRG-7071. Note that mental disorders can
be considered to be another dominant chronic disease.

The use of the therapeutic group denoted by ATC codes
‘B01AB’ and ‘B01AC’, which comprises antithrombotic
agents and heparins, is indicated in situations of high risk
of blood clots, leading to severe pathologies related to the
cardiovascular and cerebral system. These drugs are pre-
scribed to patients with serious chronic conditions, being
the alteration of the cardiac rhythm (atrial fibrillation) the
most frequent one. The presence of any of these drugs
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Table 7 List of features appearing in the constructed trees for discriminating among different classes (the five columns on the right)

Feature Description 5192-
6144-7071

1000-5192-
6144-7071

5424-
6144-7071

1000-5424-
6144-7071

1000-5192-
5424-6144-7071

250 Diabetes mellitus (1) (1) (1) (1)

272 Disorders of lipoid metabolism (7)

366 Cataract (7)

401 Essential hypertension (3) (2) (4) (3,4,5)

496 Chronic obstructive pulmonary disease (3) (3) (3) (3) (3)

724 Other and unspecified disorders of back (12) (6)

780 General symptoms (8)

A02BC Proton pump inhibitors (3,11) (7,8) (5,6)

A03FA Propulsives (7)

A10AE Insulins and analogues for injection, long-acting (11) (5) (4,5)

A10BA Blood glucose lowering drugs, excl. Insulins (2,4) (2,4) (8) (2)

A10BD Combinations of oral blood glucose lowering drugs (10) (10)

B01AB Heparin group. Antithrombotic agents (5)

B01AC Platelet aggregation inhibitors excl. heparin (7)

C03CA Sulfonamides, plain. High-ceiling diuretics (9) (6) (6) (7)

C07AA Beta blocking agents, non-selective (6)

C07AB Beta blocking agents, selective (9)

C08CA Selective calcium channel blockers with mainly vascular
effects. Dihydropyridine derivatives

(13) (5)

C09AA ACE inhibitors, plain (6) (3) (4,6)

C09BA ACE inhibitors and diuretics (7) (8)

C10AA HMG coa reductase inhibitors (8,9) (7,9)

M02AA Antiinflammatory preparations, non-steroids for topical
use

(6)

M04AA Preparations inhibiting uric acid production (5)

N02BB Other analgesics and antipyretics. Pyrazolones (8) (8,9) (3,6)

N02BE Other analgesics and antipyretics. Anilides (9) (6,8) (6)

N05AL Antipsychotics. Benzamides (2,3) (2,4) (1) (2) (2)

N05CD Hypnotics and sedatives (5) (5)

N06AB Selective serotonin reuptake inhibitors (6,7)

N06AX Antidepressants (6)

N06DA Antidepressants (6)

R01AX Other nasal preparations (10)

R03BB Anticholinergics (7) (4) (6)

R05CB Mucolytics (5) (9)

Age (14) (7) (8)

The numbers in parenthesis correspond to the level where the feature appears in the tree (where the root node is at level 1)

may help clinicians to discriminate between CRG-6144
and CRG-7071.

Finally, we analyzed the association between age and
health statuses. The mean (and standard deviation) age of
patients is the following: 26 (15) for CRG-1000, 54 (14)
for CRG-5192, 49 (15) for CRG-5424, 62 (11) for CRG-

6144, and 66 (12) for CRG-7071. As expected, healthy
patients are younger than those with chronic conditions,
and the number of comorbidities increases with the age of
the patients. Analyzing the constructed trees, we can see
that, in general, the feature ‘age’ is very close to a leaf node
when separating between CRG-6144 and CRG-7071 (the
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older the patients, the worse their health status). Regard-
ing gender, the percentage of men and women is similar
in our population both per each CRG and among CRGs.
This may be the reason why we did not find the gender
feature in the constructed trees, which suggests that it
is not a relevant feature for discriminating among health
statuses.

Discussion
The term “chronic disease” or “chronic condition” is used
to identify a health status that is persistent or has a
long duration and slow progression. The most promi-
nent chronic diseases are DM, EH, chronic obstructive
pulmonary disease, and cardiovascular diseases, among
others. There are key risk factors for these chronic con-
ditions, such as overweight, physical inactivity, or tobacco
and alcohol use, among others. The availability of data
related to these factors is a challenge since they are rarely
registered in the EHR. However, other information in
the EHR such as diagnoses and drugs are compiled in
a more reliable way and are also registered according
to international codes. These codes can be used in the
patient classification systems (PCSs) to identify both the
health statuses as well as patients with high consump-
tion of health resources. One of the most common PCSs
are CRGs, which are oriented towards the identification
of chronic patients. In this work, we have characterized
patients suffering from chronic conditions such as DM
and EH by using diagnosis and drug codes, together with
age, gender, and the health status provided by the CRG
system.

Statistical learning methods provide a way to create
models (linear or nonlinear) to find patterns in data, and
have shown potential to extract new knowledge from clin-
ical datasets [32, 33]. In the health care domain, the use
of linear regression has been commonly used since it
provides insight about the relevance of the features [34].
However, researchers in this domain are currently shift-
ing towards inherently nonlinear techniques in order to
find higher-order interactions or nonlinear relationships.
In general, they enhance the linear approaches, but they
are barely interpretable. However, classification trees can
provide nonlinear models that are easy to interpret, and
they have been used effectively in different application
domains [35, 36], including health care [13]. There are
different automatic methods for constructing classifica-
tion trees [14, 37, 38]. The main idea is to recursively
choose the feature that provides the highest information
gain ratio, gini impurity, or variance reduction, to split
the branches. Although the construction of the tree using
these criteria is automatic, they do not allow analysts
to take advantage of their expertise. Instead, the main
advantage of our proposal is that the construction of the
classification trees is supported by statistical visual rep-

resentations of the data, where analysts choose features
in a visually guided manner. Thus, clinicians can select
the most suitable feature to be used in the trees by tak-
ing into account their domain knowledge and the rele-
vance of each feature from a clinical viewpoint. In our
approach, the criterion of information gain or gini ratio
are not considered to select the splitting feature. This
could be a limitation, since different clinicians may select
different features, and therefore, different trees could be
built.

The trees constructed following our methodology pro-
vide accuracy values similar to those obtained with auto-
matic methods when using the same dataset [13]. Accura-
cies are higher as patients have fewer chronic conditions
(CRG-5192 and CRG-5424 encompass patients with only
one chronic condition). As expected, the ICD9-CM code
‘250’ (DM) is present in most of the patients in CRG-
5424. The same applies for hypertensive patients with the
ICD9-CM code ‘401’ (EH). It is important to remark the
absence of the codes ‘250’ and ‘401’ for some diabetic, and
hypertensive patients, respectively. Furthermore, some
pathologies are not coded when the purpose of the visit
of the patient is not the chronic disease itself. However,
the lack of this information can be supplied by pharmaco-
logical dispensation provided by the Spanish public health
service, since drug payment is automated. Therefore, we
can claim that drug information is highly reliable, and
is better coded than that related to diagnoses. However,
although ATC codes may be more relevant for identify-
ing chronic patients in this regard, diagnosis codes are
also important. For example, the code ‘272’ (disorders
of lipoid metabolism) is a key feature for discriminat-
ing healthy individuals from diabetic and hypertensive
patients (see Table 7). Note that hypertension is related to
metabolic disorders [39]. Also, the code ‘724’ (other and
unspecified disorders of back) may be used to distinguish
between hypertensive and diabetic patients, since this is
a common problem in diabetics [40]. The diagnosis code
‘496’ (chronic airway obstruction) and the ATC ‘N05AL’
(antipsychotics) appear in all of the classification trees
for discriminating patients suffering from DM and/or EH,
in conjunction with another chronic condition. Previ-
ous works have already shown the association between
antipsychotic or mental disorders and chronic conditions
[41, 42].

Regarding demographic data (age and gender), this
study has shown that they are not the most influen-
tial for distinguishing among CRGs. Clinicians did not
selected gender in any of the decision trees, whereas age
was selected in the deeper nodes of the trees, just to
separate between CRG-6144 and CRG-7071, with the old-
est patients belonging to CRG-7071. This confirms the
association between the number of dominant chronic
conditions and age. Furthermore, as a consequence of
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aging, the prevalence of chronic pathologies is increasing
considerably in modern societies.

Finally, it is also important to note that this study has
analyzed data collected during a single year, which is a
short period of time for extracting long-term character-
istic patterns associated with patient health statuses. As
future work, we will analyze data from chronic patients
across several years, capturing information about their
temporal evolution. This may enhance the classifiers’ per-
formance and may help us to extract more knowledge
about chronic conditions.

Conclusion
This paper introduces a methodology for creating visu-
ally guided classification trees. The approach uses data
visualizations to guide and facilitate the feature selec-
tion process at each of the tree nodes in an intuitive
and easy-to-comprehend way. On the one hand, by using
our methodology, analysts can check whether the found
relationships between features and health statuses are
in accordance with the current clinical knowledge. On
the other hand, analysts can formulate hypotheses about
new insights, which should be appropriately validated, for
instance, through clinical trials.
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