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Abstract 

Background:  Genomic profiling of solid human tumors by projects such as The Can-
cer Genome Atlas (TCGA) has provided important information regarding the somatic 
alterations that drive cancer progression and patient survival. Although researchers 
have successfully leveraged TCGA data to build prognostic models, most efforts have 
focused on specific cancer types and a targeted set of gene-level predictors. Less is 
known about the prognostic ability of pathway-level variables in a pan-cancer setting. 
To address these limitations, we systematically evaluated and compared the prognostic 
ability of somatic point mutation (SPM) and copy number variation (CNV) data, gene-
level and pathway-level models for a diverse set of TCGA cancer types and predictive 
modeling approaches.

Results:  We evaluated gene-level and pathway-level penalized Cox proportional 
hazards models using SPM and CNV data for 29 different TCGA cohorts. We measured 
predictive accuracy as the concordance index for predicting survival outcomes. Our 
comprehensive analysis suggests that the use of pathway-level predictors did not offer 
superior predictive power relative to gene-level models for all cancer types but had 
the advantages of robustness and parsimony. We identified a set of cohorts for which 
somatic alterations could not predict prognosis, and a unique cohort LGG, for which 
SPM data was more predictive than CNV data and the predictive accuracy is good for 
all model types. We found that the pathway-level predictors provide superior interpre-
tative value and that there is often a serious collinearity issue for the gene-level models 
while pathway-level models avoided this issue.

Conclusion:  Our comprehensive analysis suggests that when using somatic altera-
tions data for cancer prognosis prediction, pathway-level models are more interpret-
able, stable and parsimonious compared to gene-level models. Pathway-level models 
also avoid the issue of collinearity, which can be serious for gene-level somatic altera-
tions. The prognostic power of somatic alterations is highly variable across different 
cancer types and we have identified a set of cohorts for which somatic alterations 
could not predict prognosis. In general, CNV data predicts prognosis better than SPM 
data with the exception of the LGG cohort.
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Background
Advances in high-throughput technologies have helped to identify and characterize the 
genomic landscape of human cancers. Large collaborative projects, such as The Can-
cer Genome Atlas (TCGA), have characterized gene expression, mutation, copy number, 
miRNA, and methylation features from over 20,000 primary cancers and adjacent nor-
mal samples spanning 33 cancer types [1]. Based on the analysis of these genomic fea-
tures and clinical outcomes, many prognostic biomarkers have been proposed. Tumors 
that arise from the same tissue can behave heterogeneously and patients with the same 
cancer type can have variable clinical and genomic features. Therefore, patients can 
exhibit different prognoses. Cancer prognosis prediction can improve the stratification 
of patient risk, better personalize treatment and decrease unnecessary over-treatment 
[2]. Previous TCGA-wide genome-wide studies have often focused on gene expression 
features to identify cancer prognostic biomarkers [3–5]. Compared to analyses of can-
cer gene expression data, there have been fewer systematic reports on the association 
between somatic alterations and clinical outcomes such as patient survival [6]. Somatic 
alterations can be classified into two types: somatic point mutations (SPM), which 
include single nucleotide variants and indels which only affect one or a few genetic code 
letters, and somatic copy number variations (CNV), which involve larger contiguous 
portions of the genome either being lost (deletions) or duplicated (amplifications) [7]. 
A few studies have identified mutation features for specific cancer types, such as lung 
adenocarcinoma [8], acute myeloid leukemia [9], breast cancer [10] and colorectal can-
cer [11]. Most of these studies are conducted on a single cancer type with a single type of 
somatic alterations data. Additionally, most somatic alterations, even when aggregated 
at a gene-level, are too rare to support meaningful association studies. One alterna-
tive method is to summarize mutation information by certain features before conduct-
ing association studies [6]. One widely used feature for SPM is tumor mutation burden 
(TMB, the total number of SPMs). For CNV a similar measure is copy number alteration 
burden which indicates the degree to which a tumor’s genome is altered as a percentage 
of genome length [7]. But both of these measures are sample-wise measurements that 
give an overall score to each sample, therefore, both of them discard specific gene infor-
mation. To more fully characterize alterations that jointly affect prognosis we propose 
using gene set enrichment methods to aggregate the information to the pathway-level so 
that a score is given for each pathway and each sample.

Gene set enrichment (GSE) analysis is a popular approach for condensing informa-
tion from gene expression profiles into signature summaries. GSE methods evaluate 
statistics that are computed for biologically meaningful groups of genes [12], e.g., the 
sets defined in collections such as the Molecular Signatures Database (MSigDB) [13]. 
Most GSE methods, e.g., GSEA [13] and CAMERA (Correlation Adjusted MEan RAnk 
gene set test) [14], are supervised and population-level techniques, i.e., they evaluate the 
association between gene set statistics computed for an entire data set and some clinical 
outcome, e.g., case/control status. GSE methods also exist that can perform a so-called 
single sample analysis, i.e., they compute gene set statistics for each sample to transform 
a sample-by-gene matrix into a sample-by-pathway matrix. A number of single sample 
GSE methods have been developed for gene expression data, including single sample 
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GSEA (ss GSEA) [15], Gene Set Variation Analysis (GSVA) [16] and Pathway Level Anal-
ysis of Gene Expression (PLAGE) [17].

To gain a global understanding of the prognostic power of somatic alterations, we sys-
tematically analyzed SPM and CNV data of 29 TCGA cancer types. We evaluated gene-
level and pathway-level Cox proportional hazards models for just SPM data, just CNV 
data and the combination SPM and CNV data. Given the sparsity of somatic alterations 
data, it was our hypothesis that pathway-level models would have greater prognostic 
accuracy and be more interpretable, stable and parsimonious. We also evaluated a range 
of approaches for aggregating SPM data at the pathway level and different approaches for 
filtering genes prior to model estimation. Although the use of pathway-level predictors 
did not offer superior predictive power relative to gene-level models for all cancer types, 
we found that model robustness and parsimony are consistently better for pathway-level 
models. Our comprehensive analysis suggests that the prognostic power of somatic 
alterations is highly variable across different cancer types with low grade glioma offering 
the highest predictive accuracy. Based on the outcome of this comprehensive evaluation, 
we provide general recommendations for the use of gene-level versus pathway-level pre-
dictors and the use of SPM versus CNV data for cancer prognosis prediction.

Methods
Data sources

We downloaded the gene-level SPM, CNV data and clinical data from the UCSC Xena 
datahub [18] for 37 cohorts profiled by The Cancer Genome Atlas (TCGA) [1]. Among 
the 37 cohorts, 5 cohorts were removed because of an insufficient number of samples 
which are Bile Duct Cancer cohort (CHOL), Large B-cell Lymphoma cohort (DLBC), 
Formalin Fixed Paraffin-Embedded Pilot Phase II cohort (FPPP), Skin Cutaneous Mel-
anoma (SKCM) and Uterine Carcinosarcoma cohort (UCS). Three combinations of 
the subtype cohorts were also excluded which are colon and rectum adenocarcinoma 
(COADREAD), brain lower grade glioma and glioblastoma multiforme (GBMLGG) and 
lung cancer (LUNG). After these removals, there were 29 cohorts available for analysis. 
The characteristics including sample size and death rate of the 29 cohorts are provided 
in the Additional file 1: Table X1.

For the SPM data, we downloaded the dataset from the UCSC Xena datahub, which 
has processed the variants to gene-level binary values. The wrangling steps conducted by 
UCSC Xena for this dataset include: (1) download mc3.v0.2.8.PUBLIC.maf.gz, (2) only 
keep mutations with filter = PASS, (3) convert to binary gene-level non-silent mutation 
calls, (4) extract cohort sample data. Specifically, mutation calls were produced by the 
Multi-center Mutation Calling in Multiple Cancers (MC3) working group and were pub-
lished in file mc3.v0.2.8.PUBLIC.maf.gz (https​://api.gdc.cance​r.gov/data/1c8cf​e5f-e52d-
41ba-94da-f15ea​1337e​fc) [19]. The MC3 efforts provide consensus calls from 7 software 
packages and they also provide a “PASS” identifier to indicate whether the variant pass 
the filter criteria. The MC3 efforts took significant steps to remove potential germline 
calls and non-exonic variants. Filter flags include low normal depth coverage, non-
exonic sites, sites outside of capture kit, sites marked by the Broad Panel of Normals, 
samples marked as being contaminated by ContEst, and variants that were only called by 
a single caller. If a mutation was not assigned any flag, it received a ‘PASS’ identifier [20]. 

https://api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-94da-f15ea1337efc
https://api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-94da-f15ea1337efc
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Based on this identifier, only the variants with filter = PASS were kept and they were con-
verted to gene-level binary values indicating whether there are non-silent mutations. For 
the CNV data, we downloaded the dataset from UCSC Xena datahub, which has been 
processed to gene-level estimates. Specifically, the copy number profile was measured 
experimentally using whole genome microarray at a TCGA genome characterization 
center. Subsequently, TCGA FIREHOSE pipeline applied GISTIC2 method [21] to pro-
duce segmented CNV data, which was then mapped to genes using UCSC Xena HUGO 
probeMap to produce gene-level estimates. During this process, filtering steps included: 
(1) probe sets that were previously indicated to be associated with frequent germline 
copy-number variation were removed, (2) only protein-coding genes were kept.

The HALLMARK pathway collection (50 pathways), REACTOME (1499 pathways), 
PID (196 pathways derived from Pathway Interaction Database), BIOCARTA (289 path-
ways) from C2 collection and BP from C5 collection (1350 pathways), were obtained 
from the Molecular Signatures Database (MSigDB) [13]. Detailed information about the 
used pathway collections is provided in Additional file 1: Table X2.

A list of all cancer census genes  was downloaded from the COSMIC website (723 
genes) (release v90, 5th September 2019) [22]. This list was used for further filtering 
genes to be used in the analyses.

Prognostic models

Figure  1 is the workflow of gene-level models. In addition to models that used all of 
the genes in the TCGA data, we also tried several criteria for filtering genes prior to 
model estimation: only include genes that are contained in the target pathway collec-
tion (we only used the MSigDB Hallmark collection in this case to avoid an overly com-
plex comparison), only include genes in the COSMIC cancer gene census (this filtering 
was only performed for SPM data), only include genes meeting both the pathway col-
lection and COSMIC criteria, and only include genes in the target pathway collection 
that also have a significant association with survival according to a univariate Cox model 
(p value ≤0.05). To avoid a biased estimation of predictive performance, filtering based 
on the results from a univariate Cox model was performed on the training data, which 
comprised 80% of the samples. Filtering the gene-level predictors according to both the 
COSMIC cancer gene census and the results from univariable Cox models indirectly 
account for risk level and functional impact of the associated variants.

After variable filtering, we performed 20 iterations of nested cross-validation to 
evaluate the predictive performance of each model. Specifically, a fivefold cross vali-
dation randomly splits the data into training and test sets with 4/5 proportion of 
the samples for training and 1/5 proportion for testing. For each training set, ten-
fold cross validation is conducted within Cox Lasso to choose the tuning regulariza-
tion parameter lambda value that gives minimum mean cross-validated error. With 
the amount of regularization controlled by the selected lambda, the estimated Cox 
model is applied to the test set to assess predictive performance as quantified by the 
concordance index (see the “Model evaluation metrics” section for details). Using the 
average of the 100 chosen lambda values (20 replications multiplied by 5 cross valida-
tion folds) as the regularization parameter, we fit a Cox Lasso model on the whole 
dataset and retained the variables with non-zero coefficients. With these variables, 
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we estimated both an unpenalized multivariate Cox model and, for each retained 
variable, a univariate Cox model to obtain non-shrunken coefficient estimates and p 
values.

In our analysis, we adopted Cox regression models, for both multivariable and uni-
variable analyses. Cox regression models are the most widely used method for sur-
vival analysis with censored data and several studies have shown that Cox regression 
models are at least as good as, or even better than, neural networks, SVMs, random 
survival forest and other machine learning methods when modeling censored survival 
with clinical variables [23–25]. But when considering the high dimensionality issue 
of omics data in which the number of covariates is larger than the sample size, Cox 
regression models encounter the over-fitting issue. Under this situation, combining 

Fig. 1  Workflow of gene-level models. In the 5 boxes are 5 intersected sets we achieved after filtering. 
“All” represents all the genes in the data, “Path” represents all the genes in the pathway collection, “COSM” 
represents all the genes in the COSMIC database, “Cox” represents all the genes which have significant p 
value in the univariable Cox model. The gene subsets represented by the 2 boxes after the dashed arrows 
were only applied to SPM data. 5-fold cross validation is conducted and for each training set, Cox Lasso is 
fitted. The estimated Cox model is applied to the test set to assess predictive performance. Unpenalized 
Cox models are also fitted, with the average value of lambda as the regularization parameter, to obtain 
non-shrunken coefficient estimates and p values
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Cox regression models with a Lasso penalty for variable selection is widely used to 
identify prognostic biomarkers and obtain more parsimonious models.

Figure  2 displays the workflow for evaluation of the pathway-level models. The 
gene-level variables are first transformed to pathway-level variables. In this study, 
we performed a single sample GSE analysis of TCGA somatic alterations data rather 
than a population-level analysis since we aim to use either gene-level or pathway-
level somatic alterations statistics as predictor variables in Cox proportional hazards 
models. An important limitation of current GSE methods like GSVA is that they 
were designed for gene expression data and have not been evaluated on CNV and 
SPM data. In this study, we directly applied the current GSVA implementation to 
CNV data. GSVA conducts kernel density estimation of the cumulative distribution 
function and Kolmogorov–Smirnov (KS) like random walk to calculate sample-level 

Fig. 2  Workflow of pathway-level models. The abbreviation “Uni Cox” represents “Univariable Cox model”, 
“Multi Cox” represents “Multivariable Cox model”. 5-fold cross validation is conducted and for each training 
set, Cox Lasso is fitted. The estimated Cox model is applied to the test set to assess predictive performance. 
Unpenalized Cox models are also fitted, with the average value of lambda as the regularization parameter, to 
obtain non-shrunken coefficient estimates and p values
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statistics. We expect that the approach taken by GSVA will work similarly on both 
gene expression data and the continuous TCGA level 3 CNV data. A difference 
between SPM and CNV is that CNVs typically affect multiple genes in a contigu-
ous region and are therefore more affected by the regional organization of genes. 
For SPM data, a straightforward method for computing pathway-level statistics is 
to count the number of mutated genes in each pathway [26]. In this study, we use 
two different methods for calculating pathway-level values from SPM data, which 
we refer to as the log-odds ratio method and the binary method. For the log-odds 
ratio approach, a 2-by-2 table is created for each pathway and sample by counting 
the number of genes in each of the four possible combinations (being in the specific 
pathway or not and being mutated or not). Using this 2-by-2 table, the odds ratio 
is computed to measure the association between being in the specific pathway and 
being mutated. The log-odds ratios are used as predictor values for pathway-level 
models. For the binary approach, for each pathway and sample, if there are mutated 
genes in this pathway, the value is 1, otherwise it is 0. Once the pathway-level data 
matrix has been generated, evaluation of prognostic ability follows the same steps 
outlined above for the gene-level models.

In addition to the SPM only and CNV only models, we also investigated integrated 
models that used both SPM data and CNV data. For these evaluations, we used both 
SPM and CNV-based predictors defined at either the gene-level or pathway-level 
and assessed predictive performance using the same approach. For the gene-level 
integrated models, gene-level SPM and CNV data were combined and then analyzed 
using the workflow shown in Fig. 1. For the pathway-level integrated models, path-
way-level SPM and CNV data were combined and then analyzed using the workflow 
shown in Fig. 2.

Model evaluation metrics

The concordance index (CI), Fleiss kappa statistic and average number of predictors 
were implemented as evaluation metrics in this study, which are same with our previous 
study in [27]. We used the average concordance index ranging between 0 and 1, to quan-
tify the predictive power of each model. The concordance index, or c-index, is one of 
the most widely utilized performance measures for survival models which can be inter-
preted as the concordance between the prediction and the survival outcomes. Specifi-
cally, a CI of 1 indicates perfect prediction accuracy and a CI of 0.5 represents random 
prediction [28]. The Fleiss kappa statistic [29] is exploited to evaluate the repeatability 
and stability of models. The Fleiss kappa statistic is frequently utilized to test interrater 
reliability with 1 indicating perfect agreement and 0 indicating no agreement. Measure-
ment of the extent to which raters assign the same score to the same variable is called 
the interrater reliability [30]. In our case, each trained model is designed to be a rater to 
assign the affiliation of each variable (gene or pathway). We conducted 20 replications 
of fivefold cross validation. As such, we had 100 trained models, or 100 raters in total, 
among which the agreement was measured by the Fleiss kappa. Finally, we used the 
average number of predictors in the 100 trained models to measure model parsimony.
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Null models

To ensure the predictive signals are not generated randomly and that the prediction is 
not inflated in our analyses, we checked the results of null models, in which all the steps 
are the same except that the survival outcomes are shuffled among individuals to break 
any association between the variables and the outcomes, while maintain the correlations 
among variables. The result of these null models in Additional file 1: Figure S1 and show 
that for all the models and cohorts, the concordance is around the expected null value of 
0.5, which demonstrates that the signals in our true models are valid.

Simulation study for Lasso

To show how Lasso works when there are duplicated variables (perfect collinearity) in 
the data, we designed a simple simulation study as described in Additional file 1.

Results
Across cancer types

To have a better understanding about the comparison of different workflows across dif-
ferent cancer types, we plotted heatmaps of the concordance index (predictive power), 
Fleiss kappa statistics (robustness) and average model size (parsimony).

Figure  3 plots the concordance index between predicted and observed outcomes 
across different models and cancer types. The LGG cohort performed remarkably well 
for all models, especially for the gene-level SPM models. While for cohorts such as 
UVM and KIRP, the SPM-only models have close to null predictive power using either 

Fig. 3  Heatmap of the concordance index for different models and cancer types. “PLv” represents 
“Pathway-level” and “GLv” represents “Gene-level”. HALLMARK, PID, BIOCARTA, REACTOME and BP are the used 
five pathway collections as introduced in “Methods” section. Corresponding to each model introduced in 
“Methods” section: “log OR” and “Binary” represent the two enrichment methods for SPM data; “all genes”, “Path 
intersected”, “Cosmic intersected”, “Cox filter” represents the filters on the genes. The maximum value among 
all is 0.86 and the minimum is 0.42
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gene-level or pathway-level predictors. It is interesting to note that the SPM models are 
clustered separately from the CNV models and SPM/CNV combination models, which 
shows that SPM and CNV data provide distinct information regarding cancer prognosis. 
The comparison between the log-odds ratios approach and the binary approach shows 
that the log-odds ratios approach is slightly better than the binary approach although it 
did not significantly improve the predictive performance. The comparison across differ-
ent pathway collections and different intersected gene filtering shows that adopting dif-
ferent pathway collections or different filtering methods did not improve the predictive 
performance.

Figure  3 also shows that for the cohorts clustered on the right half (from THCA to 
BRCA), none of the models works well. It indicates that the prediction for cancer prog-
nosis is cancer type dependent. A similar conclusion has been reported in [31]. This may 
be due to the fact that somatic alterations data may not predict patient prognosis for 
these cancer types. For example, for lung cancer (LUSC and LUAD), clinical character-
istics such as smoking status or stage may be a more important factor in determining 
patient survival. The poor predictive performance of these models may also be due to 
poor quality survival data, such as for breast cancer (BRCA), using overall survival end-
point was cautioned against by [32] due insufficient follow-up, or a low death rate, such 
as for PCPG, TGCT, PRAD, THYM, THCA (death rates are 0.04, 0.03, 0.02, 0.07, 0.03 
respectively as shown in Additional file 1: Table X1).

Figure  4 plots the Fleiss kappa statistic, which measures the agreement of repli-
cates about the selection of predictors, for different models and cancer types. Based 

Fig. 4  Heatmap of the Fleiss kappa statistic for different models and cancer types. “PLv” represents 
“Pathway-level” and “GLv” represents “Gene-level”. HALLMARK, PID, BIOCARTA, REACTOME and BP are the used 
five pathway collections as introduced in "Methods" section. Corresponding to each model introduced in 
"Methods" section: “log OR” and “Binary” represent the two enrichment methods for SPM data; “all genes”, “Path 
intersected”, “Cosmic intersected”, “Cox filter” represents the filters on the genes. The maximum value among 
all is 0.57 and the minimum is − 0.01
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on the clustering results, it is clear that the pathway level models have higher Fleiss 
kappa values than the gene-level models although there are several exceptions. Both 
C2 REACTOME and C5 BP are large pathway collections (1499 and 1350 pathways 
respectively), while there are only 723 genes in the COSMIC cancer gene census (711 
of them are in the SPM data and 326 are also in the Hallmark pathway collection). 
Thus, it is reasonable that the pathway-level models with the REACTOME and C5 BP 
pathways are less stable than gene-level models with only COSMIC genes for some 
cohorts. In these cases, more variables are entering the Lasso model selection with 
the pathway-level analysis than for the restricted gene-level analysis.

Figure 4 also shows that models fit on the LGG cohort, especially the pathway-level 
models, are the most robust for all evaluated cancer types and modeling approaches. 
For some cohorts (the middle left area, from THCA to OV), the Fleiss kappa statis-
tic is close to 0, i.e., equivalent to random guessing. These cohorts overlap with the 
cohorts in the right half in Fig.  3 (12 out of 15 from Fig.  4 and 12 out of 14 from 
Fig. 3 are the same), which implies that there is an association between the prediction 
concordance index and model stability. For these cohorts, the models tend to ran-
domly choose some predictors with poor predictive performance, which may be due 
to insufficient somatic alterations information or poor survival data quality or insuf-
ficient events for reliable inference.

Figure  5 plots the average number of predictors for different models and cancer 
types. The pathway-level models cluster separately from other models and are more 
parsimonious than the gene-level models.

Fig. 5  Heatmap of average model sizes for different models and cancer types. “PLv” represents 
“Pathway-level” and “GLv” represents “Gene-level”. HALLMARK, PID, BIOCARTA, REACTOME and BP are the used 
five pathway collections as introduced in "Methods" section. Corresponding to each model introduced in 
"Methods" section: “log OR” and “Binary” represent the two enrichment methods for SPM data; “all genes”, “Path 
intersected”, “Cosmic intersected”, “Cox filter” represents the filters on the genes. The maximum value among 
all is 52.19 and the minimum is 0.25
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Representative cohort

Based on predictive performance, model stability and model parsimony, LGG is unique 
among the 29 analyzed TCGA cohorts. For the Lower Grade Glioma (LGG) cohort, the 
death rate is 0.253 and the sample size is 508. Figure 6 illustrates the distribution of con-
cordance index values for all models estimated on the LGG cohort; equivalent figures 
for the other cohorts are provided in Additional file 1: Figure S2-S30. As seen in Fig. 6, 
predictive power is good for all model types on the LGG cohort (the median is as high 
as 0.75) with the best performance obtained by the gene-level SPM models. To better 
understand the biological basis for the strong predictive performance of the LGG mod-
els, we investigated the predictors used in the representative gene-level and pathway-
level models estimated using both SPM and CNV data.

Table 1 lists the predictors used in the SPM gene-level (all genes) model which we fit 
on LGG SPM data using all available genes. For this model, the concordance index was 
0.84 (± 0.02). As described in the “Methods” section, coefficient estimates and p values 
in Table 1 are from unpenalized multivariable and univariable Cox models.

The three genes associated with significant predictors all have an established asso-
ciation with glioma. The EGFR gene mutant is highly oncogenic [33]. Amplification 
and overexpression of EGFR are a particularly striking feature of glioblastoma (GBM), 
observed in approximately 40% of tumors. Although PDGFRA amplification is less 
common in gliomas than EGFR amplification, PDGFRA gene amplification is found in 
11% of GBMs, making it the second most frequent RTK gene amplified in this family 

Fig. 6  Distribution of concordance index values for all models evaluated on the LGG cohort. “PLv” represents 
“Pathway-level” and “GLv” represents “Gene-level”. HALLMARK, PID, BIOCARTA, REACTOME and BP are the 
used five pathway collections as introduced in "Methods" section. Corresponding to each model introduced 
in "Methods" section: “log OR” and “Binary” represent the two enrichment methods for SPM data; “all genes”, 
“Path intersected”, “Cosmic intersected”, “Cox filter” represents the filters on the genes
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of tumors. Two activating PDGFRA gene rearrangements in gliomas have been identi-
fied and suggest the possibility that these PDGFRA mutants behave as oncogenes [34]. 
Besides glioblastoma, amplified PDGFRA and EGFR may also occur in lower-grade glio-
mas and in their recurrent tumors [35]. Mutations in IDH1 are often the first hit in the 
development of diffuse gliomas, suggesting IDH1 mutations as key events in the forma-
tion of these brain tumors [36]. These results support the predictive and interpretative 
power of the gene-level SPM model for the LGG cohort.

There are several important limitations of the gene-level SPM model. First, for 6 
of the genes selected by LASSO, the unpenalized multivariate Cox model gave null 
estimates and p values. This was caused by the collinearity of these genes with other 
genes retained in the model. Due to the extreme sparsity of the SPM data, such as for 
the LGG cohort where 99.9% of the entries in the SPM data matrix are 0, it is possible 
to find groups of genes that are mutated in the same small set of patients, e.g., two 
genes both mutated in just one patient. In this situation, the unpenalized Cox propor-
tional hazards model, as implemented by the R coxph() function in the survival pack-
age [37], will report p values as NA and estimated coefficients as 0. We were surprised 
that the LASSO penalized model in this scenario retained multiple highly collinear 
predictors given the conventional wisdom that LASSO will tend to retain just one 
from a group of correlated predictors [38]. A simple simulation study was designed 
to show that LASSO was not guaranteed to discard duplicated variables no matter 
which lambda chosen and the results are provided in Additional file  1: Figure S31. 
One approach to decrease the collinearity issue in this situation is adding the con-
straint to require a certain number of mutations in a gene for it to enter the model. 
For example, filtering the genes with more than 2 mutations before fitting the model 
would largely decrease the number of genes with high collinearity. The second key 

Table 1  Predicotors  of LGG SPM gene-level (all genes) model and  fitting results of  Cox 
models

Multivariable Cox model Univariable Cox model

Hazard ratios se(coef) p value Hazard ratios se(coef) p value

PDGFRA 29.73 0.49 5.47E−12 24.49 0.48 2.66E−11

IDH1 0.28 0.22 5.68E−09 0.25 0.18 5.93E−14

EGFR 4.17 0.29 6.15E−07 5.05 0.25 1.23E−10

KALRN 0.22 1.04 1.46E−01 0.15 1.02 6.76E−02

TNR 0.00 2402.16 9.90E−01 2.91E−08 2560.82 9.95E−01

GALNT12 0.00 1249.74 9.90E−01 0.20 1.03 1.23E−01

SERINC3 0.00 2402.16 9.90E−01 2.91E−08 2560.82 9.95E−01

TMX4 0.00 2235.75 9.94E−01 9.57E−08 1683.51 9.92E−01

CDK19 0.00 7374.16 9.98E−01 3.29E−08 2381.56 9.94E−01

TMEM82 1.61 7732.63 1.00E+00 3.21E−08 2611.31 9.95E−01

TWISTNB 1 0 NA 2.91E−08 2560.82 9.95E−01

UTP6 1 0 NA 0.20 1.03 1.23E−01

ACTL8 1 0 NA 2.91E−08 2560.82 9.95E−01

TLR3 1 0 NA 2.91E−08 2560.82 9.95E−01

PPP1R16B 1 0 NA 3.21E−08 2611.31 9.95E−01

FLAD1 1 0 NA 2.91E−08 2560.82 9.95E−01
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limitation of gene-level SPM models is that some genes retained by LASSO (TNR, 
GALNT12, SERINC3, TMX4, CDK19, TMEM82 in Table  1) have very large coeffi-
cient standard errors in the unpenalized model. For the LGG cohort, this is because 
these genes are only mutated in a small number of patients, most of whom have a 
censored survival status, which results in highly variable coefficient estimates. Among 
the 6 genes from Table 1, 5 genes are mutated in only 2 patients and another one was 
mutated in just 3 patients. Among those patients, only one patient had a death event.

Table  2 lists the predictors retained by LASSO for the pathway-level LGG SPM 
model where predictor values were generated using log-odds ratios for the pathways 
in the MSigDB C2 REACTOME collection. For this model, the concordance index 
was 0.78 (± 0.01). The coefficient estimates and p values from unpenalized multivari-
able and univariable Cox models are also included in Table 2.

Although the concordance index for the pathway-level model is lower than the 
value for the gene-level model of Table 1 (0.78 vs 0.84), aggregation of SPM data based 
on pathways avoids the sparsity and collinearity issues encountered by the gene-level 
model. Most of the selected REACTOME pathways are consistent with the genes 
selected by the gene-level models. The TCA (tricarboxylic acid) cycle is associated 
with IDH1/2 mutation status due to the fact that mutation of IDH alters the interme-
diate metabolite α-ketoglutarate (αKG) in the TCA cycle [39]. REACTOME_SIGN-
ALING_BY_CONSTITUTIVELY_ACTIVE_EGFR has an obvious association with 
EGFR. G alpha (q) is one type of G protein, which plays an important role in the func-
tion of G protein-coupled receptors (GPCR) [40]. GPCRs constitute a large family of 
membrane receptors affecting oncogenic pathways via canonical and non-canonical 
signaling [41] and are the targets of more than 30% of cancer drugs [42]. DNA_REP-
LICATION and the CELL_CYCLE_MITOTIC are also highly related with tumorigen-
esis. CELL_CYCLE_MITOTIC was not significant in multivariable Cox model while 
it was significant in univariable Cox model. This may be due to its correlation with 
DNA_REPLICATION in multivariable Cox model. In the REACTOME pathway col-
lection, CELL_CYCLE_MITOTIC includes all the genes in the DNA_REPLICATION.

Table 2  Predictors of  LGG SPM pathway-level  (C2 REACTOME)  model  and fitting results 
of Cox models

Multivariable Cox model Univariable Cox model

Hazard ratios se(coef) p value Hazard ratios se(coef) p value

TCA_CYCLE_AND_RESPIRATORY_
ELECTRON_TRANSPORT

0.24 0.16 5.82E−19 0.54 0.08 4.03E−15

SIGNALING_BY_CONSTITU-
TIVELY_ACTIVE_EGFR

1.79 0.17 7.24E−04 1.03 0.11 7.81E−01

G_ALPHA_Q_SIGNALLING_
EVENTS

0.58 0.17 1.00E−03 0.62 0.14 5.09 E−04

PROTEOLYTIC_CLEAVAGE_OF_
SNARE_COMPLEX_PROTEINS

2.64 0.31 1.58 E−03 0.87 0.08 7.50 E−02

DNA_REPLICATION 0.56 0.28 3.74 E−02 0.47 0.15 4.92 E−07

OLFCTORY_SIGNALING_PATH-
WAY​

1.31 0.13 4.78E−02 0.94 0.12 6.05E−01

CELL_CYCLE_MITOTIC 0.95 0.21 8.14E−01 0.52 0.15 2.58E−05
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The pathway-level models not only provide better interpretative power, they are also 
more stable and have more reasonable coefficient estimates because they suffer less from 
collinearity. Some predictors from the gene-level models can have abnormally large 
coefficient estimates, which are driven by collinearities induced by insufficient numbers 
of mutations in some genes. These coefficients may not be reliable, as indicated by their 
very large standard errors.

In addition to the MSigDB C2 REACTOME collection (1499 pathways), we also inves-
tigated the MSigDB Hallmark (50 pathways) and C5 BP (1350 pathways) collections. The 
Hallmark pathways retained in the LGG SPM model include protein secretion, bile acid 
metabolism and xenobiotic metabolism, as shown in Additional file 1: Table X3 and X4. 
The Hallmark protein secretion pathway includes EGFR, which has a known association 
with glioma as described above. The Hallmark bile acid metabolism pathway includes 
IDH1 and IDH2, which also have known glioma associations. Bile acid biosynthesis pro-
duces metabolites known to induce apoptosis and inhibit cancer cell proliferation [43]. 
The Hallmark xenobiotic metabolism pathway includes IDH1 and involves Cytochrome 
P450 enzymes. The recent research shows that Cytochrome P450 enzymes (P450s) have 
become important targets in cancer analysis as their role in xenobiotic metabolism. 
These enzymes can function in either inactivating carcinogens or generating reactive 
moieties leading to carcinogenesis [44].

Table  3 includes the list of predictors used in the LGG CNV gene-level (all genes) 
model, including the chromosomal locations of genes. For this model, the concordance 
index was 0.73 (± 0.09). Similar to Tables 1 and 2, Table 3 includes coefficient estimates 
and p values from unpenalized multivariable and univariable Cox models.

In this case, the genes with NA estimates in the multivariable Cox model are exactly 
collinear with other genes in the model. It is interesting to note that all of the genes 

Table 3  Predictors of  LGG CNV gene-level (all genes) model and  fitting results of  Cox 
models

Multivariable Cox model Univariable Cox model

Hazard ratios se(coef) p value Hazard ratios se(coef) p value

METTL1 (12q14.1) 1.37 0.10 1.55E−03 1.75 0.08 1.49E−12

JPH4 (14q11.2) 0.36 0.37 5.84E−03 0.11 0.39 1.45E−08

SLC16A9 (10q21.2) 0.29 0.58 3.18E−02 0.04 0.27 1.01E−30

NRG3 (10q23.1) 0.07 1.95 1.62E−01 0.05 0.26 4.47E−31

MTAP (9p21.3) 0.30 1.03 2.35E−01 0.13 0.21 1.82E−22

CCSER2 (10q23.1) 12.94 2.68 3.39E−01 0.04 0.27 3.83E−31

ZC3H7B (22q13.2) 0.66 0.76 5.87E−01 0.17 0.30 3.56E−09

LINC00864 (10q23.2) 0.58 1.64 7.40E−01 0.05 0.27 2.40E−29

TNRC6B (22q13.1) 0.74 1.30 8.18E−01 0.11 0.31 3.04E−12

C9orf53 (9p21.3) 0.83 1.02 8.51E−01 0.13 0.21 1.53E−22

APOBEC3F (22q13.1) 1.19 1.10 8.71E−01 0.10 0.32 5.10E−13

KLLN (10q23) 0.96 0.96 9.64E−01 0.06 0.25 1.95E−29

LINC00948 (10q21.2) NA 0 NA 0.04 0.27 1.01E−30

CCDC6 (10q21.2) NA 0 NA 0.04 0.27 1.01E−30

C10orf40 (10q21.2) NA 0 NA 0.04 0.27 1.01E−30

APOBEC3G (22q13.1) NA 0 NA 0.10 0.32 5.10E−13



Page 15 of 19Zheng et al. BMC Bioinformatics          (2020) 21:467 	

selected by LASSO have significant p values in univariable Cox models, but some have 
insignificant p values in the multivariable Cox model. This may be due to the correlation 
with other variables in multivariable Cox model.

Table 4 includes the list of predictors used in the LGG CNV pathway-level model, with 
predictor values generated using the GSVA method for pathways in the MSigDB Hall-
mark collection. For this model, the concordance index was 0.75 (± 0.01). Similar with 
Table 3, some variables were not significant in multivariable Cox model while they were 
significant in univariable Cox model. This may be due to the correlation with other vari-
ables in multivariable Cox model.

Discussion
The main aim of this study was to evaluate SPM/CNV data for prognosis prediction in a 
pan-cancer setting on both the gene and pathway levels. It was not aimed at finding the 
best modeling approach (i.e., comparison of penalized Cox models with other statistical 
approaches for survival prediction) nor focused on just pathway-level models. Instead, 
we aimed to systematically evaluate and compare SPM data and CNV data, gene-level 
models and pathway-level models in a pan-cancer setting. Based on our results on three 
dimensions of cancer prognosis prediction (predictive power, stability and parsimony), 
the low-grade glioma (LGG) cohort had markedly superior performance relative to the 
other evaluated TCGA cohorts. The median CI across all models is 0.75 with CI val-
ues as high as 0.85 for some gene-level models. Additionally, the models for the LGG 
cohort have high stability across replicates and good parsimony, meaning they use just 
a few somatic alterations features to predict prognosis well and the choice of predic-
tors is robust across replications. This finding indicates that using genomic features, 
even just somatic alterations features, can be practical for predicting a LGG patient’s 

Table 4  Predictors of LGG CNV pathway-level (Hallmark) model and fitting results of Cox 
models

Multivariable Cox model Univariable Cox model

Hazard ratios se(coef) p value Hazard Ratios se(coef) p value

HYPOXIA 2.59E−03 1.73 5.79E−04 0.04 1.15 5.24E−03

MYC_TARGETS_V1 507.05 2.16 3.85E−03 858.29 1.27 9.38E−08

CHOLESTEROL_HOMEOSTASIS 13.96 1.08 1.49E−02 3.58 0.73 7.94E−02

PI3K_AKT_MTOR_SIGNALING 25.10 1.37 1.86E−02 2043.83 0.97 4.75E−15

OXIDATIVE_PHOSPHORYLATION 0.02 1.77 2.66E−02 0.03 1.34 7.16E−03

TGF_BETA_SIGNALING 6.40 0.96 5.33E−02 42.35 0.61 7.89E−10

EPITHELIAL_MESENCHYMAL_
TRANSITION

11.00 1.79 1.79E−01 29.69 0.92 2.15E−04

IL2_STAT5_SIGNALING 5.36 1.52 2.69E−01 3.74 1.21 2.73E−01

KRAS_SIGNALING_UP 4.08 1.55 3.65E−01 151.12 0.86 5.18E−09

DNA_REPAIR 3.07 1.36 4.10E−01 15.60 1.08 1.12E−02

MYC_TARGETS_V2 0.42 1.19 4.70E−01 0.38 0.77 2.14E−01

ESTROGEN_RESPONSE_LATE 0.34 1.81 5.55E−01 0.01 1.18 1.35E−04

HEME_METABOLISM 0.39 1.80 6.01E−01 0.01 1.47 2.40E−03

HEDGEHOG_SIGNALING 0.75 0.70 6.82E−01 0.08 0.54 2.96E−06

ESTROGEN_RESPONSE_EARLY 1.31 1.96 8.90E−01 1.94E−03 0.90 3.78E−12

NOTCH_SIGNALING 1.04 0.75 9.54E−01 9.07 0.58 1.34E−04
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survival. It also narrows down a potential interesting list of genes or pathways for down-
stream experiment to investigate the underlying mechanisms related to survival. Eventu-
ally these studies could lead to targeted therapies. Findings of our methods are validated 
by finding that for LGG, IDH1 and IDH2 mutations are selected, given the well-known 
prognostic value of mutations in these genes for predicting glioma survival [45].

During the investigation of specific predictors used in the models, we found that col-
linearity (often perfect collinearity) is a serious issue for the gene-level SPM models 
while pathway-level models largely reduce this issue. The SPM data is extremely sparse 
and some genes are only mutated in one or two patients, thus some patients can have 
exactly nearly or exactly the same mutation profiles for selected genes. For the CNV 
data, different genes located in the same region may be called together and share the 
same values. Therefore, the collinearity issue is a serious and common problem for both 
SPM and CNV data. Since the pathway-level variables are the statistics computed from 
a group of gene-level statistics, they suffer less from collinearity. Pathway level analysis 
avoids perfect collinearity because it is impossible that all the genes in a pathway have 
the same values. As we saw by the large coefficients, collinearity can make the parameter 
estimates unstable, so that standard errors of estimates are inflated, which can lead to 
biased estimation [46]. These large inflations may make inference statistics biased and 
certainly less likely to be reproducible, since they reflect effects from a limited number 
of patients.

Because of the collinearity issue in somatic alterations data, we noticed that Lasso was 
not guaranteed to discard duplicated variables or variables with high correlation. We 
also showed this in a simple simulation study, which is described in Additional file  1. 
This finding surprised us since it is widely accepted that when variables are highly corre-
lated, Lasso will randomly retain one of them. However, our results show that this char-
acteristic is not guaranteed. The issue of Lasso inconsistency has been discussed in some 
studies [47, 48] and adaptive variates of Lasso have been proposed [49, 50]. It is well 
accepted that Lasso may only be consistent under some situations [47], which is beyond 
the scope of this study. In this study, we point out that when analyzing SPM and CNV 
data on the gene level, the collinearity issue is serious given the sparsity of SPM data 
and overlapped called regions of CNV data. One approach to decrease the collinearity 
issue in this situation is adding the constraint to require a certain number of mutations 
in a gene for it to enter the model. For example, filtering the genes with more than 2 
mutations before fitting the model would largely decrease the number of genes with high 
collinearity. Another approach is analyzing on the pathway level instead of gene level, 
which could largely decrease or avoid collinearity, and meanwhile provide more parsi-
monious, more stable and more interpretable results.

Our analysis is only based on gene-level data collapsed from variant-level data. 
Although the consideration of variant-level features is beyond the scope of our 
study, it is an important consideration and something we hope to explore in future 
work that evaluates both models estimated on variant-level predictors and alterna-
tive approaches for collapsing variant data to gene-level predictors. Although Lasso 
encounters the instability issue of selecting highly correlated variables, it can be 
more informative and adaptive to high-dimensional omics data in comparison with 
ridge [51] and elastic net penalties [52]. In our study, we did not aim at finding the 
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best modeling approach across cancer types. Therefore, the limitation of combining 
Cox regression models and Lasso penalization exists in our analysis, i.e., the insta-
bility issue of selecting highly correlated variables. Ridge regression has been shown 
to generate more reliable survival predictions than Lasso [51]. It could be combined 
with pre-filtering procedures to avoid the high dimensionality issue as an alternative 
to the combination of Cox regression and Lasso [31]. The use of an elastic net pen-
alty (which combines both Lasso and ridge penalties during estimation) is also worth 
exploring in a pan-cancer setting.

Conclusions
Our study demonstrates that when using SPM and CNV data for cancer prognosis 
prediction, pathway-level models are more interpretable, stable and parsimonious 
compared to gene-level models. Pathway-level models also largely decrease or avoid 
the issue of collinearity, which can be serious for gene-level somatic alterations data. 
The prognostic power of somatic alterations is highly variable across different can-
cer types and we have identified a set of cohorts for which somatic alterations could 
not predict prognosis. In general, CNV data predicts prognosis better than SPM data 
with the exception of the LGG cohort.
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