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Abstract 

Background:  Recent studies have shown that N6-methyladenosine (m6A) plays a 
critical role in numbers of biological processes and complex human diseases. However, 
the regulatory mechanisms of most methylation sites remain uncharted. Thus, in-depth 
study of the epi-transcriptomic patterns of m6A may provide insights into its complex 
functional and regulatory mechanisms.

Results:  Due to the high economic and time cost of wet experimental methods, 
revealing methylation patterns through computational models has become a more 
preferable way, and drawn more and more attention. Considering the theoreti-
cal basics and applications of conventional clustering methods, an RNA Expression 
Weighted Iterative Signature Algorithm (REW-ISA) is proposed to find potential local 
functional blocks (LFBs) based on MeRIP-Seq data, where sites are hyper-methylated or 
hypo-methylated simultaneously across the specific conditions. REW-ISA adopts RNA 
expression levels of each site as weights to make sites of lower expression level less 
significant. It starts from random sets of sites, then follows iterative search strategies by 
thresholds of rows and columns to find the LFBs in m6A methylation profile. Its applica-
tion on MeRIP-Seq data of 69,446 methylation sites under 32 experimental conditions 
unveiled 6 LFBs, which achieve higher enrichment scores than ISA. Pathway analysis 
and enzyme specificity test showed that sites remained in LFBs are highly relevant to 
the m6A methyltransferase, such as METTL3, METTL14, WTAP and KIAA1429. Further 
detailed analyses for each LFB even showed that some LFBs are condition-specific, 
indicating that methylation profiles of some specific sites may be condition relevant.

Conclusions:  REW-ISA finds potential local functional patterns presented in m6A 
profiles, where sites are co-methylated under specific conditions.
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Background
N6-methyladenosine (m6A), which refers to the methylation of the adenosine bases at 
the nitrogen-6 position, is the most abundant post-transcriptional modification present 
in mRNAs and long non-coding RNAs [1]. It has been found to function in various path-
ways related to mRNA stability [2], DNA damage [3], differentiation [4], circadian clock 
[5], neurogenesis [6], immunity [7], anti-tumor activity [7], learning and memory [8], sex 
determination [9], heat shock response [10], etc. With the emergence of high-through-
put sequencing technologies, Methylated Immunoprecipitation sequencing (MeRIP-
Seq, or m6A-seq) [11, 12], researchers have been able to examine the dynamics and 
various functions of m6A in human, mouse, yeast, rice and other species [2, 5, 13–15].

The m6A methylation has been found to be governed or mediated by relevant 
enzymes, i.e., writers (METTL3/METTL14/WTAP complex [15, 16], KIAA1429 [17], 
VIRMA [18], RBM15 [19], ZC3H13 [20], etc.,), erasers (FTO [21], ALKBH5 [22], etc.,) 
as well as readers (YTH family [2, 10, 23–25], IGF2BP1-3 [26], eIF3 [27], etc.,). However, 
due to the complexity of life, the detailed regulatory circuit of RNA methylate remains 
uncharted, and it is believed to be more complex than enzyme induced mechanisms.

Till this day, several clustering methods have been proposed to identify co-meth-
ylation patterns in MeRIP-Seq data, trying to elucidate the functional mechanisms of 
m6A methylation. Liu et al. used four different clustering approaches, such as K-means, 
hierarchical clustering, Bayesian factor regression model as well as nonnegative matrix 
factorization to unveil the co-methylation patterns [15, 28]. To our knowledge, they 
revealed the linkage between the global co-methylation patterns embedded in epi-tran-
scriptomic data for the first time. Cui et al. proposed MeTCluster to uncover the poten-
tial patterns of m6A methylation. It utilized a hierarchical graphical model to depict the 
reads counts, suggesting m6A functions could be location specific [29]. We have pre-
viously proposed an infinite beta binomial mixture model based on Dirichlet Process 
(DPBBM) to unveil the co-methylation patterns embedded in MeRIP-Seq data [30]. All 
the above-mentioned methods focused on clustering methylation sites under all con-
ditions. Current studies have shown that on average 3–5 m6A RNA methylation sites 
position on each mRNA in human genome [31, 32]. It is conceivable that some specific 
sites may co-methylate under a subset of experimental conditions. Thus, clustering of 
sites over all conditions may miss biological meaningful information. On the one hand, 
sites sharing the same regulatory factor are more likely to co-methylate together; on the 
other hand, sites residing on the genes that belong to the same pathway may exhibit co-
methylation patterns over subsets of experiments. Therefore, we aim to find some local 
functional blocks (LFBs), where sites are hyper-methylated or hypo-methylated simulta-
neously across the specific conditions in the same LFB, to unveil the local function pat-
terns in m6A methylation profile.

Biclustering methods have been widely used to identify co-expressed genes under 
subsets of conditions in large scale microarray data [33–37]. Ihmels proposed an itera-
tive signature algorithm (ISA) [34] to seek for biclusters, where subsets of co-regulated 
genes and conditions were selected by iterative searching procedure [35]. Murali et al. 
proposed Xmotifs algorithm, which takes a discretized gene expression matrix as input, 
to find co-expression patterns, where genes share the same expression level [36]. Prelić 
et  al. proposed a Bimax method, which takes a binarized gene expression matrix as 
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input, to find potential co-expression patterns [37]. The preprocess of discretization of 
input data results in serious information loss. When profiled by MeRIP-Seq technology, 
the quantification of RNA methylation level needs to be estimated from two comple-
mentary integer measurements indicating site reads count from input and IP samples. 
Conventionally, m6A methylation level is achieved by simple division operation, which 
calculates the percentage of site reads in IP sample over the total site reads of input and 
IP samples. However, it is not always accurate. Even if sites show the same percentage in 
value, their methylation levels maybe quite different due to their different RNA expres-
sion level. To be more specific, if the RNA expression level is very low, there may exist 
noise, which makes the percentage less confident. Therefore, we proposed herein an 
RNA Expression Weighted Iterative Signature Algorithm (REW-ISA), which adopted 
RNA expression level as weight to weaken the confidence sites, then followed an itera-
tive search strategy through rows and columns to seek for LFBs. During the LFB search-
ing strategy, each potential LFB is identified by column threshold (defined as TC) and 
row threshold (defined as TR). TC and TR are updated automatically according to Stand-
ard Deviation within Clusters (SDwC) and Average Similarity within Clusters (ASwC) 
metrics iteratively. SDwC indicates the closeness of each element in each LFB while 
ASwC indicates the correlation of each condition pair in each LFB.

REW-ISA was implemented on simulated data as well as real MeRIP-Seq induced m6A 
methylation level matrix to find potential LFBs. On simulated data, Score of Bi-Clus-
tering (SoBC) metric was followed to evaluate the identification performance of LFBs. 
On real data, Gene Ontology (GO) analysis and enzyme specificity test were in the next 
conducted to validate the identified LFBs. As a result, REW-ISA can find LFBs that cover 
collaboratively hyper-methylated sites under specific conditions.

Results
Performance evaluation

In this study, we applied ISA as well as REW-ISA for simulated data biclustering for per-
formance comparison. As is known, intersection over union (IoU) is a widely used eval-
uation metric in object detection, which is define as

where AO represents the intersection between the obtained LFBs and ground truth, 
while AU indicates the union of the obtained LFBs and ground truth. For example, sup-
pose there are s LFBs embedded in simulated data, and n LFBs are obtained by cluster-
ing algorithm. In addition, let G = {g1, . . . , gs} indicate whether there is uncovered LFB 
matching the s real LFBs respectively. At initialization, all elements in G are 0. So, we can 
calculate the IoU between each obtained LFB and the real LFBs. To be more specific, the 
IoU metric for the i-th obtained LFB and real one is achieved, and its maximum value 
is regarded as the final score of the i-th LFB, which is indicated by IoUid, representing 
the i-th uncovered LFB matches the d-th real LFB best. Thus, gd = 1. For all the n identi-
fied LFBs, the average of IoUid with i = 1,  …,  n, indicated as IoUmean hereafter can be 
achieved. Since the number of obtained LFBs may differ from real, IoUmean metric may 

(1)IoU =
Ao

AU
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not be sufficient for performance evaluation. Therefore, SoBC is defined to evaluate the 
agreement between REW-ISA obtained LFBs and ground truth.

where r indicates the number of ones in G. Thus, r ≤ min(s, n). As SoBC approaches 1, 
the performance of biclustering is better.

In REW-ISA clustering procedure, TC and TR are key parameters for clustering strin-
gency, and SDwC, ASwC scores are introduced to determine suitable TC and TR. The 
mean and standard deviation of each LFB are combined in SDwC by (3).

where N indicates the number of algorithm obtained LFBs, Pk is the m6A methylation 
level of the k-th LFB, Wk is the RNA expression weight for k-th LFB, mk and nk are the 
number of sites and conditions in the k-th LFB, wkij is the RNA expression level of the i-
th site under condition j in the k-th LFB, pkij is the methylation level of the i-th site under 
condition j in the k-th LFB, WkPk = (1/mknk)

∑mk
i=1

∑nk
j=1 wkijpkij . Thus, SDwC repre-

sents the standard deviation of methylation levels in each LFB.
ASwC is regarded as another concern for TC and TR selection. The pearson correlation 

between condition a and b in the k-th LFB is first calculated as rkab,

where Wka and Wkb represent the RNA expression level under condition a and b in the 
k-th LFB, Pka and Pkb represent the RNA methylation level under condition a and b, 
WkaPka = (1/mk)

∑mk
i=1 wkiapkia , WkbPkb = (1/mk)

∑mk
i=1 wkibpkib . Then, ASwC is 

defined as

where nk is the number of conditions in the k-th LFB. Thus, ASwC indicates how the 
involved sites co-methylate between conditions in each LFB.

Our original intention is to better reveal the biological functional mechanisms of the 
co-methylation modules based on transcriptome data, larger SDwC and smaller ASwC 
metrics are preferred to get larger LFBs with more implicit information.

Simulated data

For performance evaluation, a simulated RNA methylation dataset of size 1000 × 15 
was generated from a mixture of 4 beta-binomial distributions, corresponding to three 
biclustering blocks and the background (Fig.  1a). The overall distribution characteris-
tics of the simulated data were set similar to that of the real MeRIP-Seq data (Fig. 1b, 

(2)SoBC =
r

max(s, n)
IoUmean

(3)
SDwC =

√

N
∑

k=1

1
mk ·nk

mk
∑

i=1

nk
∑

j=1

(

wkijpkij −W kPk

)2

N

(4)rkab =

∑mk
t=1 [(wktapkta − WkaPka)(wktbpktb − WkbPkb)]

√

∑mk
t=1 (wktapkta − WkaPka)

2
√

∑mk
t=1 (wktbpktb − WkbPkb)

2

(5)ASwC =

√

∑N
k=1

2
nk (nk−1)

∑nk
a=1

∑nk
b=1,b �=a rkab

N
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c) to mimic real scenarios. The matched methylation expression data, which is used as 
the “weight” in the proposed algorithm, was directly calculated from the simulated RNA 
methylation dataset as previously described.

As is known, TC and TR are defined for subset selection along columns and rows in 
conventional ISA. They are also defined in REW-ISA, and play a decisive role in LFB 
stringency. Since the methylation level matrix is p ≫ n, it is intuitive that the conditions 
should be selected more carefully, thus TC asks for more cautious exercise, and detailed 
explanations are given in method section.

In REW-ISA, a grid search method was followed for parameter optimization. The 
range of TR is 0.1–5 with step size 0.1, and the range of TC is 0.05–3 with step size 0.05. 
Their upper bounds are recommended a large value, then adapted automatically in fol-
lowing procedures. For each {TR, TC} setting, 40 experiments were conducted to ensure 
the robustness. After repeated experiments, the mode of LFB number was adopted as 
final number of LFBs for each threshold pair, as shown in Fig. 2.

According to Fig. 2, the range of TR and TC can be shrunk. To be more specific, the 
thresholds that obtain the largest number of LFBs were first reached, then filter out 
all the combinations with larger TR or TC. This is because, in the abandoned combina-
tions, REW-ISA can also get the same number of LFBs with smaller TR and TC. However, 
smaller TR and TC remain more rows and columns in each LFB, which may unveil more 
useful biological information. Thus, the range of TR becomes 0.1–2.5, while the range of 
TC becomes 0.05–1.15.

We can see from Fig. 2 that when TR and TC are close to their lower limits, only a few 
LFBs can be achieved with very large scale, which cannot uncover implicit information for 
functions. Thus, REW-ISA raises the lower bound of TR and TC appropriately. Suppose the 

Fig. 1  Comparison of statistical characteristics between simulated data and real data. a Heatmap of 
simulated data. Rows are corresponding to m6A sites while columns represent conditions. b Histogram of 
simulated data. c Histogram of real data
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matrix of LFB number obtained under different threshold setting is L ∈ R
rn×cn with TR and 

TC adjusted, where rn represents the number of TRs and cn represents the number of TCs 
considered. Min–max normalization of L is performed to obtain Lnorm ∈ R

rn×cn , and then 
the variance of each row and column in Lnorm is calculated. The variance of the i-th row in 
Lnorm is vri (1 ≤ i ≤ rn), and the variance of the j-th column is vcj (1 ≤ j ≤ cn).

Furthermore, the mean values of elements in vr and vc are calculated as vrmean and 
vcmean, respectively. We set i′ = min{i : vri ≥ vrmean} and j′ = min{j : vcj ≥ vcmean} , and 
then drop out the first i′ − 1 values of the TR and the first j′ − 1 values of the TC from con-
sideration. Thus, the range of TR further becomes 0.3–2.5, while the range of TC becomes 
0.1–1.15.

After shrinking the range of TR and TC, the matrix of LFB numbers under each threshold 
pair setting is updated to be L′ ∈ R

rn′×cn′ , where rn′ = rn− i′ + 1 and cn′ = cn− j′ + 1 . 
Then, within the selected threshold range of TR and TC, a sliding window of size ηr × ηc is 
used to help find more stable selections of TR and TC. The value of ηr and ηc are selected by 
Eqs. (8) and (9),

(6)vri =

∑cn
j=1

(

lnormij − 1
cn

∑cn
j=1 l

norm
ij

)2

cn

(7)vcj =

∑rn
i=1

(

lnormij − 1
rn

∑rn
i=1 l

norm
ij

)2

rn

(8)ηr = 2×

⌈

0.1

stepr

⌉

+ 1

(9)ηc = 2×

⌈

0.1

stepc

⌉

+ 1

Fig. 2  The number of LFBs identified by REW-ISA with TR set from 0.1 to 5 at step size of 0.1, TC set from 0.05 
to 3 at step size of 0.05. The color scale indicates the number of LFBs obtained
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where stepr represents the variable step size of TR, stepc represents that of TC, and ⌈·⌉ is 
round up to integer operation. The sliding window is obvious to cover odd number of 
rows and columns, which makes the thresholds value of interest locate in the center of 
the sliding window. Specifically, for the element l′ij locating in the i-th (1 ≤ i ≤ rn′) row 
and the j-th (1 ≤ j ≤ cn′) column of L′, the mode of the values covered by sliding win-
dow is calculated, then compared to the center value l′ij. If they are equal, the threshold 
setting is maintained for further consideration, and ls′ij = 1 is recorded in the matrix 
LS ∈ R

rn′×cn′ . Otherwise, ls′ij = 0. It is worth noting that when sliding the elements on 
the boundary of L′, we only select the effective elements in the sliding window to test the 
stability.

Through L′ and the stable score matrix LS, the threshold pairs with stable LFB number 
can be screened out. Let S = L′ × LS, S ∈ R

rn′×cn′ , the threshold pairs corresponding to 
non-zero elements in S are stable threshold combinations. After filtering out 0 in S, the 
number of obtained LFBs in S are counted to provide frequency fln, where ln represents 
the number of LFBs, and the result is shown in Table 1.

According to the statistics of the number of stable LFBs, that is, Table 1, we find that 
the number of LFBs with the highest frequency is 3. Therefore, we can reasonably con-
clude that there is a total of 3 LFBs in the simulated data.

Furthermore, the threshold pairs in LS are filtered according to the number of 
obtained LFBs is 3. At the same time, we update the ASwC calculated under effective 
settings of TR and TC. The ASwC value obtained by effective threshold pair is shown in 
Fig. 3.

Because ASwC is used to measure the similarity between columns in LFBs, the smaller 
ASwC is, the more information is contained in each LFB. Since smaller ASwC can 
help retrieve more biological meaningful information, we calculate the mean of ASwC 

Table 1  Statistics of the number of LFBs obtained in the simulated data

The bold value in the table is the maximum value of the frequency

ln represents the number of LFBs obtained; and fln represents the frequency at which the number of LFBs is ln

ln 2 3 4 5 6 7 9 14

fln 0.133 0.445 0.244 0.093 0.057 0.017 0.003 0.008

Fig. 3  ASwC metrics of LFBs identified by REW-ISA, the number of LFBs obtained by each threshold pair is 3. 
The color scale indicates the value of ASwC
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achieved under effective threshold pairs, and remain the threshold pairs with which 
ASwC scores are less than the mean score to further shrink the range of TR and TC.

Within the narrowed TR and TC range, the SDwC values of each threshold pair are fur-
ther compared, and the result is shown in Fig. 4.

As shown in Fig. 4, the optimal value of TR and TC, where SDwC gets its maximum 
indicating the loose and information abundance of each LFB, are 1.2 and 0.35 respec-
tively. Since smaller threshold may find the larger LFB, REW-ISA chooses smaller TR and 
TC when the maximum value of SDwC is achieved under multiple pairs of TR and TC.

In a word, it is suggested that the upper bound initialization of TR and TC be set to 
larger values, and REW-ISA can automatically shrink the range. Besides, the step size of 
TR and TC during grid search has no effect on final result. The REW-ISA thresholds opti-
mization algorithm is in the following.

Algorithm 1: Thresholds optimization process of REW-ISA

Input: Methylation level matrix P, weight matrix W and initialize the range of TR and TC
Output: The optimal TR and TC, and the number of LFBs determined by the above TR and TC
Step1: Run REW-ISA within the initial threshold range, obtain the threshold pair that generates the most LFBs, 

and then shrink the range of TR and TC
Step2: Within the threshold range after contraction, the LFB number matrix L′, stable score matrix LS, stable LFB 

number matrix S, compactness SDwC and ASwC are calculated

Step3: Count the frequency of the number of LFBs in the matrix S
Step4: According to the maximum frequency, select the corresponding optimal number of LFBs

Step5: The ASwC value corresponding to each threshold pair is calculated, and the thresholds ranges are further 
reduced

Step6: Select the optimal TR and TC according to the maximum SDwC within the selected thresholds range

Return The optimal TR and TC, and the number of LFBs determined by the optimal TR and TC

To validate the automatic parameter selection procedure of TR and TC, we investigated 
the SoBC of ISA and REW-ISA identified LFBs with varying TCs (0.1 to 1.15) and TRs 
(0.3 to 2.5), as shown in Fig. 5.

As shown Fig. 5b, in REW-ISA, the optimal value of TR and TC locate between 1.2–1.4 
and 0.1–0.65 respectively on simulated data. This is consistent with the beforementioned 
parameter selection procedure given in Algorithm 1. Besides, we also found that the SoBC 

Fig. 4  SDwC metrics of LFBs identified by REW-ISA, the values of TR and TC are their respective shrinking 
threshold ranges. The color scale indicates the value of SDwC
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metric of REW-ISA can reach around 0.9, while that of ISA is around 0.2, implying that the 
LFBs uncovered by REW-ISA is more effective than ISA.

Real data

A total of 69,446 human m6A sites identified by six base-resolution mi-CLIP and 
m6A-CLIP experiments were obtained by WHISTLE project [38–42]. However, mi-CLIP 
and m6A-CLIP only report the positioning of m6A sites, but do not provide the methylation 
level of each site. The information of methylation level still comes from MeRIP-Seq data. To 
be more specific, 32 samples in 10 publicly human m6A MeRIP-Seq data sets were collected 
[2, 5, 11, 17, 43–47], and most of them can be retrieved from MeTDBV2.0 database [48]. 
The detailed description of data was given in additional file (see Additional file 1: Table S1).

As is known, MeRIP-Seq data profiles the m6A epi-transcriptome by input and IP data. 
Thus, we first followed [42, 49] to quantify methylation level of each site. The biological 
replicates of the same cell line from the same experiment were merged, and the methyla-
tion level of the combined samples is essentially the average of all the biological replicates. 
All the sequencing data were downloaded in SRA format from Gene Expression Omnibus, 
and the reads were aligned to human reference genome hg19 with Tophat2 (with default 
settings as read-mismatches = 2, read-gap-length = 2, read-edit-dist = 2, min-anchor = 8, 
min-intron-length = 50 and max-intron-length = 500,000) for Fragments Per Kilobase of 
transcript per Million (FPKM) statistics [50].

The methylation level was then quantified by calculating the ratio of fold enrichment of 
reads in IP sample over the total of IP and input samples. To be more specific, let tij rep-
resenting FPKM of the i-th site in IP sample under the j-th condition, and hij representing 
FPKM of the i-th site in input sample under the j-th condition. Let P indicate the methyla-
tion level matrix, the methylation level of the i-th site under the j-th condition pij can be 
calculated following (10).

(10)pij =
tij+α

tij + hij+2α

Fig. 5  Heatmap of SoBC with TC varying from 0.05 to 1.5, and TR varying from 0.1 to 2.5. a Heatmap of SoBC 
obtained by ISA. b Heatmap of SoBC obtained by REW-ISA. The color scale indicates SoBC score
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where α is a very small value, aiming to avoid NaN where FPKM of both IP and input 
samples are zeros, and pij resides in (0,1).

We also constructed the weight matrix W corresponding to P,

where 1 was added to ensure wij ≥ 0. With the employment of W, the less confident sites 
with lower expression level are weakened for further biclustering analysis.

Then, REW-ISA is conducted based on P and W. Within the range of TR being 0.1–5 
with step size 0.1, and TC being 0.05–3 with step size 0.05, TR and TC are optimized 
through grid search method. The experiments were repeated 10 times for each param-
eter setting.

As shown in Fig. 6, maximum number of LFBs is 14. The upper bounds of TR and TC 
are 3.5 and 1.35 respectively. Furthermore, the variances of each row and column in the 
LFB number matrix are calculated according to (6) and (7), and then the mean values of 
row variances and column variances are calculated respectively. The first elements which 
is larger than the above mean values are selected from the obtained row and column 
variance vectors, and the corresponding TR and TC are the new lower bounds of TR and 
TC. Based on the above process, the lower bounds of TR and TC are set to 1.3 and 0.6. 
The statistics of the number of LFBs obtained under different TR and TC are shown in 
Table 2. Thus, the number of LFBs is preferred to be 6.

Based on the threshold pairs that achieve 6 LFBs, ASwC scores are presented in Fig. 7.
Then, the mean of ASwC scores is calculated, and the threshold pairs that get greater 

ASwC than the mean is further filtered. For the remained threshold pairs, their corre-
sponding SDwC values are calculated, as shown in Fig. 8.

(11)wij = log(tij + hij + 1)

Fig. 6  The number of LFBs identified by REW-ISA with TR ranges in 0.1–5 with step size 0.1, TC ranges in 
0.05–3 with step size 0.05. The color scale indicates the number of LFBs obtained

Table 2  Statistics of the number of LFBs obtained in the real data

The bold value in the table is the maximum value of the frequency

ln represents the number of LFBs obtained; and fln represents the frequency at which the number of LFBs is ln

ln 2 3 4 5 6 7 8 9 10 11 12

fln 0.06 0.12 0.06 0.16 0.22 0.08 0.08 0.07 0.09 0.05 0.01
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Based on Fig. 8, TR and TC are selected to be 1.6 and 1 as optimal, where the largest 
SDwC appears.

To further explore the biological relevance of the reported six LFBs, we first annotated 
the Entrez Gene ID and Gene Symbol of genes corresponding to each site in each LFB, 
then conducted pathway and GO enrichment analysis. Six KEGG pathways known to be 
regulated by RNA methylation [3, 11, 21] were selected to validate whether a pathway 
is significantly enriched in a specific LFB using Fisher’s exact test. The output p-value 
shows the significance of association between the obtained LFBs and the biological path-
ways with multiple hypothesis corrections.

We could see from Table  3 that obtained LFB1, LFB2 and LFB3 are significantly 
enriched in fatty acid metabolism. Fatty acids are a substance of the aliphatic group, 
and the efficacy and function of fatty acids are mainly supplemented for human 
absorption. Also, studies have found that fatty acids play important roles in regulat-
ing metabolism, growth and development and cell differentiation. LFB2 and LFB3 are 
also enriched in p53 pathway, which consists of a network responding to a variety of 
intrinsic and extrinsic stress signals that impact upon cellular homeostatic mecha-
nisms, disrupting DNA replication, chromosome segregation and cell division, etc. 

Fig. 7  ASwC metrics of LFBs identified by REW-ISA, the number of LFBs obtained by the threshold pairs is 6. 
The color scale indicates the value of ASwC

Fig. 8  SDwC metrics of LFBs identified by REW-ISA, the values of TR and TC are their respective shrinking 
threshold ranges. The color scale indicates the value of SDwC
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[51, 52]. As is known, Gamma and UV irradiation could also result in DNA damage 
[53]. LFB6 is shown to be significantly enriched in both Fatty Acid Metabolism and 
UV response Down pathways, implying that LFB6 is composed of methylation sites 
that are relevant to life development process from fatty acid metabolism affected by 
UV stimulation. For LFB5, it is not enriched to any of the six KEGG pathways, indi-
cating that LFB5 may have other implicit biological significance, and further analysis 
is carried out in the next.

The GO enrichment analysis was then conducted by clusterProfiler Bioconductor 
package [54] for each obtained LFB, with p-value cutoff set as 0.05 and q-value cutoff 
0.2. For all the GO terms enriched by genes in each LFB, the negative log transform of 
p-value was employed as their enrichment scores.

where pi is the p-value of the i-th GO term.
In fact, GO terms with more enriched genes may not show higher enrichment 

scores. As to LFBs, the proportion of genes that involved in LFB is also an important 
factor. It is conceivable that we adhere a weight to better describe the contribution 
of each GO term. The weight of the i-th GO term is defined as mi/M, where mi is the 
number of genes of the i-th GO term enriched in this LFB and M is the total number 
of genes in this LFB. Therefore, WE_score is defined as (13).

(12)si = − log(pi)

Table 3  Pathway analysis of REW-ISA obtained LFBs

The values with p-value less than 0.05 are shown in bold in the table

OR stands for odds ratio; p-value is evaluated by Fisher’s exact test; and the FDR is calculated with BH method

ID Number 
of sites

Enrichment 
statistics

KEGG pathways

Apoptosis DNA 
repair

Fatty acid 
metabolism

p53 
pathway

UV 
response 
down

UV 
response 
Up

LFB1 4780 OR 0.9939 0.5541 0.2156 1.5781 2.2294 1.4360

p-value 1.0000 0.1891 0.0113 0.0655 0.0032 0.1887

FDR 1.0000 0.3219 0.0665 0.1573 0.0437 0.3219

LFB2 4834 OR 1.0623 0.5375 0.2092 1.7047 2.3044 1.2789

p-value 0.7558 0.1470 0.0114 0.0251 0.0019 0.4122

FDR 0.8245 0.2940 0.0665 0.1006 0.0437 0.5712

LFB3 4899 OR 0.9241 0.8954 0.3044 1.8062 2.2083 1.4464

p-value 1.0000 0.8738 0.0336 0.0129 0.0041 0.1967

FDR 1.0000 0.9253 0.1209 0.0665 0.0437 0.3219

LFB4 5440 OR 0.7568 0.8152 0.4260 1.4756 1.6945 1.3718

p-value 0.4760 0.6583 0.0531 0.0775 0.0453 0.2341

FDR 0.6119 0.7406 0.1469 0.1744 0.1469 0.3664

LFB5 5713 OR 0.7447 0.8027 0.4624 1.5126 1.4158 1.2249

p-value 0.4125 0.5729 0.0629 0.0526 0.1856 0.4756

FDR 0.5712 0.6874 0.1573 0.1469 0.3219 0.6119

LFB6 4714 OR 0.7329 0.7878 0.2251 1.5574 2.1795 1.3776

p-value 0.5174 0.6185 0.0162 0.0834 0.0049 0.3094

FDR 0.6423 0.7183 0.0729 0.1766 0.0437 0.4641
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where l is the number of GO terms that enriched in each LFB, mnon is the number of 
genes covered by LFB but not enriched by any GO term. The higher the WE_score is, the 
more biologically significant the LFBs are [55]. Three state of the art algorithms, Xmotifs 
[36], Bimax [37], ISA [35] were conducted for biclustering on real data in comparison to 
REW-ISA. Besides, subsets with different number of sites and conditions were selected 
randomly as LFBs from real data. WE_score for all the obtained LFBs by all the algo-
rithms are given in Fig. 9.

It can be seen from Fig. 9 that the REW-ISA algorithm is effective, and the result is 
consistent with many related research results [37, 56]. The average WE_score of LFBs 
inferred by REW-ISA is 13.2% higher than that of ISA, which implied more biologi-
cal significance of REW-ISA. Besides, LFBs identified by the four algorithms achieve 
significantly higher WE_score than random one, which also indicates the biological 
significance.

We further examined whether the identified LFBs show enzyme’s substrate specific-
ity. Since LFB covers hyper-methylated sites and conditions, the sites and conditions 
involved in each LFB are more likely to be the target sites of m6A methyltransferases. 
Therefore, we investigated the association between each LFB and four m6A meth-
yltransferases, including  METTL3, METTL14, WTAP as well as KIAA1429. For 
this purpose, 12,643 METTL3 targeted sites, 7689 METTL14 targeted sites, 13,124 
WTAP-targeted sites and 399 KIAA1429 targeted RNA methylation sites were first 
identified by TREW [48], as shown in Table 4.

Then, the association between the sites in each LFB and m6A methyltransferases 
target sites was further evaluated by Fisher’s exact test. The reported p-value indi-
cates the significance of association between sites and methyltransferase target sites. 
As shown in Table  5, all the four m6A methyltransferases targeted sites in the six 
obtained LFBs are significantly enriched (FDR < 0.05), which means the LFBs obtained 

(13)WE_score =
s1m1/M + s2m2/M + · · · + slml/M

m1/M +m2/M + · · · + ml/M +mnon / M

Fig. 9  WE_score of LFBs obtained by random gene groups and four biclustering algorithms
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by REW-ISA were indeed the collaboratively hyper-methylated sites under specific 
conditions.

In LFB1, LFB2, LFB3 and LFB6, Venn diagrams of the sites, conditions and functional 
annotations of genes that selected sites involved in each LFB reside on were shown in 
Fig. 10. As shown in Fig. 10a, it was obvious that this four LFBs contain 12,971 identical 
methylation sites. From the perspective of conditions, the conditions involved in LFB1 
were all covered by LFB3 and LFB6, while LFB3 and LFB6 contain two conditions that 
were not contained by LFB1, respectively, as shown in Fig.  10b. It is also worth men-
tioning that for LFB2, all the conditions included in it are from human liver hepatocel-
lular cells (HepG2) cell lines, indicating some LFBs may be condition specific. Although 
the conditions contained in LFB1 and LFB3 are very similar, they still contain over one 
hundred unshared functional annotations, which may be due to site differences between 
them, as shown in Fig. 10c.

Table 4  Number of m6A methyltransferase target sites in each LFB

ID Methyltransferase component

METTL3 METTL14 WTAP KIAA1429

LFB1 3605 3916 4303 267

LFB2 3728 3989 4342 287

LFB3 3888 4207 4490 296

LFB4 4432 4569 4991 345

LFB5 4712 4635 5255 344

LFB6 3728 3989 4342 287

Table 5  Enzyme specificity analysis of REW-ISA obtained LFBs

ID Number of sites Enrichment 
statistics

Methyltransferase component

METTL3 METTL14 WTAP KIAA1429

LFB1 4780 OR 2.5617 14.7698 9.8933 2.4626

p-value 5.87E−184 0 0 2.71E−33

FDR 7.83E−184 0 0 2.71E−33

LFB2 4834 OR 2.8308 15.4638 9.6866 2.6610

p-value 1.28E−221 0 0 1.19E−40

FDR 1.92E−221 0 0 1.25E−40

LFB3 4899 OR 3.2549 20.2677 12.1375 2.7250

p-value 7.73E−278 0 0 1.80E−43

FDR 1.24E−277 0 0 2.05E−43

LFB4 5440 OR 3.7806 17.8603 12.4793 2.9442

p-value 0 0 0 4.22E−56

FDR 0 0 0 5.33E−56

LFB5 5713 OR 4.0817 14.6430 12.9915 2.7716

p-value 0 0 0 1.09E−50

FDR 0 0 0 1.30E−50

LFB6 4714 OR 2.6572 18.1924 11.2583 2.7263

p-value 3.71E−194 0 0 2.82E−42

FDR 5.23E−194 0 0 3.07E−42
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Since LFB2 was found enriched in three KEGG pathways previously, and might be 
condition specific, LFB2 was compared with LFB4 and LFB5 for further study, and the 
Venn diagram is shown in Fig. 11.

It can be seen from Fig. 11 that although LFB2, LFB4 and LFB5 share 2544 sites, they 
share only one condition, which leads to 203 functional annotations that are not shared 
at all, indicating that the three LFBs may play different roles in m6A methylation.

We further investigated the functions of LFB2 in detail, as shown in Fig. 12.
Some genes that sites in LFB2 reside on are found to be involved in m6A-related path-

ways, such as Ras protein signal transduction [57], macromolecule methylation [58], 
peptidyl-lysine modification [59], histone modification [60] and covalent chromatin 
modification [61], implying LFB2 may further help elaborate the functional mecha-
nisms of m6A methylation. Besides, some pathways, such as response to heat [10, 62], 
are found to be significantly enriched in LFB2, which is also consistent with previous 
analysis that LFB2 covers conditions with HepG2 cells that exposed to ultraviolet radia-
tion, heat shock, hepatocyte growth factor (HGF; also known as scatter factor (SF)), and 
interferon-γ.

Since LFB5 is not enriched in any of the six KEGG pathways in the previous analysis, 
the functionality of LFB5 is similarly examined in further detail, and the result is shown 
in Fig. 13.

We can see that LFB5 is mainly enriched in functional annotations related to his-
tone and lysine modification, in which the modification form is mainly acetylation 
modification. M6A modification in RNA has been found to be determined by histone 

Fig. 10  Venn diagrams for obtained LFBs. a Venn diagrams of sites in LFB1, LFB2, LFB3 and LFB6. b Venn 
diagrams of conditions in LFB1, LFB2, LFB3 and LFB6. c Venn diagrams of functional annotations of genes that 
selected sites in LFB1, LFB2, LFB3 and LFB6 reside on

Fig. 11  Venn diagrams for obtained LFBs. a Venn diagrams of sites in LFB2, LFB4 and LFB5. b Venn diagrams 
of conditions in LFB2, LFB4 and LFB5. c Venn diagrams of functional annotations of genes that selected sites 
in LFB2, LFB4 and LFB5 reside on



Page 16 of 22Zhang et al. BMC Bioinformatics          (2020) 21:447 

Fig. 12  The functional relationship diagram obtained from the analysis of the genes related to the LFB2 
using KEGG pathway. Degree represents the number of genes enriched by KEGG pathway

Fig. 13  The functional relationship diagram obtained from the analysis of the genes related to the LFB5 
using KEGG pathway. Degree represents the number of genes enriched by KEGG pathway
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modification [63]. Therefore, the genes contained in LFB5 may help uncover the rela-
tionship between histone and lysine modification and m6A methylation.

Discussion
More and more studies have shown that m6A RNA methylation plays an extremely 
important role in a variety of biological processes. Moreover, the functions of m6A meth-
ylation have been revealed by more and more researchers. Through the study of m6A 
methylation, we could understand the pathogenesis of the disease at post-transcriptional 
level, which would help us build a more comprehensive understanding of life process 
such as disease mechanisms. However, unveiling the functional m6A methylation sites 
through biological experiments is time-consuming and expensive, so it is very necessary 
to develop some effective computational algorithms to predict potential functional m6A 
sites. In this paper, we developed an RNA expression weighted ISA method, REW-ISA, 
to uncover the potential local methylation patterns across subsets of condition. REW-
ISA approached 6 LFBs based on MeRIP-Seq data from 10 cell lines under 32 different 
conditions. Further GO analysis and some specificity tests show that REW-ISA obtained 
LFBs can find hyper-methylated local functional patterns, which are highly relevant with 
conditions.

REW-ISA could achieve reliable biclustering patterns because of its adoption of RNA 
expression level. For the m6A methylation level matrix, the level was drawn based on the 
ratio between IP and input samples, and there are no additional supplements for RNA 
expression level. To be more specific, the methylation levels of sites of high expression 
level should be more confident than those of low expression level since the reads count 
statistics in low expression sites may come from noise, which makes them unconfident. 
By incorporation of RNA expression level, sites with very low abundance of reads count 
will be assigned very low weight, thus, excluded for consideration of biclustering. Of 
course, REW-ISA still has some deficiencies that needs to be improved in the future. 
REW-ISA seek for LFBs of hyper-methylated sites under subsets of conditions based on 
methylation level, which is achieved by simple division operation. However, it may lead 
to information loss during the division operation. The information carried by both input 
and IP samples should be more than the methylation level and RNA expression level. In 
the future, we will develop new computational model to overcome these limitations.

Conclusions
With comparison with conventional ISA method, we believe that our test suggests REW-
ISA as a simple but effective tool for local functional pattern recognition tasks. Through 
the experiments, we also showed that REW-ISA is also feasible for real-world applica-
tions with similar issues as local pattern analysis problem in m6A methylation profiles.

Methods
In conventional ISA method, rows and columns of data are standardized first, and subsets 
of rows and columns are updated iteratively according to their own thresholds. However, 
in REW-ISA, we propose to import weights to enhance the confidence of methylation level 
estimation, so the min–max normalization was employed instead of z-score normalization. 
The methylation level matrix P ∈ R

p×n turns into PR after row min–max normalization, 
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and turns into PC after column min–max normalization. The flowchart of REW-ISA is 
shown in Fig. 14. In general, REW-ISA consists of two steps. The first step aims to form 
the methylation level and weight matrix for all sites under all conditions. The second part 
conducts iteratively selection of subsets of rows and columns for LFBs. With the employ-
ment of W ∈ R

p×n , the contribution of sites showing similar methylation level may be dis-
tinguishable due to their different expression level.

For subset selection of columns, the updated subsets are achieved following (14).

where V is the column set of P, pRuv refers to the u-th site under v-th condition in PR, wuv 
is the RNA expression level of the u-th site under v-th condition. In Eq. (14), eCU ′ v is cal-
culated based on PC and W for column subset selection, but only the conditions involved 
in U′ are considered. Higher TC setting will result in less conditions in LFB.

Then, the subsets of rows are updated following (15).
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Fig. 14  The flowchart of REW-ISA consists of two steps: The first step prepares the methylation level matrix P 
and weight matrix W; the second step iteratively updates subsets for LFBs. The iterative update refers to the 
iterative selection along columns and rows
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where U is the row set of P, pCuv refers to the u-th site under v-th condition in PC, eRuV ′ is 
calculated based on PR and W for row subset selection, but only the sites involved in V′ 
are considered. Higher TR results in less sites in LFB.

Since P is p ≫ n , it is intuitive that LFBs will cover more sites than conditions. 
Thus, |U′| ≫ |V′|. The selection of sites needs to be more strict, thus TR is recom-
mended to be larger for less sites inclusion for each LFB. On the contrary, there are 
not that much conditions in P, thus, TC is recommended to be smaller for loose con-
strain of conditions in each LFB.

In the parameter selection procedure, it is recommended that the upper bound of 
TR and TC be set larger values, and the algorithm can automatically shrink the thresh-
olds range. Although the larger upper bound may introduce computation load, it is 
still acceptable since no LFBs can be achieved under large thresholds setting. The 
optimization of TR and TC is reached by grid search. With optimized TR and TC, a 
subset of sites is randomly selected as U′, and then the subset of conditions V′ is 
selected according to (14). U′ and V′ are updated iteratively by (14) and (15) until 
convergenece is satisfied.

where ε is the default convergence criteria, U′′ represents the subset of sites in previous 
iteration, and U′ represents the subset of site in current iteration.

The implementation of REW-ISA following the above definition is summarized in 
the following.

Algorithm 2: REW-ISA biclustering algorithm

Input: Methylation site V, conditions U, methylation level matrix P, weight matrix W and converge threshold ε

Output: A series of LFBs (U′, V′)
Step1: Construct row normalized matrix PR, construct column normalized matrix PC

Step2: Given the pre-defined range for TR and TC, get the automatically optimized parameter settings

Step3: Under the optimized parameters TR and TC, initialize the sites subset U′ and update U′ and V′ iteratively 
until the convergence condition is met

Step4: Report U′ and V′

Return A series of LFBs (U′, V′)
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