
LDscaff: LD‑based scaffolding of de novo 
genome assemblies
Zicheng Zhao1,2†, Yingxiao Zhou1,4†, Shuai Wang2, Xiuqing Zhang1, Changfa Wang3* and Shuaicheng Li2*

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2020 Virtual. 9-10 
August 2020

Background
With the massive increases in the throughput of the Next Generation Sequencing (NGS) 
technique, a large number of organisms have been sequenced and assembled  [1–8]. 
Most current assembly approaches stitched short reads together to generate contigs and 
scaffolds. Though NGS provides accurate base-level sequences, specific regions such 
as nonrandom repeat elements can hardly be accurately assembled. The reason for the 
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contiguity problem is typical short reads with lengths in the range of 20–500  bp can 
hardly cover the repeat regions  [9–11]. Also, vulnerable spots that may introduce gaps 
in the assembly process [9, 11, 12] due to uneven sequencing coverage.

Long-range scaffolding technologies can provide long-range connectivity, which 
can also aid in resolving the complex regions. Such methods include end sequenc-
ing of fosmid clones  [1], fosmid-based dilution pool sequencing  [13, 14], optical map-
ping [15–17], genetic mapping with restriction site associated DNA (RAD) tags [18] and 
proximity ligation (Hi-C) sequencing. However, each of these methods has a limitation 
in either experimental cost or application scenarios [19]. Fosmid cloning is sensitive to 
the quantity and quality of the input DNA, while fosmid libraries are subject to cloning 
bias. The data generating process for optical map construction involves mostly manual 
steps. These steps include DNA extension and image capture, which are low throughput 
and inefficient. Genetic maps are costly or impractical to generate from many species. 
Although the Hi-C data provide extensive links covering large distances, the current res-
olution is not high enough for the local ordering of small adjacent contigs.

Linkage disequilibrium(LD) is the non-random association of alleles at different loci 
in population genetics  [20, 21]. LD is of importance in population genetics because it 
reflects evolutionary history. It is derived from several population genetic forces that 
structure a genome, such as population selection, recombination, mutation, genetic 
drift, mating rate, population sex ratio, and genetic linkage. Genetic linkage maps con-
structed from population data now provide the basis for a wide range of genomics stud-
ies. LD depends strongly on one-dimensional distance and can extend over 550 KB [22]. 
LODE  [23] uses this kind of linkage information to place unpositioned SNPs by esti-
mating LD with SNPs with confirmed locations. LD maps constructed from SNP data 
can guide the ordering of contigs from a 216  KB region  [24]. Thus, the high-density 
inter-marker LD in the population dataset has the potential to inform the orders and 
orientation of scaffolds over a large distance. Some methods have been published to 
integrate whole genome sequencing(WGS) data and linkage map construction. POP-
SEQ [25] requires samples from a known crossing design to assemble a barley genome. 
Recombinant Population Genome Construction  [26] first build a ‘consensus’ assembly 
from sequencing a population of recombinant individuals, then a linkage map was gen-
erated to improve the assembly. The joint assembly and mapping method [27] constructs 
a high-density genetic map to exam the genome organization. Either these methods 
require specific crossing designs or a built linkage map. According to our best knowl-
edge, there is no available tool to guide scaffolding based on LD without building linkage 
maps.

Population analysis is essential in species genome studies to investigate the struc-
tural and variants among individuals as well as their evolutionary history. Currently, a 
large number of draft genomes in NCBI are assembled purely by short sequence reads. 
Accompanied by these draft genomes, whole-genome resequencing data have also expe-
rienced rapid development but have not obtained considerable integration and manipu-
lation. Here we present LDscaff to consider whether linkage information obtained from 
single-nucleotide variations in population, combined with short reads data, is capable of 
providing extra information in scaffold contiguity. LDscaff aids in the layout of a set of 
scaffolds with a graph method, by taking as input the population variation data, a set of 
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scaffolds, to build an undirected graph with a set of vertices and edges, representing the 
scaffolds and the LD strength among them. Computing the optimal orders and orienta-
tions of these scaffolds can be treated as a maximum weight matching problem.

We applied our method to both simulated data and empirical data to verify the effec-
tiveness of our method. The simulation experiments were performed on a pig genome. 
We randomly split the pig reference genome  [28] into 360 scaffolds and tried to reas-
semble them. The average error rate (percentage of misassemblies) is 2.43% in 20 experi-
ment trials. We then refined the draft Giant Panda genome  [4] and a de novo donkey 
genome assembly. These draft assemblies were both assembled using only short reads. 
The resulting Giant Panda assembly has a scaffold N50 of 3.6 MB, 2.5 folders larger than 
the original one. The re-assembled donkey assembly has an improved N50 length of 
32.1 MB.

Implementation
The scaffolding problem

The principle of whole-genome shotgun assemblies is to assign, order, and orient 
sequence contigs. Our method solves the scaffolding problem with a graphical algo-
rithm. We build a complete graph G, with vertices V representing scaffolds, and edge 
weights E corresponding to the linkage power between pairs of scaffolds. Given a 
weighted graph G, the problem is transformed into finding a set of edges that have the 
maximum sum-up weight and do not share common vertices. The problem is known as 
the maximum matching problem in graphical theory.

Data prepossessing

We downloaded the giant panda reference AilMel 1.0 from the NCBI GenBank data-
base (Accession number: GCA000004335.1). The genome coverage is 60x, and the N50 
of contigs and scaffolds are 39,886 bp and 1,281,781 bp respectively. We downloaded the 
chromosome-level panda genome [29] from the National Genomics Data Center (Acces-
sion Number: GWHACDL00000000). The genome coverage is 82x, and the genome 
sequence N50 is 129,245,720 bp.

A purebred donkey individual was sequenced on an Illumina HiSeq 2000 sequencing 
platform. The paired-end reads were initially assembled with SOAPdenovo v2.04.4 [30] 
to construct short but accurate scaffolds. Tiny scaffolds shorter than 2 KB (containing 
5.45% sequence bases) were set aside for insufficient linkage signal, and 2974 scaffolds 
remained. The assembly contained 2.4 Gb of sequence (scaffold N50: 22.0 MB).

We downloaded the panda population data from the NCBI Short Read Archive 
(SRA) database under accession SRA053353. In total, we obtained 34 panda samples, 
and then we aligned them to the reference with the BWA aln algorithm (Version 0.7.13) 
[31]. The bam files were converted and sorted using Samtools (Version 1.3.1) [32]. We 
used Freebayes (Version 0.9.10) [33] to call SNPs with default parameters. After that, 
we used GATK VariantFiltration [34] to extract reliable variants with strict criteria 
(   QD < 2.0, FS > 60.0,MQ < 40.0,MQRankSum < 12.5,ReadPosRankSum < 8.0   ) . 
Sorted BAM files were recalibrated with GATK BQSR with reliable SNPs. Local rea-
lignment around indels was performed with reliable indels using GATK Indel Realigner. 
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SNPs were called and filtered using GATK HaplotypeCaller with the same strict criteria 
as above. In total, we obtained 13 million (13,427,006) SNPs.

Population resequencing data from 132 donkeys were collected. These samples were 
sequenced on an HiSeq 4000 platform. Trimmomatic [35] was used to remove adap-
tor contamination. Cleaned reads were mapped to the donkey assembly using BWA 
(version: 0.7.10-r789). High-quality reads were selected ( MQ > 20 ) with SAM-
Tools (version 1.3.1). Regions covered by at least two reads in most samples (80%) 
were extracted. Duplications were marked and removed with Picard. High confident 
SNPs were obtained after GATK HaplotypeCaller and hard filtering were conducted 
( QD < 2.0, FS > 60.0,MQ < 40.0,MQRankSum < 12.5 ). Finally, the original BAM files 
were recalibrated with GATK BQSR with this set of SNPs. Among final SNPs, variants 
with small minor allele frequency less than 0.2 were filtered out.

Building scaffolding graph

Denote the graph G with the vertex set V and edge set E, each vertex refers to one side 
of a scaffold. For n scaffolds, the number of vertices in G is 2n. Edges are added for any 
two vertices. The graph is shown in Fig. 1a. We classify the edges into two groups, inner-
edges Ei , and outer-edges Eo . An inner-edge (blue lines in Fig. 1a) connects two vertices 
that belong to the same scaffold, while an outer-edge (black lines in Fig. 1a) does not. 
The weight of an outer-edge is the linkage power between the two corresponding verti-
ces. The inner–edges have weights of zero.

Linkage power calculation

Each outer-edge connects two distinct vertices, referring to two scaffold ends. For each 
scaffold end, m markers (m = 100 by default) were extracted. Two-loci LD is calculated 
for m*m marker pairs. Linkage power for two scaffold ends is the average value for all 
pairwise LD statistics. Short scaffolds (with markers fewer than m) were set aside for 
insufficiency to provide linkage information.

The linkage power between the two sides can be considered as the approximation of 
the physical distance between the vertices—the larger the linkage power, the shorter 

Fig. 1  Illustration of the algorithm. a A complete graph constructed from eight scaffolds. The blue lines are 
the inner-edges that represent the vertexes belong to the same scaffold. The black lines are the outer-edges 
that represent the linkage between vertexes that are in the different scaffolds; b The set of red lines is a 
solution of the matching problem for the complete graph in a. All the red lines do not share comm-on 
vertexes; c The solution of the matching problem (red lines) and the inner-edges (blue lines) can form a circle. 
The linear permutation and the orientation of the scaff-olds can be obtained by remove the red line with the 
lowest linkage signal
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physical distances on the genome. In reality, the inference of distance proximity from 
residue pair linkage is susceptible to both false negative and false positives. In our 
cases, allele distributions are estimated from a finite sample. Thus, a spurious nonzero 
allele frequency is likely to contribute a large LD value. To solve this issue, we esti-
mated the LD using balanced allele distribution.

Allele frequencies are balanced as follows. Consider two positions having two pos-
sible alleles, with alleles A, a at the first site and B, b at second site respectively, there 
are 9 possible genotype combinations. We use ki to denote the occupancy of each pos-
sible genotype. We also define di as the number of samples to remove. All possible 
combinations are displayed in Table 1.

Allele frequencies for allele A and for allele B are introduced,

We expect the allele frequency of allele A and allele B are approximate to 0.5 with the 
minimum number of removed individuals. We balance the frequencies using integer lin-
ear programming.

The linkage disequilibrium denoted as Dp is then calculated by the Fisher’s exact test 
with the balanced allele frequencies.

Permutation and orientation

The solution for maximum matching in G indicates the orders and orientation of the 
scaffolds. The maximum matching only includes outer-edges, and the degree of each 
vertex equals one as shown in Fig. 1. The matching constructed by Ei will form one 
or several circles in G with all the vertices in them (Fig. 1). Each circle can be trans-
formed into a linear path by removing the outer edge with the weakest weight in eM.

Software implementation

There are several algorithms for solving the maximum matching problem in a general 
graph [36–38]. In LDscaff we applied Edmond’s blossom shrinking algorithm imple-
mented by lemon [39]—an open-source graph library written in the C++ language.
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Evaluating assemblies

To evaluate the quality of assemblies, we mapped all assemblies to the corresponding ref-
erence genomes with nucmer [40] using the default parameters. We used QUAST [41] to 
collect various metrics (command line: “–eukaryote –min-contig 3000 –min-alignment 
500 –extensive-mis-size 7000 –fast –split-scaffolds”).

Results
We performed experiments on both simulated data and empirical data to evaluate the 
accuracy and effectiveness of our method.

Simulation result

We simulated scaffolds by randomly splitting the pig assembly Sus scrofa 10.2 and 
applied LDscaff on the generated scaffolds to check whether it can produce the correct 
orders and orientations. For better illustration, we first select chr1 in Sus scrofa 10.2, 
and simulated input scaffolds by splitting the chromosome into 20 scaffolds. We created 
a complete graph with 40 vertices as demonstrated in the “Method” section. Linkage 
strength between any scaffold ends is calculated using 100 SNPs. The heatmap in Fig. 2a 
shows the corresponding LD matrix of scaffold end pairs. The vertices were labeled by 

a b c
Fig. 2  LDscaff performance in simulated data. a The heatmap for the LD ma-trix in the simulated experiment 
with 40 vertices in 20 scaffolds, pixel intensity in the matrix indicates the strength of LD. Solid lines represent 
correct scaffolding orders, while dash lines represent misassembly; b The error rates versus gap sizes; c The 
error rates and numbers of matching links using different cutoff thresholds

Table 1  Enumeration of the genotypes and the notations

Locus 1 Locus 2 Observed individual number Withdraw 
individual 
number

AA BB k1 d1

AA Bb k2 d2

AA bb k3 d3

Aa BB k4 d4

Aa Bb k5 d5

Aa bb k6 d6

aa BB k7 d7

aa Bb k8 d8

aa bb k9 d9
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the scaffold position order in reference. Orders of the vertices represent a permutation 
of the original scaffold ordering. Pixel intensity in the matrix indicates the strength of 
LD.

There are two patterns as showed in the heatmap. The first pattern is that the LD value 
between scaffold end pairs decay as their genomic distance increases. Adjacent vertices 
tend to have higher weights of LD. The second is that scaffolds from different chromo-
somes can be clustered utilizing the boundaries of the heatmap.

In Fig. 2a, solid lines that link diagonal white boxes imply correct scaffolding orders. 
One misassembly was outlined with two sets of dashed lines, one links scaffold1 and 
scaffold6 together, the other one links scaffold7 and scaffold20 together. We denoted 
the error rate as the percentage of misjoins of all scaffolds, evaluating the accuracy of 
LDscaff. The error rate, in this case, is 1/40 = 2.5%. We also extended the experiments 
to the whole genome-wide, we split the 18 chromosomes in the of Sus scrofa 10.2 by 
randomly splitting the 18 chromosomes into 360 scaffolds. We then built a graph and 
resolve the layout of the simulated scaffolds. With 20 experimental repeats, the average 
error rate is 2.43%.

As the LD linkage disequilibrium decays with the increase of the physical distance of 
the loci in the genome, we test how the performance of scaffolding is affected by gap 
sizes between the simulated scaffolds. We introduce gaps ranging from 5 to 100  KB 
respectively. To estimate the accuracy better, we introduced the switch error rate, which 
is the number of switches that required for transforming the solution into the correct 
matching divided by the total number of links. The error rates and the switch error 
rates for different gap sizes are shown in Fig. 2b. As expected, both kinds of error rates 
increase as the gap size increases. When the gap size becomes larger, false-positive sig-
nals tend to increase. Different cutoff thresholds to break to weakest links were also 
tested as shown in Fig. 2c.

The giant panda genome

Based on the previously published panda assembly AilMel 1.0 purely from short reads, 
and a chromosome-level reference genome assembly (GWHACDL00000000) using 
linked-reads, we were able to test the accuracy of scaffolding. The AilMel 1.0 assembly 
was refined with LDscaff. After filtering, 2983 contigs remained and were linked into sets 
of cycles using different cutoff thresholds, as shown in Table 2. We then compared the 

Table 2  Comparison of the refined panda genome with SOAPdenovo-assembled genome

Cutoff Scaffolds before Scaffolds after N50 before N50 after

0.1 57 57 1335486 1158329675

0.15 57 254 1335486 20717847

0.2 57 1344 1335486 3358889

0.25 57 2123 1335486 1962870

0.3 57 2509 1335486 1625199

0.4 57 2843 1335486 1413235

0.5 57 2953 1335486 1353331

0.6 57 2981 1335486 1336590

0.7 57 2983 1335486 1335486
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generated sets of giant panda scaffolds with the GWHACDL00000000 assembly using 
mummer 3.23 [42] as shown in Fig. 2a, b using cutoff of 0.1 and 0.2, respectively. The 
complete alignment results with cutoffs 0.1, 0.2, and 0.3 are shown in Additional file 1: 
Figs. S1–S22. We broke the links that have LD weight less than 0.2 (termed as the cut-
off), we get improved N50 (3.6 MB) 2.5 folder larger than the original one (1.3 MB) as 
shown in Table 2. Qualities of AilMel 1.0 assembly and refined assembly were evaluated 
using QUAST, the metric was shown in Table 3.

The donkey genome

We applied our approach to improving a donkey genome assembly. We calculated scaf-
fold pairwise LD strength with 100 SNPs at each side of the scaffold, scaffolds that not 
long enough to provide sufficient SNPs were filtered out. We then link the remaining 551 
scaffolds using linkage information. The raw resulting assembly consisted of 80 cycles, 
they were then partitioned into 382 scaffolds (N50 length of 32.1  MB) after breaking 
the links with a cutoff of 0.2. The assembly now contains 94.3% of the total sequence 
(2.27G). The relationship of different cutoff thresholds and N50 of the refined assembly 
is shown in Table 4. The misassembly evaluation comparison metric of draft assembly 
and the refined assembly (cutoff equals 0.2) is shown in Table 5.

To investigate the refinement of the donkey genome in detail, we performed synteny 
comparison to the horse genome as shown in Fig. 3c, d using cutoffs of 0.1 and 0.2. The 
full alignment results were shown in Additional file  1: Figs.  S23–S54. We first sorted 
donkey scaffolds and oriented them according to horse chromosomes (hereafter, labeled 
as ECA). Consider the absence of genomes from closest phylogenetic relatives(rhinos), 
we only take rearrangements occurring within donkey scaffolds as reliable. More strictly, 
only rearrangements that pass all cutoff thresholds are further investigated. We iden-
tified two inversions between the horse and the donkey, that mapped to ECA7 and 
ECA28, as shown in Fig. 4. Both of them have been verified in a de novo donkey genome 
by Chicago HiRise assembly [43]. Around regions these found inversions, LD was ranked 
top in genome-wide level, which is consistent with the algorithm that LDscaff used. Set-
ting high cutoff can distinguish reliable inversions from false-positive ones caused by 
misassembly. It implies that LDscaff has the potential to aid in the identification of chro-
mosome inversions.

Comparison of HiC and LDscaff

We used HiC data to reassemble the same draft donkey genome from SOAPdenovo2, 
and the re-assembled scaffolds using LDscaff. The assembly was scaffolded with Hi-C 
data using the 3D-DNA pipeline [44]. The Hi-C reads were aligned to the draft donkey 
genome assembly using the Juicer pipeline [45]. The 3D-DNA pipeline was run with the 
default parameters. We evaluated assembly across four categories of error: relocations, 
translocation, inversion, and indels. The full comparison results are shown in Table 6. 
The number and size of these errors were calculated after QUAST splits input assembly 
by continuous fragments. For assembles involved HiC scaffolding, contigs shorter than 
15  KB were set aside. Compared with HiC scaffolding, LDscaff-reassembled sequence 
has less scaffolding errors decreased with decreasing assembly contiguity. The His-reas-
sembled sequence has twice misassembled bases more than the LDscaff result. When 
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integrated HiC and LDscaff, the assembly size has decreased to 1.8G from 2.2G, while 
the N50 size has increased to 1.2G, which is the size of the longest scaffold.

a b

c d

Fig. 3  Dot-plots showing alignments of re-assembled scaffolds by LDscaff versus chromosome-length 
scaffolds. Cutoff of 0.1 was used in a and c, cutoff of 0.2 was used in b and d. The panda reference chr17 and 
the horse reference chr10 are shown on the X axis in upper part and lower part, respectively. The Y axis shows 
the re-assembled scaffolds (alignment longer than 5000bp, percentage of match higher than 70%). They 
have been ordered and oriented to match the chromosomes as defined in the reference in order to facilitate 
comparison. Each dot represents the position of an individual resolved scaffold aligned to the reference. The 
color of the dots and lines were colored to represent the match rate for each scaffold (red indicate higher 
mat-ching rate, whereas blue indicates lower matching rate)
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Fig. 4  Chromosomal inversions were identified using LDscaff a A inversion mapped to horse reference chr7; 
b A inversion mapped to horse reference chr28
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Discussion
Assemble the sequenced reads to chromosome level is a long term puzzle in genome 
analysis. The Human Genome Project tool scientists about 10 years to complete that 
first human genome sequence. Currently, tools are capable of obtaining a more accurate 
human genome with only hundreds of CPU hours [46].

With the explosive volume of sequencing data, it is important to take full advantage 
of the features in different sequencing strategies to achieve the task of genome assem-
bly. Short reads provide accurate base calls while long reads can help to reconstruct 
the long-range structure of the genome [47]. Linked-Reads group reads deriving from 
the same molecule [48]. Hi-C data can provide linkage information across a variety of 
length scales. LD from population SNP data offers patterns of recombination rates. 
Hybrid assembly tools have been developed for integrating all these sequencing tech-
niques [49]. Most of them are based on a clustering-assembly strategy by solving the 

Table 3  Mis-assembly comparison of  the  refined panda genome with  SOAPdenovo-
assembled genome

Assembly evaluation Before LDscaff After LDscaff

Misassemblies 1092 448

Contig misassemblies 866 314

   c. relocations 822 283

   c. translocations 38 28

   c. inversions 6 3

Scaffold misassemblies 226 134

   s. relocations 220 126

   s. translocations 6 8

   s. inversions 0 0

Misassembled contigs 200 37

Misassembled contigs length 211889858 104831721

Local misassemblies 8122 2873

Scaffold gap ext. mis. 71 21

Scaffold gap loc. mis. 4856 1792

Unaligned mis. contigs 1502 563

Mismatches 412290 191921

Indels 95351 46834

   Indels ( ≤ 5 bp) 67654 33342

   Indels (> 5 bp) 27697 13492

Indels length 896205 436349

Table 4  Comparison of the refined donkey genome with SOAPdenovo-assembled genome

Cutoff Scaffolds before Scaffolds after N50 before N50 after

0.1 80 81 23779253 2108947689

0.15 80 254 23779253 44040746

0.2 80 382 23779253 32092974

0.3 80 484 23779253 26289196

0.4 80 514 23779253 24644580

0.5 80 542 23779253 23779253
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scaffold orientation and order asynchronously. It has been approved that the hybrid 

Table 5  Mis-assembly comparison of  the  refined donkey genome with  SOAPdenovo-
assembled genome

Assembly evaluation Before LDscaff After LDscaff

Misassemblies 7166 3266

Contig misassemblies 5173 2330

   c. relocations 1517 651

   c. translocations 3319 1522

   c. inversions 337 157

Scaffold misassemblies 1993 936

   s. relocations 425 215

   s. translocations 1543 712

   s. inversions 25 9

Misassembled contigs 369 122

Misassembled contigs length 2256451641 1112560100

Local misassemblies 59490 26941

Scaffold gap ext. mis. 80 31

Scaffold gap loc. mis. 26321 12206

Unaligned mis. contigs 18 26

Mismatches 27642582 13299554

Indels 2673003 1283993

   Indels ( ≤ 5 bp) 2189565 1051168

   Indels (> 5 bp) 483438 232825

Indels length 13686335 6581365

Table 6  Assembly comparison after spliting by continuous fragments

Assembly composition SOAPdenovo + LDscaff SOAPdenovo + HiC SOAPdenovo + LDscaff + HiC

Assembly size 2266537396 2252886107 1797011536

No. scaffolds 382 647 123

N50 size 32092974 58665385 1254064180

Misassemblies 2426 4852 2162

Contig misassemblies 2426 4852 2162

   c. relocations 589 1231 524

   c. translocations 1678 3298 1490

   c. inversions 159 323 148

Scaffold misassemblies 0 0 0

   s. relocations 0 0 0

   s. translocations 0 0 0

   s. inversions 0 0 0

Misassembled contigs 1528 3120 1384

Misassembled contigs length 71602181 144952053 67084793

Local misassemblies 28366 58360 27273

Unaligned mis. contigs 117 203 102

Mismatches 13257465 27321894 12732835

Indels 1249703 2585745 1204396

   Indels ( ≤ 5 bp) 1041691 2156454 1004988

   Indels (> 5 bp) 208012 429291 199408

Indels length 5760596 11919093 5519229
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strategy can boost the assembly result in both continuity and accuracy.
LD indicates the non-random associations between physical markers. Linkage 

information among genes or loci provides relative position information  [23] and 
is capable of finding scaffolds that conflict with their relative orders. Genetic link-
age maps have been used to refine the de novo genome assemblies [6, 50], and show 
the potential to guide the layout of scaffolds. However, with millions of genomes are 
now being collected, the information provided by population data has not been fully 
utilized to resolve the task of genome assembly. Here we proposed a computational 
graph-based algorithm to resolve the scaffold orders and orientation simultaneously. 
Our method proves to be effective when applied to both simulated data and empirical 
data.

The sample size affects LD estimation. Theoretically, more individuals sampled leads 
to better performance. Two main methods are used to calculate LD, r2 and 

∣

∣D′
∣

∣ . r2 has 
been proved not noticeably affected by sample size [51], which LDscaff uses. A mini-
mum sample size of 55 for accurate calculation of LD is suggested [51].

Linkage information can help increase the continuity of assembly, but locus pairs with 
too long distances between them provide weak linkage power. Thereby we cut the unre-
liable links with a proper cutoff threshold. We advance the cutoff threshold should be 
equal to or larger than 0.2. The larger the cutoff threshold, the less the assembled scaf-
fold contiguity, but better accuracy.

Conclusions
We hope that the improvement in genome assembly provided by LDscaff will further 
boost the use of existed sequencing data. While assemblers improve genome assemblies, 
data they require is the cost to be considered. Therefore, LDscaff provides an example to 
improve assembly quality by mining biological databases.

Supplementary information
is available for this paper at https​://doi.org/10.1186/s1285​9-020-03895​-7.

Additional file 1. The dot plots of LD-scaff re-assemblied scaffolds in Panda and Donkey genome.
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