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Abstract 

Background:  Drug repositioning is an emerging approach in pharmaceutical research 
for identifying novel therapeutic potentials for approved drugs and discover therapies 
for untreated diseases. Due to its time and cost efficiency, drug repositioning plays 
an instrumental role in optimizing the drug development process compared to the 
traditional de novo drug discovery process. Advances in the genomics, together with 
the enormous growth of large-scale publicly available data and the availability of high-
performance computing capabilities, have further motivated the development of com-
putational drug repositioning approaches. More recently, the rise of machine learning 
techniques, together with the availability of powerful computers, has made the area of 
computational drug repositioning an area of intense activities.

Results:  In this study, a novel framework SNF-NN based on deep learning is presented, 
where novel drug-disease interactions are predicted using drug-related similarity 
information, disease-related similarity information, and known drug-disease interac-
tions. Heterogeneous similarity information related to drugs and disease is fed to the 
proposed framework in order to predict novel drug-disease interactions. SNF-NN uses 
similarity selection, similarity network fusion, and a highly tuned novel neural network 
model to predict new drug-disease interactions. The robustness of SNF-NN is evalu-
ated by comparing its performance with nine baseline machine learning methods. 
The proposed framework outperforms all baseline methods ( AUC − ROC = 0.867, 
and AUC − PR=0.876) using stratified 10-fold cross-validation. To further demonstrate 
the reliability and robustness of SNF-NN, two datasets are used to fairly validate the 
proposed framework’s performance against seven recent state-of-the-art methods 
for drug-disease interaction prediction. SNF-NN achieves remarkable performance in 
stratified 10-fold cross-validation with AUC − ROC ranging from 0.879 to 0.931 and 
AUC − PR from 0.856 to 0.903. Moreover, the efficiency of SNF-NN is verified by validat-
ing predicted unknown drug-disease interactions against clinical trials and published 
studies.

Conclusion:  In conclusion, computational drug repositioning research can signifi-
cantly benefit from integrating similarity measures in heterogeneous networks and 
deep learning models for predicting novel drug-disease interactions. The data and 
implementation of SNF-NN are available at http://pages​.cpsc.ucalg​ary.ca/ tnjar​ada/
snf-nn.php.
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Background
Humankind has always been faced with diseases of various kinds. In the past, these dis-
eases either resulted in death, disability, or recovery, and there were no tools that would 
affect the outcome. A major step forward was the discovery that certain substances or 
drugs could alleviate the symptoms of a disease or even aid the recovery from the dis-
ease. Over time, a slate of drugs has been identified or developed for many diseases. 
There remains, however, a number of diseases for which no drugs have been found or 
developed so far.

One of the reasons is that new drug development is an expensive, lengthy, complex, 
and risky process. According to a very recent study, the average estimated research and 
development cost for new FDA-approved drugs targeting different therapeutic areas 
range between 0.8 and 4.5 billion USD [1]. Such a high cost is due to the expenditures 
associated with the high failure rate of pre-clinical trails. Moreover, the traditional de 
novo strategy to develop a new therapeutic agent includes a number of steps, which 
could take up to 17 years with less than 10% success rate [2].

There is a great need for developing new drugs for diseases whose current drugs have 
unpleasant side effects, emerging diseases such as COVID-19, and rare disease where 
a recent study reported that there are about seven thousand rare diseases without any 
therapeutics that affect more than 400 million people around the globe [3].

While the pharmaceutical industry has invested heavily in the research and develop-
ment of new drugs, the number of newly approved drugs is also decreasing significantly 
because of the associated risk factors (e.g., side effects) [4]. There is, therefore, a need for 
innovative drug development strategies that overcome the limitations of the traditional 
de novo strategy.

In recent years, drug repositioning has emerged as a coming-on-strong alternative 
to the de novo strategy, and about 30% of new FDA-approved therapeutic agents and 
vaccines are due to successful drug repositioning studies [5]. Drug repositioning is the 
process of identifying novel therapeutic potentials for existing drugs and discovering 
therapies for untreated diseases. Drug repositioning strategies have played an instru-
mental role in optimizing the pre-clinical process of developing new drugs as well as giv-
ing a second chance to shelved, withdrawn, and failed drugs due to their time and cost 
efficiency.

Traditional drug repositioning studies usually focus on uncovering drug mode of 
action (MoA) similarities [6], revealing novel drug indications [7], investigating common 
characteristics between drug compounds [8], or discovering relationships between drugs 
and diseases [9]. A major challenge in these studies is to distinguish the actual molecu-
lar targets of a drug from hundreds to thousands of additional gene products that are 
affected indirectly as a result of changes in the activity of the targets. Classical statistical 
models and approaches are therefore ineffective for detecting the molecular targets of a 
drug among the massive amount of genes.

Additionally, using only one source of data is a big drawback of many traditional drug 
repositioning methods as these methods may only recover partial knowledge of a living 
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organism’s behaviour. Moreover, obstacles like missing, biased, and inaccurate data may 
affect the performance of these models. For instance, reliable gene expression signature 
profiles may be hard to define for several reasons such as variations in experimental con-
ditions (e.g., patient age, environment variables) across different experiments, which 
may result in a data discrepancy in gene expression signatures, contributing to having 
biased data. Also, there may not always be significant changes in gene expressions when 
these genes are used as drug targets, which can lead to having inaccurate data. Further, 
the lack of high-resolution structural data for drug targets makes it hard to identify 
potential drug-target interactions when following the chemical structure and molecule 
information strategy. As a result, the claims of inferences and discoveries for these meth-
ods may not be sustainable. Thus, integrating data from a variety of sources may be an 
approach to overcome such challenges when developing computational drug reposition-
ing models.

Rapid advances in technology have allowed the development of effective computa-
tional models for inferring potential therapeutic applications. These computational 
models have been used to identify therapeutic potentials for existing drugs, which can 
be used to guide time-consuming and costly clinical trials. Furthermore, novel drug-
disease interactions predicted by computational models can be considered for further 
verification (e.g., functional enrichment analysis and meta-analysis). Such models can be 
roughly classified into three categories [10, 11].

The first category includes data mining-based models that infer off-target drug interac-
tions and identify novel drug repositioning candidates. Such models were built based on 
text mining and semantic technologies. For instance, Tari et al. [12] introduced a novel 
approach that uses text mining to retrieve data from publicly available sources in order 
to construct a set of logical facts. The logical facts were then used along with logical 
rules that represent drug mechanism properties to build an automated reasoning model 
for identifying therapeutic potentials and novel indications for existing drugs. Moreover, 
Rastegar-Mojarad et al. [13] developed an approach that used text-mined data to infer 
drug-gene and gene-disease semantic predictions. Then, the semantic predictions were 
used to compile a ranked list of potential drug-disease pairs. Furthermore, Zhu et  al. 
[14] utilized Clinical Pharmacogenomics (PGx) data to build pharmacogenomics Web 
Ontology Language (WOL) profiles. WOL profiles were then used to identify pharma-
cogenomics associations for FDA approved breast cancer drugs.

The second category refers to network-based models that capture unknown drug-
disease interactions relying on heterogeneous networks of biological and biomedical 
entities. Such models used network analysis techniques (e.g., bipartite graph, clustering, 
network centrality measures) to discover informative relationships. For instance, Li and 
Lu [15] built a supervised learning bipartite graph model to capture the implicit infor-
mation between drug targets and thereby identifying drug-target indications based on 
drug pairwise similarity. Moreover, Tan et al. [16] constructed a drug-drug interaction 
network, which then was clustered into modules based on mode-of-action to identify 
novel drug target indications. Furthermore, Luo et al. [17] introduced a novel method 
named MBiRW based on comprehensive similarity measures and bi-random walk to 
identify potential drug repositioning applications.
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The third category covers machine learning-based models that identify novel drug-
disease interactions and potential therapeutic uses of existing drugs. Such models used 
classification techniques [e.g., Logistic Regression (LR), Naïve Bayesian (NB), Support 
Vector Machines (SVM), Random Forest (RF)], collaborative filtering [e.g., Matrix Fac-
torization (MF)], and more recently deep learning [e.g., Neural Network (NN), Autoen-
coder (AE)] for binary classification, multiclass classification, and values prediction. 
For instance, Gottlieb et al. [18], Yang and Agarwal [19], Wang et al. [20], and Oh et al. 
[21] respectively adopted LR, RF, SVM, and NB to predict drug repositioning candi-
dates. Moreover, Ozsoy et al. [22] developed a recommendation system based on Pareto 
dominance and collaborative filtering to identifying drug-disease associations. Diseases 
shared among neighbour drugs were used to infer potentials and novel indications for 
existing drugs. Furthermore, Luo et  al. [23] introduced a Drug Repositioning Recom-
mendation System (DRRS) based on a singular value thresholding algorithm for iden-
tifying drug repositioning candidates in heterogeneous drug-disease networks. More 
recently, Liu et al. [24], Zhang et al. [25], Xuan et al. [26], and Zhang et al. [27] intro-
duced NRLMF, CMFDD, DisDrugPred, DRIMC to identify drug candidate therapeutic 
indications. However, these models have not fully exploited the widely available drug 
and disease data sources. Moreover, most of these approaches have considered drug 
and disease similarity information without tackling data noise and redundancy issues 
that may have a substantial effect on the prediction accuracy. Furthermore, these mod-
els have not overcome the issue of highly skewed gold-standard drug-disease interaction 
information.

In this study, an integrative framework, SNF-NN, which is using similarity measures, 
similarity selection, Similarity Network Fusion (SNF), and a Neural Network (NN) deep 
learning model to improve the drug-disease interaction prediction accuracy and predict 
novel drug-disease interactions. The prediction of new interactions is performed using 
known drug-disease interactions and very informative heterogeneous similarity infor-
mation generated from different drug-related and disease-related information datasets. 
The materials section discusses the datasets used in this study. The parts of SNF-NN 
are described in the methods section. In the results and discussion section, the robust-
ness of the proposed is verified by comparing its performance with baseline as well as 
state-of-the-art machine learning models. To further demonstrate SNF-NN’s efficiency 
in predicting novel drug-disease interactions, predicted unknown drug-disease interac-
tions are validated against clinical trials and published studies.

Methods
Three benchmark datasets were used to verify the robustness of SNF-NN. Each bench-
mark dataset consisted of known drug-disease interactions, drug-related similarity infor-
mation types as well as disease-related similarity information types. The first benchmark 
dataset, termed SND, was assembled and used along with two datasets, i.e. Cdataset [17] 
and LRSSL [28], which were used in previous studies [17, 23, 26–28].

Herein, drug-disease interactions in each dataset were represented by a binary matrix 
Y ∈ R m×n , where m and n are the number of drugs and the number of diseases retrieved 
in the specific dataset, respectively. An entry yij ∈ 0, 1 was set to 1 if the drug ri is 
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therapeutically used to treat the indicated disease dj , otherwise yij was set to 0 if the 
interaction between ri and dj was unknown.

Drug-related similarity types in each dataset were represented by a set of binary adja-
cency matrices SR, where each binary adjacency matrix sr ∈ R m×m , and m is the dis-
tinct number of drugs across all drug-related similarity types. The value of the entry 
srij ∈ [0, 1] quantifies the similarity between drugs ri and rj , where 1 demonstrates 
perfect similarity, and 0 demonstrates absolute dissimilarly. To handle drug synonyms 
within the same dataset and/or across different datasets, drugs chemical, generic, or 
commercial names were mapped to their DrugBank’s Accession Numbers (DBANs). 
This mapping is required to merge records of drugs with synonyms.

Disease-related similarity types in each dataset were represented by a set of binary 
adjacency matrices SD, where each binary adjacency matrix sd ∈ R n×n , and n is the dis-
tinct number of diseases across all disease-related similarity types. The value of the entry 
sdij ∈ [0, 1] quantifies the similarity between diseases di and dj , where 1 demonstrates 
perfect similarity, and 0 demonstrates absolute dissimilarly. To handle disease syno-
nyms, disease names were mapped to their UMLS’s Concept Unique Identifier (CUI), 
and records of diseases with synonyms were merged.

Further details about the benchmark datasets are presented in Table 1.

SND benchmark dataset

The SND benchmark dataset was assembled from various biological and biomedical data 
sources. It consists of three different types of information, namely drug-disease interac-
tion data, drug-related similarity data, and disease-related similarity data.

Drug-disease interaction data (i.e., gold-standard data) was collected from two widely 
used data sources, namely DrugBank [29] and repoDB [30]. The gold-standard data 
consists of 867 FDA-approved drugs, 803 diseases, and 8684 clinically reported and/or 
experimentally validated drug-disease interactions with 98.75% sparsity.

Drug-related similarity data has 10 networks based on: (1) target protein interactions, 
(2) side effects, (3) chemical structures, (4) GO molecular functions, (5) GO biological 
processes, (6) GO cellular components, (7) metabolism enzymes, (8) protein sequences, 
(9) anatomical therapeutic chemical classification codes, and (10) drug pairwise 
interactions.

Disease-related similarity data has 14 networks based on: (1) curated genes, (2) HPO 
genes, (3) literature-based genes, (4) curated variants, (5) literature-based variants, (6) 
microRNAs, (7) long non-coding RNAs, (8) HPO phenotypes, (9) IS-A taxonomy, (10) 
information-theoretic similarity, (11) GO terms, (12) implicit semantic similarity, (13) 
semantic and gene functional, and (14) curated association type ontology.

Table 1  Details of benchmark datasets

Benchmark dataset No. drugs No. disease No. interactions Sparsity No. drug 
similarities 
(%)

No. disease 
similarities

SND 867 803 8684 98.75 10 14

Cdataset [17] 593 313 1933 98.96 1 1

LRSSL [28] 763 681 3051 99.41 3 1
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Further details about drug-related and disease-related similarity data are provided in 
the Additional file 1. All similarity and interaction matrices are provided in http://pages​
.cpsc.ucalg​ary.ca/ tnjar​ada/snf-nn.php.

Cdataset benchmark dataset

The Cdataset benchmark dataset was retrieved from a previous study [17]. It consists of 
three different types of information, namely drug-disease interaction data, drug-related 
similarity data, and disease-related similarity data.

Drug-disease interaction data includes 593 FDA-approved drugs listed in the Drug-
Bank Database [29], 313 diseases registered in the Online Mendelian Inheritance in Man 
(OMIM), and 1933 known drug-disease interactions with 98.96% sparsity.

Drug-related similarity data includes one network based on chemical structures. The 
canonical Simplified Molecular Input Line Entry System (SMILES) [31] were extracted 
from the DrugBank Database [29]. Drug pairwise similarity was calculated using the 
CDK [32] and the Tanimoto score [33] of the 2-D chemical fingerprints.

Disease-related similarity data has one network based on human phenotypes that 
were obtained from the OMIM Database [34]. Disease pairwise similarity was computed 
using MeSH terms [35] and the semantic similarity measure introduced in [36].

LRSSL benchmark dataset

The LRSSL benchmark dataset was obtained from the paper [28]. It consists of three dif-
ferent types of information, namely drug-disease interaction data, drug-related similar-
ity data, and disease-related similarity data.

Drug-disease interaction data has 3051 between 763 FDA-approved drugs and 681 
diseases with 99.41% sparsity.

Drug-related similarity data contains three networks based on (1) chemical structures, 
(2) target protein domains, and (3) GO target protein annotations. Drug chemical fin-
gerprints of the drugs were retrieved from the PubChem Database [37]. Protein domains 
of drug target proteins were extracted from the InterPro Protein Families Database [38]. 
GO’s molecular function and biological process terms of target proteins were extracted 
from the UniProt Database [39].

Disease-related similarity data includes one network based on human phenotypes that 
were retrieved from the OMIM Database [34]. Disease pairwise similarity was calculated 
using the MimMiner semantic similarity measure [36].

Methods
Problem description

A set of drugs R = r1, r2, . . . , rm and a set of diseases D = d1, d2, . . . , dn are defined in 
which m and n are the numbers of drugs in R and diseases in D, respectively. For R, 
we define a set of similarity adjacency matrices between drugs based on different drug-
related datasets as SR, where SR = sr1, sr2, . . . , srk and k is the number of drug-related 
datasets. The dimension of each drug similarity adjacency matrix is m×m ; where m is 
number of distinct drugs across the k drug-related datasets and sra(ru, rw) indicates how 
much the pair of drugs ru and rw are alike based on drug-related dataset a. All of the 
values in the SR similarity adjacency matrices are in the range of [0, 1], where 0 indicates 

http://pages.cpsc.ucalgary.ca/%7etnjarada/snf-nn.php
http://pages.cpsc.ucalgary.ca/%7etnjarada/snf-nn.php
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absolute dissimilarly, and 1 indicates perfect similarity between a pair of drugs. Simi-
larly, let a set of similarity adjacency matrices between diseases, D, be defined based on 
different disease-related datasets as SD, where SD = sd1, sd2, . . . , sdl and where l is the 
number of disease-related datasets. The dimension of each disease similarity adjacency 
matrix is n× n ; where n is the number of distinct diseases across the l disease-related 
datasets. The value of sdb(dx, dz) indicates how much the pair of disease dx and dz are 
alike based on the disease-related dataset b. All values in the SD similarity adjacency 
matrices are in the range of [0, 1], where 0 indicates absolute dissimilarly, and 1 indi-
cates perfect similarity between a pair of diseases. Next, the interactions between the 
set of drugs R and the set of diseases D were defined as a binary matrix Y of dimension 
m× n in which yij = 1 if drug ri interacts with disease dj , and yij = 0 if there is no known 
evidence that drug ri interacts with disease dj . Given the matrix Y, and the two sets of 
matrices SR and SD, the aim is to predict novel drug-disease interactions in Y.

Description of the SNF‑NN method

The SNF-NN method is presented as a novel approach that offers insight into drug-
disease interaction discovery by leveraging drug-related similarity information, disease-
related similarity information, and known drug-disease interactions. SNF-NN integrates 
similarity measures, similarity selection, Similarity Network Fusion (SNF), and Neural 
Network (NN) and performs a non-linear analysis that improves the drug-disease inter-
action prediction accuracy.

The SNF-NN method consists of four steps. In the first step, it acquires drug-related 
information (e.g., drug-target proteins, drug-chemical structures, drug-side effects), dis-
ease-related information (e.g., disease-gene associations, disease-miRNA associations, 
disease phenotypes), and known drug-disease interactions information from various 
sources. Next, it leverages the most literature-recognized similarity measure for each 
drug-related or disease-related information type to calculate pairwise drug or disease 
similarity for that specific drug-related or disease-related information type. Further-
more, it calculates the Gaussian Interaction Profile (GIP) similarity for drug pairs and 
disease pairs based on the known drug-disease interactions. In the second step, it uses a 
heuristic process to select the most insightful and less redundant subset of drug and dis-
ease similarity types. In the third step, it utilizes a non-linear similarity network fusion 
method to integrate the vetted drug and disease similarity types. In the fourth step, it 
initially performs a Cartesian product on the fused drug and disease similarity infor-
mation concatenating the feature vectors of each drug-disease pair. Finally, it feeds the 
concatenated feature vectors and known drug-disease interactions to a multi-layer neu-
ral network to predict novel interactions between input drug-disease pairs. The overall 
workflow of the SNF-NN approach is shown in Fig. 1.

Calculating similarity measures

Pairwise similarity is calculated for each drug-related and disease-related dataset in 
order to quantify the shared characteristics between each drug pair or disease pair. The 
most literature-recognized similarity measure for each drug-related and disease-related 
information type is adopted. Drug and disease pairwise similarity values are in the range 
[0, 1] between a pair of drugs or diseases, where 0 represents the least similarity, and 1 
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represents the most similarity. Furthermore, it is assumed that a pair of drugs that inter-
act with diseases in known drug-disease interactions will also behave similarly to new 
diseases. Similarly, it is assumed that a pair of diseases that interact with drugs in known 
drug-disease interactions will behave the same way when they are cured by new drugs. 
Therefore, the drug-disease interaction information is used to calculate the Gaussian 
interaction profile kernel [40] as profile similarity between drug pairs or disease pairs.

Each drug r in a drug-disease interactions dataset is represented by a binary feature 
vector of the diseases in the dataset f(r), where the absence or presence of a disease 
interaction is encoded by 0 or 1, respectively. Similarly, each disease d in the drug-dis-
ease interactions dataset is represented by a binary feature vector of the drugs in the 
dataset g(d), where the absence or presence of a drug interaction is encoded by 0 or 1, 
respectively. The pairwise drug and disease profile similarity values are normalized by 
dividing by the average number of disease interactions per drug and drug interactions 
per disease, respectively.

where the parameter τ controls the kernel bandwidth, m and n are the total number 
of drugs and diseases in the drug-disease interactions dataset, |f (ri)| is the number of 
disease interactions for drug ri , |g(dj)| is the number of drug interactions for disease dj . 
Here, τ was simply set to 1 as indicated by van Laarhoven et al. [40].

Similarity selection

SNF-NN applies to any set of drug-related and disease-related similarity types. How-
ever, the quality, richness, and correlation of such drug-related and disease-related simi-
larity types are essential when trying to integrate these different similarity types. Data 
inconsistency and redundancy may lead to noise in the integrated drug-related similar-
ity matrix. Thus, we use an effective method, introduced by Olayan et al. [41], to select 
the most informative, most insightful, and less redundant subset combination of drug 

sr(GIP)(ra, rb) = exp
(

−τm||f (ra)− f (rb)||
2

∑m
i=1 |f (ri)|

2

)

,

sd(GIP)(da, db) = exp
(

−τn||g(da)− g(db)||
2

∑n
j=1 |g(dj)|

2

)

Fig. 1  The overall workflow of the SNF-NN approach
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similarity measures. This heuristic similarity selection process involves four steps and 
explained in [42].

Similarity network fusion

The objective of this step is to integrate the highly informative and less redundant simi-
larity matrices from the previous step into one comprehensive drug similarity matrix 
that captures the shared information and any complementary knowledge from across 
the set of similarity matrices. Therefore, given a set of drug similarity matrices, we con-
struct a fused similarity matrix using the similarity network fusion approach introduced 
by Wang et al. [43]. Given a set of drug similarity matrices, the SNF approach uses an 
iterative non-linear process based on message-passing theory to consolidate the given 
set into one comprehensive matrix. SNF iteratively applies the K-Nearest Neighbors 
(KNN) algorithm to update each drug similarity matrix with information from the other 
drug similarity matrices until a drug similarity matrix that represents the initial set of 
drug similarity matrices as good as possible is obtained.

Given the subsets of drug-related and disease-related similarity matrices selected in 
the previous step, the goal of this step is to integrate these selected similarity matrices 
into two comprehensive similarity matrices for drugs and diseases. Therefore, given a 
set of multiple similarities matrices of drugs and diseases, respectively, the iterative non-
linear similarity network fusion process is applied to construct two fused drug-drug and 
disease-disease similarity matrices, separately. These two fused similarity matrices cap-
ture the shared information and any complementary knowledge from across the similar-
ity matrices of drugs and diseases, respectively.

Neural network model

The neural network structure definition can have a significant impact on the prediction 
performance of the neural network model. As an effective neural network structure, the 
feed-forward multi-layer perceptron network type has recently received extensive atten-
tion in the field of computational biology. The information in such a neural network can 
only move in one direction, forward, from the input layer, through the hidden layer(s) to 
the output layer; hence, there are no cycles or loops in the network. The input layer con-
tains the initial data for the neural network; hidden layers are intermediate layers where 
all the computations happen, and the output layer produces the result for the given data 
input. Each layer in a neural network is made up of a number of computational neurons 
or units. A neuron is connected to a set of neurons in the next layer. Each neuron has a 
weight value, which can be defined as the impact of the neuron on the next layer,s neu-
rons. Each neuron’s input value gets multiplied by the neuron’s weight to get the neuron’s 
output value that gets passed to the next layer. The performance and speed of learning 
of a neural network model are highly dependent on the number of hidden layers, along 
with the number of neurons in each hidden layer. Herein, a fully connected feed-forward 
multi-layer perceptron network model is introduced to further improve the accuracy of 
predicting drug-disease interactions in a deep-learning manner.

In order to achieve the best overall accuracy, a tedious process is performed to tune 
various hyperparameters of the deep neural network model. Practically speaking, the 
number of hidden layers, the number of neurons in each layer, the type of activation 



Page 10 of 20Jarada et al. BMC Bioinformatics           (2021) 22:28 

function applied behind each layer, and the learning dropout rate in each layer [44] 
should be specified. In addition, other hyperparameters ranging from the α , β1 , β2 , 
and ǫ for the Adam Optimization Algorithm [45] to the weight and bias parameters 
[46], the number of epochs, and the batch size should possibly be examined.

It is worth mentioning that the importance of each hyperparameter depends on the 
trained data, and some hyperparameters might be more important than others. For 
instance, fiddling around with the number of hidden layers, the number of neurons in 
each layer, or the learning rate would sometimes make a huge difference.

To decide on the neural network architecture, nested cross-validation [47] is used 
to systematically organize the hyperparameters tuning process and make it more effi-
cient while converging to a suitable hyperparameters setting. Applying the hyperpa-
rameters tuning process without using nested cross-validation would cause model 
overfitting because the same data is used both to tune and to evaluate model perfor-
mance. The hyperparameters in a nested cross-validation are tuned as follows: 

(1)	 The model hyperparameters are set to certain values.
(2)	 The input dataset is split into three folds.
(3)	 The model is trained using the current hyperparameter values and two dataset 

folds.
(4)	 The model is tested using the chosen hyperparameter values and the remaining 

dataset fold (test set).
(5)	 Step 3 and 4 are repeated until each dataset fold is considered as the test set.
(6)	 The model performance results and the combination of hyperparameter values are 

recorded.
(7)	 Steps 1 to 6 are carried out for all combinations of hyperparameter values.
(8)	 The combination of hyperparameter values leads to the best overall performance is 

selected.

The following hyperparameters and associated values are used to decide on the neural 
network model architecture:

•	 Number of hidden layers: {1, 2, 3, 4, 5}
•	 Number of neurons in each hidden layer: {100, 200, 300, 400, 500}
•	 Activation functions:

•	 Logistic sigmoid σ(z) = 1

1+e−z

•	 Hyperbolic tangent TanH(z) = sinh(z)
cosh(z)

=

ezz−e−z

ez+e−z

•	 Rectified linear unit ReLU(z) = max(0, z)

•	 Dropout rate: {0.3, 0.35, 0.4., 0.45, 0.5}

The best performance is achieved with a deep neural network model of 4 hidden lay-
ers with 300 neurons and a Dropout rate of 0.35 for each layer. The rectified linear 
unit activation function is applied to all neurons in all hidden layers. As predict-
ing drug-disease interactions is a binary classification problem, the logistic sigmoid 
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activation function is applied to the output layer, and the binary cross-entropy loss 
function is used to calculate loss values.

Moreover, the deep neural network model yields the best results when He Initializa-
tion [48] is used to initialize weight and bias parameters and Adam Optimization Algo-
rithm to update these parameters. As recommended in [45], Adam’s hyperparameters 
were set as follows:

•	 The learning rate (α) : 1E−3.
•	 The exponential decay rate for the first-moment estimates (β1) : 0.9
•	 The exponential decay rate for the second-moment estimates (β2) : 0.999
•	 The small constant for numerical stability (ǫ) : 1E−7

Finally, the model is fed batch inputs with a batch size of 100. The number of epochs is 
set to 100 for the different datasets. All trained deep neural network models with their 
hyperparameters settings and performance in nested cross-validation results are pre-
sented in the Additional file 1.

Results and discussion
Datasets

To evaluate SNF-NN, a new benchmark dataset, SND, was assembled from various 
resources. Furthermore, two benchmark datasets, namely Cdataset [17] and LRSSL 
[28], were downloaded to validate the proposed method. Cdataset and LRSSL datasets 
were used to evaluate state-of-the-art computational drug repositioning methods [17, 
23, 26–28]. Each dataset is a heterogeneous network consisting of known drug-disease 
interactions, drug similarity network(s), disease similarity network(s). The statistics of 
the datasets used are reported in Table 1.

Evaluation criteria

Herein, the systematic evaluation criteria for verifying the robustness and predic-
tive performance of SNF-NN is described. First, stratified 10-fold cross-validation was 
performed, and each gold-standard of the SND, Cdataset, and LRSSL datasets was 
split into training and test sets to prevent any over-optimistic evaluation of the model 
performance. During the stratified 10-fold cross-validation, the known drug-disease 
interactions (i.e., positive relations) with a matching number of unknown drug-disease 
interactions (i.e., negative relations) were randomly split into ten sets. Each set has equal 
numbers of positive and negative relations. In each cross-validation trial, nine sets were 
taken in turn as the training set, while the remaining set represents the test set. The 
10-fold cross-validation was repeated five times with different random seed values, and 
the average performance was calculated in order to avoid any high-variance and biased 
cross-validation evaluation.

In practice, a lot is learned about deep neural network models when observing their 
performance during the learning/training process. For each epoch, model training 
metrics (i.e., accuracy and loss) are recorded and two plots are created to describe the 
learning process of the model trained. These two plots provide insight into the model’s 
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learning process, such as its speed of convergence over epochs and whether it may have 
already converged or not.

Subsequently, the confusion matrix evaluation metrics are calculated. These metrics 
are true positive (TP), true negative (TN), false positive (FP), and false negative (FN). To 
put things into perspective, TP represents the known RDIs that are correctly predicted, 
while TN represents the unknown RDIs that are correctly predicted by the model. How-
ever, FP represents the unknown RDIs that are predicted, and FN represents the known 
RDIs that are not predicted by the model. Accuracy (Acc), Specificity (Spec), Precision 
(Prec), Recall (Rec), and F1-score (F1) evaluation metrics are calculated for the perfor-
mance comparison.

Moreover, the Matthews Correlation Coefficient (MCC) is adopted to evaluate the pro-
posed model. MCC is widely used in the field of bioinformatics for binary classification 
machine learning models [49]. The MCC is defined as follows:

Furthermore, the Area Under Curve - Receiver Operator Characteristic ( AUC − ROC ) 
and the Area Under Curve - Precision-Recall ( AUC − PR ) are used as the primary per-
formance evaluation metrics. AUC − ROC shows the trade-off between the true posi-
tive (i.e., the correctly predicted known RDIs) and the false positive (i.e., the wrongly 
predicted unknown RDIs) which eventually gives the model a successful classification 
rate. However, AUC − PR gives a more informative picture of model performance when 
dealing with highly skewed gold-standard datasets of more than 98.5% sparsity [50].

The three benchmark datasets (i.e., SND, Cdataset, LRSSL) and the above eight evalu-
ation metrics (i.e., Acc, Spec, Prec, Rec, F1, MCC,AUC − ROC , AUC − PR ) are utilized 
to evaluate various aspects of the performance of the SNF-NN model.

The effectiveness of the SNF-NN model is validated by comparing its performance 
with nine baseline machine learning classification models, namely, Stagewise Addi-
tive Multi-class Modeling Exponential (SAMME) loss function [51], Decision Tree 
(DT) [52], Gaussian Process Classification (GPC) based on Laplace approximation 
[53], K-Nearest Neighbors (KNN) [54], Gaussian Naïve Bayes (GNB) [55], Quad-
ratic Discriminant Analysis (QDA) [56], Random Forest (RF) [57], Linear Support 
Vector Machine (SVM), and Radial Basis Function (RBF) SVM [58]. To have a fair 
comparison, the similarity selection and fusion described in the previous section are 
applied to all drug-related and disease-related similarity information types and the 

Acc =
TP + TN

TP + TN + FP + FN

Spec =
TN

TN + FP

Prec =
TP

TP + FP

Rec =
TP

TP + FN

F1 = 2×
Precision× Recall

Precision+ Recall

MCC =

TP × TN − FP × FN
√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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integrated drug and disease similarity matrices are used as inputs for the baseline 
methods. Notably, the parameters of these models have a great impact on their per-
formance. Hence, the parameters for each model are tuned and the best performance 
is reported. The comparison with the nine baseline models is conducted using all the 
benchmark datasets and evaluation metrics.

The robustness of the SNF-NN method is verified by comparing its performance 
with five state-of-the-art machine learning methods for drug-disease interaction 
prediction, namely, MBiRW [17], SCMFDD [25], DRRS [23], DisDrugPred [26], and 
DRIMC [27]. Additionally, two state-of-the-art matrix factorization based methods 
for drug-disease interaction prediction (i.e., KBMF [59] and NRLMF [24]) are also 
included in the comparison. It is noteworthy that the seven state-of-the-art models 
were previously evaluated using the Cdataset and LRSSL benchmark datasets [27]. 
Hence, the same benchmark datasets are used to evaluate the SNF-NN against the 
seven state-of-the-art methods fairly. The AUC − ROC and AUC − PR are used as 
evaluation metrics.

Finally, the abilities of the SNF-NN method to predict novel drug-disease interactions 
is verified by validating the predicted unknown drug-disease interactions (i.e., false posi-
tive interactions) against up-to-date clinical trial studies and pharmaceutical indications 
resources such as Clini​calTr​ials.gov [60], DrugB​ank [29], and PubMe​d [61].

Evaluation results

SNF‑NN performance during the training process

The performance of SNF-NN during the training process is captured using the accu-
racy and loss metrics with two plots for each of the three benchmark datasets for the 
training set over the training epochs.

Figure  2 shows model accuracy on the training set of SND, Cdataset, and LRSSL 
benchmark datasets, respectively. It is noticed that the trend for accuracy on all 
benchmark datasets jumps to more than 0.85 during the first 20 epochs, meaning the 
deep neural network model is learning quickly. Moreover, the accuracy trend appears 
to be steady in the last epochs, which means that the number of epochs selected is 
appropriate, and that the SNF-NN method can no longer be trained.

Figure 3 shows model loss on the training set of SND, Cdataset, and LRSSL bench-
mark datasets, respectively. It is noticed that the trend for loss on all benchmark 

Fig. 2  SNF-NN accuracy on the training set of SND, Cdataset, and LRSSL datasets

https://clinicaltrials.gov/
https://DrugBank.ca/
https://www.ncbi.nlm.nih.gov/pubmed/
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datasets decreases rapidly, which means that the deep neural network model 
approaches its local minimum quickly. Furthermore, the loss trend is steady for the 
last epochs, meaning the number of epochs selected is appropriate, and that the SNF-
NN method can not be trained any further.

Comparison of SNF‑NN performance with baseline machine learning models

The overall reliability and effectiveness of SNF-NN are investigated by evaluating its 
performance against nine widely used baseline machine learning models (i.e., SAMME, 
DT, GPC, KNN, GNB, QDA, RF, Linear-SVM, RBF-SVM). The comparison of SNF-NN 
performance with the baseline methods is carried out using stratified 10-fold cross-val-
idation on the three benchmark datasets (i.e., SND, Cdataset, LRSSL). The comparison 
results based on all evaluation metrics defined previously are reported in Tables 2, 3, and 
4. The similarity selection and fusion described in the previous section are applied to 
drug-related and disease-related similarity information types in each benchmark dataset 
and the fused similarity matrices are used as inputs for the baseline methods.

As shown in Table  2, SNF-NN outperforms all the baseline methods on the SND 
benchmark dataset with a substantial difference in terms of most of evaluation met-
rics (Acc = 0.796, Rec= 0.816, F1 = 0.800, MCC = 0.593, AUC − ROC = 0.867, and 
AUC − PR = 0.876).

Moreover, the results in Table 3 demonstrates the superiority of SNF-NN performance 
over the all the machine learning methods on the Cdataset benchmark dataset with a 

Fig. 3  SNF-NN loss on the training set of SND, Cdataset, and LRSSL datasets

Table 2  SNF-NN performance comparison with  baseline machine learning methods 
on the SND benchmark dataset

The best value of each evaluation metric is shown in bold

Method Accuracy Specificity Precision Recall F1-score MCC AUC-ROC AUC-PR

SAMME 0.682 0.841 0.767 0.523 0.621 0.384 0.682 0.764

DT 0.553 0.985 0.888 0.122 0.214 0.211 0.553 0.725

GPC 0.646 0.676 0.655 0.615 0.634 0.292 0.646 0.731

KNN 0.650 0.619 0.641 0.681 0.661 0.300 0.650 0.741

GNB 0.669 0.586 0.645 0.751 0.694 0.342 0.669 0.760

QDA 0.649 0.632 0.646 0.666 0.654 0.300 0.649 0.740

RF 0.533 0.692 0.635 0.374 0.354 0.112 0.533 0.661

Linear-SVM 0.702 0.718 0.709 0.685 0.697 0.404 0.702 0.776

RBF-SVM 0.535 0.949 0.704 0.120 0.204 0.124 0.535 0.632

SNF-NN 0.796 0.777 0.785 0.816 0.800 0.593 0.867 0.876
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considerable variance with respect to most of evaluation metrics (Acc = 0.783, F1 = 0.790, 
MCC = 0.569, AUC − ROC = 0.879, and AUC − PR = 0.856).

Furthermore, Table  4 verifies the the overall performance of the proposed method on 
the LRSSL benchmark dataset with a significant difference in terms of almost all of the 
evaluation metrics (Acc = 0.846, Prec = 0.821, Rec= 0.793, F1 = 0.807, MCC = 0.617, 
AUC − ROC = 0.936, and AUC − PR = 0.903).

While the Spec metric is defined to evaluate the performance of machine learning meth-
ods in predicting negative relations (i.e., no RDIs), SNF-NN focuses on predicting positive 
relations (i.e., novel RDIs). Therefore, it is not significant that the SNF-NN does not have 
the highest performance in terms of the Spec evaluation metric.

Finally, it is worth emphasizing that the F1 metric is defined as the harmonic mean of 
Prec and Rec; thus, it is not surprising that the SNF-NN does not have the highest perfor-
mance with respect to Prec and Rec when it has the best F1 value.

Table 3  SNF-NN performance comparison with  baseline machine learning methods 
on the Cdataset benchmark dataset

The best value of each evaluation metric is shown in bold

Method Accuracy Specificity Precision Recall F1-score MCC AUC-ROC AUC-PR

SAMME 0.666 0.683 0.672 0.649 0.660 0.333 0.666 0.748

DT 0.611 0.809 0.711 0.412 0.505 0.253 0.610 0.709

GPC 0.707 0.604 0.692 0.811 0.738 0.433 0.707 0.799

KNN 0.695 0.560 0.654 0.830 0.731 0.406 0.695 0.785

GNB 0.654 0.645 0.651 0.662 0.656 0.308 0.654 0.741

QDA 0.629 0.472 0.599 0.786 0.679 0.272 0.629 0.746

RF 0.618 0.612 0.618 0.624 0.620 0.237 0.618 0.715

Linear-SVM 0.692 0.673 0.685 0.712 0.698 0.386 0.692 0.771

RBF-SVM 0.530 1.000 0.994 0.060 0.112 0.172 0.530 0.762

SNF-NN 0.783 0.754 0.769 0.813 0.790 0.569 0.879 0.856

Table 4  SNF-NN performance comparison with  baseline machine learning methods 
on the LRSSL benchmark dataset

The best value of each evaluation metric is shown in bold

Method Accuracy Specificity Precision Recall F1-score MCC AUC-ROC AUC-PR

SAMME 0.665 0.705 0.680 0.624 0.650 0.331 0.665 0.746

DT 0.635 0.775 0.689 0.494 0.574 0.282 0.635 0.718

GPC 0.701 0.717 0.709 0.685 0.696 0.403 0.701 0.776

KNN 0.661 0.553 0.633 0.769 0.694 0.329 0.661 0.759

GNB 0.616 0.509 0.596 0.723 0.653 0.238 0.616 0.729

QDA 0.567 0.662 0.613 0.473 0.453 0.161 0.567 0.675

RF 0.611 0.683 0.631 0.539 0.580 0.225 0.611 0.700

Linear-SVM 0.678 0.672 0.676 0.685 0.680 0.357 0.678 0.759

RBF-SVM 0.578 0.869 0.687 0.286 0.403 0.191 0.578 0.665

SNF-NN 0.846 0.780 0.821 0.793 0.807 0.617 0.936 0.903
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Comparison of SNF‑NN performance with state‑of‑the‑art drug‑disease interaction prediction 

models

The robustness of SNF-NN is verified by evaluating its performance against seven state-
of-the-art models for drug-disease interaction prediction, namely, KBMF [59], NRLMF 
[24], MBiRW [17], DRRS [23], SCMFDD [25], DisDrugPred [26], and DRIMC [27]. 
The comparison of SNF-NN performance with state-of-the-art models is conducted 
using stratified 10-fold cross-validation on the Cdataset and LRSSL benchmark data-
sets. Herein, it is important to highlight that the seven state-of-the-art models were 
previously evaluated using both Cdataset and LRSSL benchmark datasets and the the 
AUC − ROC and AUC − PR evaluation metrics [27]. The comparison results are 
reported in Tables 5 and 6.

As shown in Table 5, SNF-NN surpasses all the seven state-of-the-art models on the 
Cdataset benchmark dataset ( AUC − ROC = 0.879, and AUC − PR = 0.856) with a sig-
nificant difference of 55.5% in terms of AUC − PR metric. AUC − PR is a powerful and 
informative metric when dealing with highly skewed datasets [50].

Furthermore, Table 6 confirms the robustness of the proposed method by validating 
its performance on the LRSSL benchmark dataset. SNF-NN achieves superior perfor-
mance by improving the AUC − ROC by 2.8%, and AUC − PR by 56.7%, which indicates 
the reliability and effectiveness of SNF-NN in predicting novel drug-disease interactions 
in highly skewed gold-standard datasets.

Table 5  SNF-NN performance comparison with  state-of-the-art models for  drug-disease 
interaction prediction on the Cdataset benchmark dataset

The best value of each evaluation metric is shown in bold

Year Method AUC-ROC AUC-PR

2013 KBMF [59] 0.754 0.134

2016 NRLMF [24] 0.850 0.315

2016 MBiRW [17] 0.813 0.149

2018 DRRS [23] 0.783 0.113

2018 SCMFDD [25] 0.749 0.044

2019 DisDrugPred [26] 0.846 0.234

2020 DRIMC [27] 0.878 0.301

2020 SNF-NN 0.879 0.856

Table 6  SNF-NN performance comparison with  state-of-the-art models for  drug-disease 
interaction prediction on the LRSSL benchmark dataset

The best value of each evaluation metric is shown in bold

Year Method AUC-ROC AUC-PR

2013 KBMF [59] 0.648 0.130

2016 NRLMF [24] 0.872 0.326

2016 MBiRW [17] 0.816 0.167

2018 DRRS [23] 0.794 0.073

2018 SCMFDD [25] 0.724 0.032

2019 DisDrugPred [26] 0.872 0.278

2020 DRIMC [27] 0.908 0.336

2020 SNF-NN 0.936 0.903
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Efficiency of SNF‑NN to predict novel drug‑disease interactions (repositioning candidates)

While it is essential that computational models correctly predict known drug-disease 
interactions, the most important task is to identify novel drug-disease interactions, or 
false positives, as repositioning candidates.

To further investigate the reliability of the proposed method, a randomly selected 
set of five thousand unknown drug-disease interactions of the SND dataset is fed to 
the SNF-NN model. The SNF-NN model predicts 680 novel drug-disease interactions 
related to 350 drugs, in which a minimum of five new therapeutic uses are associated 
with 24 drugs and one novel therapeutic use is associated with 194 drugs.

The novel drug-disease interactions of the top five drugs are validated against 
approved clinical trial studies in ClinicalTrials.gov, DrugBank, or PubMed, and sub-
stantial evidence is discovered. Among the top 34 predicted drug-disease interac-
tions, 25 (73.5%) interactions are actually valid, but they are not annotated in the SND 
benchmark dataset.

For instance, the interaction between Loteprednol drug and Dry Eye Syndromes is 
not annotated in the SND gold-standard dataset while the proposed model predicts 
it. Another example is the interaction between Sparfloxacin drug and Pneumonia Due 
to Klebsiella Pneumoniae disease, which is also successfully identified by the SNF-NN 
model. Table 7 presents the novel drug-disease interactions of the top five drugs pre-
dicted by SNF-NN along with their source of evidence. Furthermore, a list of all the 
680 novel drug-disease interactions predicted by SNF-NN is reported in Additional 
file 1.

Conclusion
In this study, a novel deep-learning-based model, termed SNF-NN, is introduced for 
predicting new drug-disease interactions using known drug-disease interactions, drug-
related and disease-related similarity information. Three benchmark datasets are used 
to validate the performance of the proposed method. The accuracy and loss trends of 
SNF-NN are initially calculated to evaluate the training process of the proposed deep 
neural network model. Subsequently, the reliability and robustness of SNF-NN are veri-
fied by comparing its performance with nine baseline machine learning methods as well 
as seven state-of-the-art models for drug-disease interaction prediction. Although pre-
dicting novel RDIs is a very challenging problem due to the lack of known interactions, 
SNF-NN achieves remarkably higher evaluation metric values compared to the other 
methods with AUC − ROC ranging from 0.879 to 0.931 and AUC − PR from 0.856 to 
0.903. In summary, the findings in this study indicate that heterogeneous similarity net-
works can be leveraged to develop superb computational drug repurposing methods 
that have both outstanding performance and improved interpretability. Such methods 
can significantly benefit from integrating similarity measures and deep learning models 
to predict novel drug-disease interactions.
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The online version contains supplementary material available at  https​://doi.org/10.1186/s1285​9-020-03950​-3.

Additional file 1. SND Benchmark Dataset.
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Drug name Disease name Evidence

Dexamethasone Endometriosis ClinicalTrials.gov

Hereditary Orotic Aciduria PubMed

Hepatitis C, Chronic PubMed

Mineral Deficiency DrugBank.ca

Urinary Tract Infection ClinicalTrials.gov

Q Fever Endocarditis PubMed

Hepatolenticular Degeneration –

Levofloxacin Vomiting PubMed

Mixed Anxiety and Depressive Disorder PubMed

Lymphogranuloma Venereum PubMed

Echinococcus Granulosus Infection of Liver PubMed

Schistosomiasis PubMed

Malignant Neoplasm of Stomach Stage IV –

Scurfiness of Scalp –

Loteprednol Streptococcal Pneumonia PubMed

Dry Eye Syndromes ClinicalTrials.gov

Tinea Cruris –

Sepsis Due to Staphylococcus Aureus –

Drug-Induced Mucositis –

Yaws –

Relapsing Fever –

Sparfloxacin Pneumonia due to Klebsiella Pneumoniae DrugBank.ca

Urinary Retention PubMed

Intractable Hiccups –

Salmonella Sepsis –

Osteoporosis, Postmenopausal –

Dacryocystitis –

Uric Acid Renal Calculus –

Triamcinolone Impetigo PubMed

Osteoporosis PubMed

Coughing ClinicalTrials.gov

Obesity ClinicalTrials.gov

Multiple Myeloma PubMed

Gonococcal Joint Infection –
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