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Abstract 

Background:  One of the current directions of precision medicine is the use of compu-
tational methods to aid in the diagnosis, prognosis, and treatment of disease based on 
data driven approaches. For instance, in oncology, there has been a particular focus on 
development of algorithms and biomarkers that can be used for pre-clinical and clini-
cal applications. In particular large-scale omics-based models to predict drug sensitivity 
in in vitro cancer cell line panels have been used to explore the utility and aid in the 
development of these models as clinical tools. Additionally, a number of web-based 
interfaces have been constructed for researchers to explore the potential of drug 
perturbed gene expression as biomarkers including the NCI Transcriptional Pharmaco-
dynamic Workbench. In this paper we explore the influence of drug perturbed gene 
dynamics of the NCI Transcriptional Pharmacodynamics Workbench in computational 
models to predict in vitro drug sensitivity for 15 drugs on the NCI60 cell line panel.

Results:  This work presents three main findings. First, our models show that gene 
expression profiles that capture changes in gene expression after 24 h of exposure to 
a high concentration of drug generates the most accurate predictive models com-
pared to the expression profiles under different dosing conditions. Second, signatures 
of 100 genes are developed for different gene expression profiles; furthermore, when 
the gene signatures are applied across gene expression profiles model performance 
is substantially decreased when gene signatures developed using changes in gene 
expression are applied to non-drugged gene expression. Lastly, we show that the gene 
interaction networks developed on these signatures show different network topolo-
gies and can be used to inform selection of cancer relevant genes.

Conclusion:  Our models suggest that perturbed gene signatures are predictive of 
drug response, but cannot be applied to predict drug response using unperturbed 
gene expression. Furthermore, additional drug perturbed gene expression measure-
ments in in vitro cell lines could generate more predictive models; but, more impor-
tantly be used in conjunction with computational methods to discover important drug 
disease relationships.
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Background
A major focus of cancer treatment is the utilization of phenotypic characteristics that 
can inform data-driven treatment protocols to target specific vulnerabilities of a patient’s 
cancer [1]. There has been a substantial amount work to characterize the genomic and 
mutational landscape of cancer that have resulted in successful interventions in cancers, 
harboring specific mutations or genomic signatures [2–4]. Nonetheless, for the major-
ity of cancers specific genomic prognostic indicators informing treatment have yet to 
be discovered with current estimates of only ~ 15% of cancer patients being eligible 
for genome-informed treatment [5]. Cancer is a complex disease that arises from both 
numerous and diverse biological interactions. Developments in high-throughput drug 
screening and genomic profiling have laid a solid foundation for characterizing the phar-
macogenomic landscape of the disease [6, 7]. Even so, developing specific experimen-
tal protocols in vitro or in vivo that probe the entirety of this landscape is an infeasible 
if not impossible task. A major goal of computational and systems biology has been to 
integrate and leverage the information inherent in available data to foster new insight 
about complex biological systems [8]. Specifically in cancer, statistical, mathematical and 
computational approaches, are starting to be utilized to uncover complex drug-disease 
relationships [9, 10]. However, this is an inherently complex task. The genome is innately 
a high dimensional space, has built in redundancy between genes, and gives rise to sev-
eral complex multivariate interactions many of which we have little or no knowledge 
about. Thus, identifying these relationships requires developing tools and approaches for 
deconvolution and screening of this complex data pool.

Recently, a clinical trial in human bladder cancer was concluded using computational 
methods to leverage cell line data to predict prognosis for neoadjuvant chemotherapy 
[11]. The origin of these studies has been driven by similar in silico models predicting 
drug response for in vitro cell lines [12, 13]. One of the most comprehensive evaluations 
of these methods was conducted as a team-based competition where 44 teams using a 
variety of different computational approaches competed to predict drug response for 28 
therapeutic agents in a panel of 53 breast cancer cell lines [14]. The study concluded that 
computational approaches could predict drug response using omics data particularly 
with a high regard to genomics data.

Pan-cancer models have also been shown to predict the response of cytotoxic chem-
otherapies in large cell line databases such as Genomics for Drug Sensitivity [15] and 
the National Cancer Institute 60 cell database (NCI60) [16]. However, one of the central 
findings in [16] was that the predictive capabilities of these models was largely driven by 
associations between certain drugs that had stratified drug response based on histotype; 
drugs for which drug response was mostly independent of histotype tended to perform 
poorly in the models compared to those that did. The dimensionality inherent in omics 
data makes the model more susceptible to weaker broader signals making smaller, yet 
more informative signals, hard to isolate. The processes in a cell are inherently dynamic 
and adaptive. With respect to cancer drugs, the purpose of a drug is to interfere with 
the dynamic and adaptive mechanisms that are responsible for disease pathology. There-
fore, it is reasonable to assume that changes in gene expression after drug perturba-
tion would, in part, be reflective of the underlying mechanisms responsible for drug 
response. The idea that changes in gene expression are linked to drug mechanism has 
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been reflected in the connectivity map [17, 18] which has shown to give relevant phar-
macogenomic insights [19, 20]. Additionally, there have been studies that have leveraged 
specific gene dynamics in p53 pathway to predict drug response with promising results 
[21]. These results suggest that perturbation-based models have the potential to reflect 
drug response. Furthermore, features identified in perturbation-based models may be 
predictive even when applied to basal gene expression.

The NCI Transcriptional Pharmacodynamic Workbench [22] is a web based tool 
that allow users to explore the relationship between changes in gene expression, drug 
response, and drug exposure for 15 different drugs in the NCI60 panel of cell lines. How-
ever, this tool only allows a univariate analysis by correlation of gene expression and 
drug response. To the best of our knowledge, no one has applied multivariate predictive 
models using this data. We use Support Vector Regression with a radial basis function 
(SVR-RBF) to build predictive models of drug response for the data available in the NCI 
Transcription Pharmacodynamic Workbench. Specifically, there is an emphasis on the 
predictive capabilities of gene expression under different drug treatments. Additionally, 
the predictive relationships between these datasets are explored using correlation based 
feature selection [23]. Finally, network-based analysis is utilized to explore the relation-
ships that exist between selected genes for both basal gene expression and drug induced 
changes in gene expression.

Results
Perturbed gene expression at 24 h is a good predictor of drug response

It can be hypothesized that for each drug there is some timescale for each drug when 
drug induced perturbation is most predictive of drug response. Using the basal and per-
turbed gene expression at 2,6, and 24 h, 135 models (9 models for all 15 drugs), per time-
point, were constructed for each gene expression profile (basal, perturbed, expression 
deltas) for the 3 different treatment conditions. The best performing models, by average 
spearman correlation, consisted of gene expression profiles from Chigh gene expression 
( r = 0.495) after 24 h of treatment while, performance was lowest for ΔChigh ( r = 0.025) 
2 h post treatment. Performance was dominated by gene expression profiles 24 h post 
treatment (ΔChigh, ΔClow, Chigh, Clow) Fig. 1. The highest achieved average spearman cor-
relation was achieved for the drug Dasatinib ( r = 0.848) using ΔChigh gene expression 
24 h post treatment compared to lowest for Azacytidine ( r = 0.144) using ΔChigh gene 
expression 6 h post treatment. The average correlation of the top performing models for 
each drug drugs was r = 0.6074 (SD: 0.16) (Table 1.).

With respect to each drug and gene expression profile, six drugs were most predict-
able using ΔChigh gene expression at 24  h post treatment, four drugs using Clow gene 
expression at 24 h post treatment, two drugs at using Chigh gene expression at 24 h post 
treatment, and a single drug using ΔClow gene expression at 24 h post treatment (Table 1, 
Fig. 2b). Azacytidine and vorinostat were the only two drugs that did not have the best 
performance with 24-h post treatment gene expression. Azacytidine was most predic-
tive using ΔChigh 6  h post treatment and vorinostat was best predicted by basal gene 
expression. The interplay between dosage and timing was explored, since some drugs 
may display more predictive signatures at a low dose and others at a high dose. We found 
that across all models, gene expression profiles drugged at a high concentration (Chigh/
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Fig. 1  Average Spearman Correlations and with standard of deviation for models using different gene 
expression profiles for A. 24 h, B. 6 h, and C. 2 h
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ΔChigh) performed better than similar gene expression drugged with a lower concentra-
tion of drug (Clow/ΔClow). Both Chigh/Clow (Δr = 22%) and ΔChigh/ΔClow (Δr = 0.172%) 
had large differences in average correlation, however, only Chigh/Clow was significantly 
different (pwc = 0.0005) by Wilcoxen paired t test. Specifically, at 24  h post treatment 
Chigh resulted in models 1.2% better then ΔChigh gene expression, however the difference 
was not significant (pwc = 0.427). Conversely, at the lower concentration ΔClow outper-
formed Clow by 2.88% but not significantly (pwc = 0.65). At the 24 h time point models 
using basal data gene expression performed significantly lower with respect to Chigh 
(42.7%, pwc < 1e-4) and ΔChigh (42%, pwc < 1e-4). The results were similar at the lower con-
centration for Clow ( 30%, pwc < 1e-4) and ΔClow (32%, pwc < 1e-4). With respect to drug 
exposure (dose × time), Clow at 24 h performs 4.4% better than Chigh expression at 6 h 
despite that drug exposure at Chigh is greater; however this difference is not significant 
(pwc = 0.1065) (Fig. 2a). Additionally, while noting that Chigh gene expression at 6 h post 
treatment performs better than basal data (18%, pwc = 0.0001). Clow gene expression at 6 
and 2 h and Chigh gene expression at 2 h post treatment are comparable to models using 
basal gene expression ranging for 3.4% to 9.8% with no significant difference (pwc > 0.25).

A smaller set of differentially expressed genes are sufficient to capture drug response

Since each drug has specific modes of action that endow it with cytotoxicity, a smaller 
set of features, or gene expression signatures, may be as predictive of drug response 
as the entire ensemble of gene expression. To determine whether a predictive drug 
response gene expression signature could be found, DEGs were selected for each 24-h 
gene expression profile and models based on these DEGs were constructed within each 
gene expression profile (Fig.  3.). DEG gene expression profiles resulted in lower aver-
age spearman correlation compared to using all genes (NOFS), with the exception of the 
ΔChigh data (Azacytidine was left out in the analysis as it varied greatly between different 
testing sets within each individual gene expression profile). The increase in performance 
while using ΔChigh DEGs on ΔChigh data compared to the entire ΔChigh profile (NOFS) 

Table 1  The dataset that gave the best correlation for each drug

Drug Abbreviation Dataset Correlations

Azacytidine AZA Chigh Delta 6 h 0.144

Bortezomib BTZ Clow 24 h 0.603

Cisplatin CIS Chigh Delta 24 h 0.773

Dasatinib DAS Chigh Delta 24 h 0.848

Doxorubicin DOX Chigh Delta 24 h 0.709

Erlotinib ERB Chigh 24 h 0.692

Geldanamycin GEL Clow 24 h 0.641

Gemcitabine GEM Chigh Delta 24 h 0.576

Lapatinib LAP Chigh 24 h 0.646

Paclitaxel PTX Clow 24 h 0.6

Sirolimus SIR Clow 24 h 0.556

Sorafenib SOR Clow Delta 24 h 0.566

Sunitinib SUN Chigh Delta 24 h 0.593

Topotecan TOP Chigh Delta 24 h 0.707

Vorinostat VOR 0 nM 2 h 0.457
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Fig. 2  a Average spearman correlation plotted such that for each drug exposure is highest on the left and 
lowest on the right. b The rank, in terms of average Spearman correlation, of each model with respect to the 
gene expression profile used
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Fig. 3  DEGs and gene expression model performance. a Models using ∆Chigh gene expression with features 
selected from the different (by bar color) gene profiles. b Models using ∆Clow gene expression with features 
selected from different gene profiles. b Models using 0 nM gene expression with features selected from 
different gene profiles. Similar plots for Chigh and Clow can be found in Additional file 1: Figure S4
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was modest (DEG r = 0.5415, NOFS r = 0.5294) and not significant (pwc = 0.3437). 
Additionally, when comparing ΔClow gene expression the performance was only slightly 
less using DEGs ( r = 0.4092) then NOFS ( r = 0.4443) with no significant difference 
(pwc = 0.2516). However, with respect of Chigh profiles to Clow gene profiles, the perfor-
mance of the DEG models was significantly less (Chigh p < 1e−4, Clow p = 0.0181) with 
differences in performance of 10% (Clow) to 16.2% (Chigh). The difference between basal 
DEG models and basal NOFS models data was insignificant (pwc = 0.0533) where the 
DEG model performed about 10% worse ( r = 0.299/0.331). Comparisons between mod-
els using DEGs and NOFS model on a drug-by-drug basis can be seen in Fig. 3.

DEGs selected from different gene expression profiles are not universally predictive 

when applied across gene expression profiles

The advantage of using perturbation data for feature selection is straight forward; if a 
gene’s expression changes with exposure to drug there is a higher probability that the 
gene plays a role in the cells response to that drug. Thus, it is not unreasonable to assume 
that a gene that has a dynamic response to drug exposure is a good feature to use when 
modeling. However, often times the gene expression data for in vitro cell lines and tumor 
samples is available without any exposure to drug. Thus, it might be advantageous to 
use available drug perturbed data from another dataset to select features with a dynamic 
response, and apply those features in another dataset. However, it unclear whether a 
signature derived from drugged gene expression data also reflects drug response under 
unperturbed conditions. Therefore, one of the essential questions that we explored was 
the performance of gene signatures derived from one dataset while being applied to gene 
expression under different drug induced dynamics. In order to explore this question, 
we used correlation-based feature selection to select features using one gene expression 
profile and then applied those selected genes in models utilizing a different gene expres-
sion profile (refer to methods).

Differentially expressed genes selected in basal gene expression and applied to ΔChigh 
gene expression resulted in a 46.5% drop in performance ( r = 0.542 to 0.29). For com-
parison, using 100 randomly selected genes resulted in a smaller drop in performance 
by only 36%. The difference in performance was minimal (12%) when ΔClow DEGs 
were applied to ΔChigh expression data ( r = 0.542 to 0.48) and was substantially lower 
when Chigh DEGs were applied to the same data, resulting in a drop of 22% ( r = 0.542 
to 0.429) (Fig. 3a). Likewise, with respect to ΔClow data using basal DEGs resulted in a 
52% decrease in overall performance ( r = 0.41 to 0.197); however, contrary to the results 
for ΔChigh, when DEGs from ΔChigh were applied to ΔClow gene expression performance 
increased by 5% ( r = 0.41 to 0.43) but was not significant (pwc = 0.96). The applica-
tion of Clow DEGs to ΔClow gene expression resulted in 16.7% drop ( r = 0.41 to 0.351, 
p = 0.0028) (Fig. 3b).

We also tested the predictive capability of DEGs selected from basal and expression 
deltas on perturbation gene expression. Similar to what we found for expression deltas, 
basal DEGs resulted in the greatest drop in performance for both Chigh 16.7% ( r = 0.476 
to 0.396) and Clow 15.1% ( r = 0.4253 to 0.425) (Additional file 1: Fig. S4). Performance 
of ΔChigh DEGs on Chigh gene expression resulted in a slight increase in performance by 
roughly 1.7% ( r = 0.476 to 0.484), while ΔClow DEGs had only a negligible effect when 
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applied to Clow gene expression ( r = 0.4253 to 0.4250) (Additional file 1: Fig. S4). The 
application of Clow DEGs to Chigh gene expression resulted in a decrease of roughly 1.7% 
( r = 0.476 to 0.468), a slightly larger, but still models, drop in performance resulted from 
the use Chigh DEGs to Clow gene expression ( r = 0.4253 to 0.414).

DEGs were selected from perturbed gene expression and expression deltas and these 
DEGs were applied to basal gene expression (Fig. 3c). When ΔChigh DEGs were applied to 
basal genes expression, performance substantially decreased by 30% ( r = 0.299 to 0.208) 
and similarly, using ΔClow DEGs on basal gene expression the performance decreased by 
44% ( r = 0.299 to 0.166). Finally, a random selection gene expression from 100 random 
genes resulted in a decreased performance by only 29% ( r = 0.299 to 0.213). Further-
more, models using basal gene expression increased performance by 6% ( r = 0.299 to 
0.317) when using DEGs from Clow and ΔChigh DEGS applied to basal gene expression 
decreased performance by 2.7%. These results indicate that changes in gene expression 
that predict drug response are not predictive features in basal gene expression.

DEGS and network topology

One of the fundamental concepts in biology is that cellular systems are an assembly 
of dynamic interactions forming a network of interacting components, that provide 
the framework for all functions of the cell. While generally it is well understood that 
networks encompass some kind of connectivity, network models allow for rigorous 
mathematical approach to understand and analyze this general notion of connectivity. 
Particularly, there has been an interest in applying concepts behind network topology to 
understand the relationship between genes, disease states, and treatments [21, 24]. To 
explore the relationships between genes under both a basal and perturbed states, DEG 
networks were constructed using correlations to link genes. As outlined in methods, this 
was accomplished by calculating a correlation matrix for both the basal and expression 
delta gene expression profiles. Then Boolean graphs was constructed by placing edges 
between genes that had a spearman correlation p-value below a Bonferroni corrected 
significance level. The topology of the given network was then quantified based on 
cliques, a subset of nodes which share an edge with every other node in the subset, and 
the clustering coefficient which measures the connectivity of a subset of nodes all shar-
ing an edge with a single node (Fig. 4a).

There was a clear distinction between topological properties of networks formed with 
expression deltas DEGs compared with basal DEGs. On average networks constructed 
from expression DEGs formed 389% more cliques then networks formed with basal 
DEGs. The number of cliques which exceeded a size of 2 was also much greater using 
the expression deltas DEGs averaging around 60% similarly compared to 21% for basal 
DEGs. Likewise, the average clique length was 314% greater using expression deltas 
DEGs compared to Basal DEGs (Fig.  5b). Additionally, clique participation was much 
greater in expression delta. gene networks with each node participating in 1.1% of all 
cliques compared to only 0.3% for basal DEG networks. Lastly, expression deltas DEG 
networks had an average clustering coefficient that was 2.15 × greater than that of the 
basal DEG networks (Fig. 4c). Based on network topological features expression deltas 
DEGs showed a much greater level of interaction compared to DEGs derived from basal 
gene expression.
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Clique participation is a signature of cancer and drug response association of genes

In order to explore how clique participation might be associated with cancer associa-
tion we looked at the 15 genes that participated in the most cliques in both the expres-
sion deltas network and the basal gene network. Analysis of expression deltas-based data 
yielded several genes that had been cited in the literature to have some known asso-
ciation with cancer. For example, bortezomib included the Breast Cancer Metastasis 
Suppressor 1 gene (BMRS1), which has shown to play a role in metastatic potential in 
breast [25], melanoma [26], and non-small cell lung cancer [27–30]. Likewise, genes 
for paclitaxel included RNA Binding Protein 5 (RBM5), active in tumor suppression in 
breast [33] and lung [35] cancers and has also been associated with p53 activity [34]. The 
genes of doxorubicin included the gene MOB Family Member 4 (MOB4) which has been 
associated with tumor progression in glioblastoma [31]. Additionally, genes associated 
with tumor progression included PBX Homeobox Interacting Protein (PBXIB1), shown 
to play a role in lung adenocarcinoma [32, 33] and astrocytoma [38] for geldanamycin. 
Eukaryotic translation initiation factor 4E (EIF4E) was a highly connected gene for Dox-
orubicin, and has been shown to promote tumor progression upon phosphorylation in 
breast cancer and lymphoma cells [34–36]. Apoptosis related genes including Nuclear 
Receptor Coactivator (NCOA1) in cisplatin [37] and TIMELESS interacting protein 
(TIPIN), for lapatinib [38, 39]. Additionally, Cell Division Cycle 25A (CDC25A), a gene 
involved in cell cycle regulation in cancer [40] was a DEG for geldanamycin. Likewise, 
Topoisomerase DNA binding Protein (TOPBP1), a highly connected paclitaxel DEG, has 

Fig. 4  a Illustration of a clique (Right) of size 2 (top), 3 (Middle), 4 (bottom) and Clustering Coefficient for 3 
different subgraphs along with the average over all three subgraphs. b Average clique size, and c average 
clustering coefficient for different drugs for  ∆Chigh and 0 nM at 24 h
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been shown to play a regulating role in G2-M phase cell cycle progression [41]. Fur-
thermore, erlotinib included the gene survivin (BIRC5) and geldanamycin included RAN 
binding protein (RANBP1) both of which have been associated with paclitaxel sensitivity 
[42, 43]. These represent a subset of genes that we identified. For all drugs, genes with 
cancer associated references could be found or genes involved in cell cycle regulation, 
apoptosis, or translation. A list of these additional genes can be found in the supplemen-
tary material.

Likewise, several genes with maximum clique participation in the basal gene networks 
had associations with cancer. The gene that participated in the most cliques for borte-
zomib was ABCE1, a known mediator of drug resistance [44–46]. Likewise, for lapatinib 
ATB binding cassette family F member 1 (ABCF1) also associated with chemoresist-
ance [47]. One of the genes picked up for sorafenib was EGFR and among the genes 
for topotecan was a tumor suppressing genes ST14 (matriptase) [48–50]. Additionally, 
R-Ras 2, an oncogene gene known to be associated with tumorigenesis and metastasis 
was present for erlotinib [51, 52]. Additional genes of interest from basal gene expres-
sion networks can be found in the supplementary material.

Discussion
Small molecule gene perturbation has become a new focus to understand the relation-
ships between diseases and drugs [17, 18, 22]. One of the central roles of this work was 
to understand how gene dynamics could inform drug response and what roles drug 

Fig. 5  Model building outline
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exposure may play. The results suggest, given a limited subset of drugs and cell lines, 
that the differences in gene expression at 24 h between untreated and treated cells with 
a relatively higher high dose of drug is the best predictor of drug response compared 
to basal gene expression or perturbed responses at earlier time points and lower drug 
doses. Additionally, the data suggests that elapsed time might play may be a bigger factor 
than exposure, as models that utilized perturbation gene profiles treated with a low dose 
at the 24-h post treatment often outperformed models using high dosed gene expression 
but at an earlier time point. The similarity between the predictive ability of non-drugged 
gene expression and drugged gene expression at 2 and 6 h suggest that changes in gene 
expression are rather minimal at these early time points. One of the questions that might 
be of interest would be to answer at exactly what time do changes in gene expression 
become predictive and whether time points greater than 24 h could possibly be more 
predictive? Additionally, if the changes in gene expression could be measured with 
enough temporal resolution it might enable analysis of gene trajectories to see if they are 
indicative of drug response. Additionally, there is an interesting question that arises, are 
mechanisms of drug response dose dependent? For example, some cancers might have 
a certain tolerance to drug concentration and only after that concentration has been 
exceeded is there a coordinated response in gene expression. This might explain why 
gene expression is more predictive at higher doses than lower doses, higher doses initi-
ate different genomic responses. However, there is only a minimal performance increase 
in our models, suggesting that this kind of effect, at least at the drug doses explored, 
has minimal effect. Nonetheless, future work may include a more thorough analysis of 
changes in gene expression with respect to levels of drug exposure.

The role of feature selection in omics-based models is somewhat controversial. In 
certain other data-driven models feature selection can be critical in eliminating noise, 
resulting in a better performing model. In genomics two of the most used methods of 
feature selection is to use user-defined genes, for example, exploiting all genes known 
to be in a specific pathway or leveraging statistical inference to select features that can 
most likely explain the variability in the phenomena, such is the case with CBF or a pair-
wise t-test like LIMMA [53]. With respect to the former, this method inherently gives 
biological context; however, the problem of predicting drug response is that many of the 
mechanisms of drug response are not known [54], thus making it difficult to select genes 
based on prior knowledge. The second approach is very susceptible to noise and it is 
not clear if there is any advantage over using all features [14, 16]. However, the use of 
all features lacks the specificity to be useful for hypothesis generation. The inferential 
approach is somewhat of a go between, it does not exclude genes based on any prior 
bias, but preferences features only by the statistical capability to explain variation with 
respect to some biological observation such as drug response. The hope is that many of 
these features have a shared underlying biological context which results in the observed 
statistics. Drug response has both static and dynamic components, for example, multi 
drug resistance can result from the overexpression of efflux transporters [54] and down 
regulation of deoxycytidine kinase is seen in gemcitabine resistance [55]. A central ques-
tion that underlies the DEG experiments is whether statistical inference can capture an 
underlying relationship between static and dynamic gene expression when it comes to 
drug response. Based on our results, the drug induced changes in gene expression that 
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best predicted drug response did not have any predictive power in basal gene expres-
sion and the same was true of basal gene expression with respect to gene changes. In 
some instances, this might be indicative of how some signaling networks are designed. 
For example, if the protein expressed by gene A regulates the expression of gene B and 
a drug targets the enzymatic function of protein A, the expression of gene A, barring 
a feedback mechanism, would not change. Therefore, the downstream effects of the 
drug are exhibited by the change in expression of gene B. Therefore, the basal expres-
sion of gene B would not be indicative of drug response and there would be no dynamic 
response of gene A. However, this is only in respect to univariate feature selection, it is 
perfectly reasonable to believe that features exist in a higher dimensional space which 
might pertain to an underlying biological phenomenon; however, methods to find such 
features and map them to specific genes are yet to be developed.

The complexities of cancer therapy are immense and thus, especially from a pharma-
cological view, it is necessary to understand what properties make a cancer susceptible 
to a certain drug or what mechanisms are responsible for resistance. A recent publica-
tion showed that cell proliferation could be maintained without the specific proteins tar-
geted by many therapies; additionally, they also demonstrated that many of these drugs 
achieved cytotoxicity without the inclusion of the druggable target [56]. Targeted thera-
pies are notorious for an initial response followed quickly by developed resistance [57, 
58]. Furthermore, models using only target data performed substantially worse in both 
gene expression profiles (Additional File 1). All in all, gene expression of drug targets in 
both perturbed and unperturbed data are poor predictors of drug response. However, 
through network analysis we found that genes with high clique participation had been 
associated with cancer in both changes in gene expression and basal gene expression. 
Furthermore, the networks constructed from changes in gene proved to be significantly 
more connected networks than similar networks constructed from basal gene expres-
sion. This might explain why perturbation is a better predictor of drug response, the 
redundancies that result from coordinated changes lead to a stronger signal to noise 
ratio. Alternatively, this might suggest that drug response is a more likely a function of 
several interacting genes and several different mechanisms and this is reflected better 
under dynamic changes. This is certainly consistent with the observation that cancer has 
multiple mechanisms of drug resistance [59, 60].

Conclusion
There are several roles for computational models in oncology including, but not limited 
to, patient prognostics and treatment, new treatment development, informing clinical 
trials, and as a method of hypothesis generation especially when it comes interaction 
between cellular processes and drug mechanisms. Genetic perturbations would be diffi-
cult to leverage in a clinical setting, a prognostic model to aid patient treatment needs to 
be quick and cost effective. Acquiring, gene perturbations of a patient’s tumor for mul-
tiple drugs would be both difficult and time consuming. In vitro drug screens are often 
the first step in determining the potential of a possible drug candidate and also serve as 
a platform for hypothesis generation. However, as our data indicate, obtaining predic-
tive models with basal gene expression is difficult and furthermore might not be the best 
data to determine drug mechanism. However, gene perturbations prove to be better at 
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capturing drug response and they exhibit a high level of connectivity between genomic 
features. Therefore, modeling in  vitro gene expression changes could be instrumental 
to better understand the dynamic mechanisms behind drug response. A better under-
standing of the underlying gene dynamics induced by a drug would most likely promote 
insight into the underlying genetic mechanisms of drug response which are essential for 
developing new treatments and building robust prognostic models at the clinical level. 
In order to fully take advantage of this strategy it would be essential to generate more 
perturbation data similar in scope to the genomic and drug profiling that is associated 
with large cell line panels such as the GDSC, CCLE, and expanded among more drugs in 
the NCI60.

Methods
Data acquisition and pre‑processing

The Affymetrix U133A 2.0 raw expression data from Monks et.al was downloaded from 
the gene expression omnibus (https​://www.ncbi.nih.gov/geo) series number GSE116436 
[22]. Each drug had CEL files for gene expression for untreated cell lines (basal, 0 nM), 
cell lines drugged at a low dose of drug (Clow), and cell lines treated with a high dose of 
drug (Chigh) at 2,6, and 24  h. Frozen robust multi-array analysis (fRMA)[61] was per-
formed using the fRMA bioconductor (version 3.8.0) package in R (version 3.5.1) for all 
CEL files corresponding to each individual drug. At 2,6, and 24 h the data was split into 
gene expression matrices for basal, Clow, and Chigh. All gene expression matrices were 
scaled to a mean of 0 and unit standard deviation. Perturbation gene expression was 
obtained by subtracting the basal data from the drug treated data (Chigh,Clow) yielding 
matrices of gene differences at the high and low concentration (ΔChigh, ΔClow). Through-
out the text (Chigh, Clow) as perturbation gene expression and (ΔChigh, ΔClow) as per-
turbed gene expression deltas or simply expression deltas. NCI60 drug response data 
was obtained from the CellMiner version 2.2 https​://disco​ver.nci.nih.gov/cellm​iner [62]. 
The natural log of the GI50 was averaged for all measurements attributed to the same 
single cell line giving a single average LN GI50 for each cell line per drug.

Training and validation sets were generated randomly using threefold nested cross val-
idation. In order to generate a robust measure of performance across all gene expression 
datasets this process was repeated 2 more time giving a total of 9 random training and 
validation pairs with each cell line being represented at exactly 3 times during validation. 
Thus, amounting to 9 replicates for each gene expression matrix (basal/0 nM, Clow, Chigh, 
ΔClow, ΔChigh) (Fig. 5) at 2, 6, and 24 h.

Modeling

All models were trained using ε-insensitive Support Vector Regression (SVR) using a 
radial basis kernel function (RBF) from Scikit-learn [63] version 20.3 in python version 
3.7.3.

Parameters were optimized using a tenfold random shuffle cross validation scheme on 
subsets of the training set. Differentially expressed genes (DEGs) were chosen using cor-
relation based feature selection (CBF) [7] using spearman correlation in scipy version 
1.2.1. For the DEGs models, the DEGs chosen are the identity of the genes, however, 
the gene expression data used in the model will be from a possibly different dataset. For 

https://www.ncbi.nih.gov/geo
https://discover.nci.nih.gov/cellminer
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example, if the DEGs are from the Chigh data set, but the model is being evaluated on 
ΔClow the gene expression, the model uses gene expression from ΔClow but only genes 
that selected from the Chigh are used. The performance of each model is quantified using 
spearman correlation between the predicted and measured values. The general perfor-
mance, as displayed in the manuscript figures, is given as the average spearman correla-
tion and standard of deviation of the models over all 9 test sets for a given drug. This 
approach allows for a point and range estimate given a random sample of cancer cells 
from a larger population of possible cancer cells. The spearman correlation for each 
individual model can be sound in additional files 2 though 6 Graphics are generated 
using Prism Version 8 and to calculate significance, the paired Wilcoxen t test is used in 
comparing different models.

Topological network analysis

A graph, a mathematical formalism that represents networks, is defined as an ordered 
set of nodes, V, and the edges, E, that connect nodes G(V ,E) . The frequency and orien-
tation with which two nodes are connected describe the networks topology. A topologi-
cal measurement, cliques, are a subset of nodes such that every node in the subset shares 
an edge with every other node in the subset (Fig.  4a). Additionally, a graphs topology 
can be described by a connectivity coefficient which is a measurement of the degree to 
which a node is connected to other nodes (Fig. 4a). We use these graph theoretic princi-
ples to estimate networks of genes. Graphs, gene networks, are constructed as follows; 
using the smallest DEGs from all nine training/validation sets an adjacency matrix was 
obtained by first constructing a correlation matrix using spearman r. An edge was con-
sidered to connect two nodes if the p-value for the spearman correlation met the Bon-
ferroni corrected cutoff p value (α < 0.05). Using this criteria an adjacency matrix can 
be constructed where each entry in the matrix has a one, if genes i and j meet the crite-
ria for an edge between genes i and j, and a zero otherwise The software NetworkX 2.4 
[64] was used to generate a undirected graph from the adjacency matrix and calculate to 
cliques and average clustering coefficients of the generated graphs.
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