
Impact of concurrency on the performance 
of a whole exome sequencing pipeline
Daniele Dall’Olio1†, Nico Curti2†, Eugenio Fonzi3, Claudia Sala1* , Daniel Remondini1, Gastone Castellani2† and 
Enrico Giampieri2† 

Background
In this paper we examine multiple samples execution strategies which a standard bio-
informatics pipeline can be run with, in order to determine a time-effective strategy 
that can be generally suggested to the bioinformatics community. We ideally aim at a 

Abstract 

Background: Current high-throughput technologies—i.e. whole genome sequenc-
ing, RNA-Seq, ChIP-Seq, etc.—generate huge amounts of data and their usage gets 
more widespread with each passing year. Complex analysis pipelines involving several 
computationally-intensive steps have to be applied on an increasing number of sam-
ples. Workflow management systems allow parallelization and a more efficient usage 
of computational power. Nevertheless, this mostly happens by assigning the available 
cores to a single or few samples’ pipeline at a time. We refer to this approach as naive 
parallel strategy (NPS). Here, we discuss an alternative approach, which we refer to as 
concurrent execution strategy (CES), which equally distributes the available processors 
across every sample’s pipeline.

Results: Theoretically, we show that the CES results, under loose conditions, in a sub-
stantial speedup, with an ideal gain range spanning from 1 to the number of samples. 
Also, we observe that the CES yields even faster executions since parallelly comput-
able tasks scale sub-linearly. Practically, we tested both strategies on a whole exome 
sequencing pipeline applied to three publicly available matched tumour-normal 
sample pairs of gastrointestinal stromal tumour. The CES achieved speedups in latency 
up to 2–2.4 compared to the NPS.

Conclusions: Our results hint that if resources distribution is further tailored to fit 
specific situations, an even greater gain in performance of multiple samples pipelines 
execution could be achieved. For this to be feasible, a benchmarking of the tools 
included in the pipeline would be necessary. It is our opinion these benchmarks should 
be consistently performed by the tools’ developers. Finally, these results suggest that 
concurrent strategies might also lead to energy and cost savings by making feasible 
the usage of low power machine clusters.

Keywords: Concurrency, Parallel computing, Bioinformatics, Analysis pipeline, 
Scalability, Efficiency, Workflow management system, Snakemake

Open Access

© The Author(s) 2021, corrected publication 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. 
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in 
a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of 
this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  
https://doi.org/10.1186/s12859-020-03780-3

*Correspondence:   
claudia.sala3@unibo.it 
†Daniele Dall’Olio, Nico 
Curti, Gastone Castellani and 
Enrico Giampieri equally 
contributed to this work.
1 Department of Physics 
and Astronomy, University 
of Bologna, 40127 Bologna, 
BO, Italy
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-4889-1047
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03780-3&domain=pdf


Page 2 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60 

processors usage setting that achieves the best speedup of the total execution time 
when multiple samples should be examined simultaneously. Computational strategies to 
obtain effective speedup for individual bioinformatics tools, such as BWA [1] and SAM-
tools [2], have been proposed [3, 4] and it is well-known that different strategies impact 
differently on the execution time of a single tool. Here, we are interested in studying how 
different strategies impact on the execution of whole bioinformatics pipelines. Our main 
focus is then optimal computational power (number of processors) allocation among the 
steps of the samples’ pipelines, whereas we consider all others machine resources, such 
as memory usage, cache and disk I/O operations, as boundaries that limit the highest 
possible performance that could be obtained.

A next-generation sequencing (NGS) data analysis pipeline involves several compu-
tationally-intensive tasks (like read trimming, alignment, BAM post-processing, etc...). 
Some of these tasks are non-scalable (NS), i.e. take a fixed amount of time when given 
multiple resources, and others are parallelly computable (PaCo), i.e. improve when given 
multiple resources. Each task is usually handled by a single specific tool, which might be 
optimized for parallel computing. Typically the tools demanding more computational 
time are implemented as PaCo in order to try to reduce the execution time. Therefore, 
most of the execution time in a typical pipeline is spent performing PaCo tasks. In addi-
tion, these pipelines are usually applied to several samples at once, and some steps need 
to be repeated for each sample while some are shared among them.

At first, pipelines were developed for a command line interpreter execution, i.e. UNIX 
shell. They were typically built as a sequential series of commands that needed to be 
reproduced for every sample. Nowadays many bioinformaticians [5–7] rely on workflow 
management systems (WMSs) [8–11] to improve execution efficiency and scalability. 
WMSs usually accept different programming languages within the same pipeline and 
can be run by a single command. Further, WMSs are designed to independently organize 
all pipeline tasks before the actual execution. They trace a graph of tasks by combining 
several factors, including expected results, existing data and dependencies. This feature 
enhances scalability and it is especially useful for mutually independent tasks, which can 
be run simultaneously without any explicit competence of parallel computing coding. In 
addition, many of these systems have options to indirectly manage machine resources.

Although WMSs allow to easily manage the execution of a pipeline for multiple sam-
ples, usually each sample’s pipeline is processed one at a time sequentially, even if in a 
highly optimized way. Indeed, the most basic way to run a pipeline for multiple sam-
ples is to implement it with one of these systems and launch it on a high-performing 
machine by setting the number of exploitable processors and letting the WMS assign 
the resources to each sample’s task. Often the default setting of WMSs is to allocate all 
the available processors for each step of any sample’s pipeline, unless otherwise speci-
fied. We define this parallel single sample strategy as naive parallel strategy (NPS). It is 
well-recognized that all PaCo tasks have a sub-linear increase of speedup (where lin-
ear is the most optimistic case, called “embarrassingly parallel”), which means they can 
not achieve unlimited boosting in their performances. This leads to a waste of resources 
since a PaCo task occupies a number of processors that it can not entirely exploit.

We observe that both the old sequential and the NPS follow a single-sample focus, 
while there is a compelling need to efficiently analyse large datasets, where the 



Page 3 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  

single-sample focus might lead to inefficiencies due to the PaCo sub-optimal paralleliza-
tion. NPS, thanks to WMSs, can boost analyses in terms of automatic replicability and 
overall management simplification, but they have several limitations: they are not capa-
ble of predicting the scalability of PaCo tasks and they do not estimate either time or 
resources needed by any tasks.

With this paper, we question the usage of NPS and suggest a new execution strategy 
that we refer to as concurrent execution strategy (CES). To improve the usage of all pro-
cessors, CES divides them equally among all samples’ pipelines. In doing so, samples’ 
pipelines can concur simultaneously and, though individually running slower, they can 
be completed at the same time all together, resulting in a lower total execution time. 
Moreover, CES implicitly tries to minimize the impact of sub-linearity of PaCo tasks on 
the overall total execution performance, which makes it even more suitable for pipelines 
that are heavily built around PaCo tasks. CES is then based on the idea of equally split-
ting the number of processors over samples’ pipelines. This strategy is not guaranteed to 
be the most efficient one in all occasions, but it is the simplest representation of a con-
current organization.

To empirically assess the efficacy of the CES compared with NPS we tested these two 
strategies on a WES pipeline that we have developed in our lab (detailed in “Methods” 
section).

Results
Application of Amdahl’s law to identical processes

To study the performance of the CES we represent the execution of a pipeline for mul-
tiple samples in a mathematical framework. There are two levels that are worth to 
examine: the single-task level and the pipeline level. These levels are similar and closely 
related, since the latter is the combination of all tasks. For the sake of simplicity, we 
describe the mathematical framework of the former level in order to generalize it to the 
latter, which our work is focused on.

The single-task level describes the behaviour of those pipeline’s tasks that are PaCo. 
We assume these kind of tasks to be always composed by a NS component and an 
embarrassingly parallel (EP) component (Amdahl’s law hypothesis). The former does not 
change its execution time regardless of the number of processors allocated to the task. 
On the contrary, the latter will have a speedup in the execution time proportional to the 
number of allocated processors. Then, we define the total time T needed by a single-
processor to process a single sample as:

where F and P represent execution times respectively for the NS component and EP 
component. We can also write the former equation, defining γ = P

T
 , as:

where F = (1− γ )T  and P = γ T  . The value of γ ranges from 0 to 1 and it stands for 
proportion of time of the EP task.

Now, Amdahl’s law [12] states that potential speedup in latency using K processors at 
fixed workload can be formulated as:

(1)T = F + P,

(2)T = (1− γ )T + γT ,



Page 4 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60 

That is, a single-sample execution can be sped up with a factor equals to s(K ; γ ) by sup-
plying the process with K processors.

Next, we analyse the performances of both the NPS and CES when we need to run 
a PaCo task for N samples with K available processors. We assume for simplicity K is 
a N multiple. It is obvious to conclude that both strategies are better than a sequential 
execution.

With simple considerations we can describe execution time for both strategies respec-
tively with

and

Using NPS the total time TNPS is composed of the sequential execution of the N samples 
each one at their best possible speed. Using CES all the processes of each sample are exe-
cuted at the same time (but with less available processors) and thus the total time TCES 
would be the maximum execution time of each individual sample. All samples assumed 
equal, this becomes the execution time of a single sample using the allocated number K

N
 

of processors.
The same equations can be expressed in terms of γ as:

In analogy with Amdahl’s law, we can derive the speedup between the two strategies:

With N > 1 , speedup ranges from 1 ( γ = 1 ) to N ( γ = 0 ) with any K processors. Conse-
quently, this result suggests that at the single-task level the CES is always more efficient 
than the NPS. This result is based on the assumption that the EP component has a linear 
and unbounded potential speedup. This assumption is not always true and many bio-
informatics tools reach a plateau after a linear-wise increase, before one would expect 
from Amdahl’s law. Therefore the effective speedup of CES over NPS can in general be 
even higher than the expected one.

To understand how the CES speedup actually results at the single-task scale we take 
the example of BWA MEM tool, which is a widely used aligner that leverages on a seed-
and-extend approach to align a sample to a reference sequence. For each read BWA 

(3)s(K , γ ) =
1

1− γ +
γ
K

.

(4)TNPS ≈ N

(

F +
P

K

)

(5)TCES ≈



F +
P

�

K

N

�



.

(6)
TNPS ≈

N T

K
[γ (1− K )+ K ]

TCES ≈
T

K
[γ (N − K )+ K ].

(7)s(K , γ ) =
N [γ (1− K )+ K ]

γ (N − K )+ K
.



Page 5 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  

MEM detects the perfect matches between the read subsets and the reference. Next, 
these matching subsets (seeds) are extended to the whole read, in order to assess the 
accuracy of each alignment. Eventually, the most accurate alignment for every read is 
kept. Seed detection and extension are the main PaCo tasks of the tool, whereas read-
ing and writing files to the disk are the NS tasks. If we neglect the I/O bottleneck of 
disk operations, these NS tasks always take a fixed amount of time F for every sample 
in order to read the input reads and to write the output aligned reads. Therefore, the 
NPS takes F × N  samples to read all input and write all output files, whereas the CES 
only takes F by performing all input and output operations altogether. In contrast, seed 
detection and extension are PaCo and, while the NPS runs these two tasks individually 
for each sample at their best speed, the CES runs them at lower speed but it processes all 
samples simultaneously. The execution time taken by PaCo tasks is equal for both strate-
gies if they are considered EP but, since this is never the case in real executions, the NPS 
is overall slower than the CES for the execution of BWA MEM.

CES speedup at single‑task level on real data

We ran our pipeline on WES data of three public human paired-matched samples, one 
blood sample and one matching tumour. In Table 1 we report the average speedup of 
CES over NPS within pipeline executions for all PaCo tasks taking more than 15 min. 
We see the speedup for BWA MEM, underlying Align to nuclear and Align to exome, to 
be always greater than 1 as well as for all the other PaCo tasks.

Since we are not focusing on the single-task level but on the pipeline level, we extend 
the previous analytic procedure to look at NPS and CES when we need to run a whole 
bioinformatics pipeline for N samples simultaneously with K available processors. We 
can assume that a bioinformatics pipeline can be represented by Eq. 1 as well, since it is 
a combination of several NS and PaCo tasks. Therefore, we can generalize the previous 
result and claim that the CES does perform faster than the NPS at the pipeline-level as 
well.

CES speedup at pipeline level on real data

We compared the execution time and memory occupation running a variants call-
ing pipeline on the subjects either with the NPS and with the CES. The average execu-
tion time for pipeline’s tasks, for all processors configuration and for each strategy are 
reported in as Tables in Additional file 1.

We relate our results in terms of speedup to those expected by Eq. 7. In Fig. 1 we rep-
resent several theoretical speedup behaviours given different γ values as continuous 
lines. Since we can estimate the improvable proportion of sequential execution time of 
our pipeline ( γexpected ), Fig. 1 also shows the expected speedup for this value (as green 
dashdotted lines), which is about 0.689. To perform this estimate we approximated the 
pipeline’s PaCo tasks as EP.

Figure 1 clearly shows the CES to be faster than the NPS. Indeed, our actual speed-
ups have values greater than 1 regardless of the number of processors and the number 
of samples. Besides, the CES completes hourly more tasks than the NPS, as shown in 
Table 2.



Page 6 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60 

Nonetheless, curves in Fig.  1 do not accurately fit the theoretical curves that are 
expected by γexpected = 0.689 . It should be noted that the PaCo tasks are not EP as it was 
assumed during the estimate of γexpected . Hence, the actual value of γexpected is probably 
lower.

In general, we notice that our observed speedup behaviours increase faster than 
expected by Eq.  7. This can be explained by the fact that in real executions the over-
all speedup produced by the pipeline’s PaCo tasks follows a sub-Amdahl increase, since 
PaCo tasks performances improve sub-linearly. The sub-Amdahl speedup increase, 
showed for some PaCo tasks in Fig. 2, expresses the loss of performance along the num-
ber of supplied processors.

Therefore, it is more efficient to run samples’ pipelines with processors evenly distrib-
uted, than to run them with all processors assigned to each sample’s pipeline one after 
the other. This aspect becomes progressively more evident when many processors are 
involved in the execution: we observe from all speedups shown in Fig. 2 that there are 
almost no differences in speedup by using 8 and 16 processors, which suggests a waste of 
resources.

The lack of agreement between actual and theoretical increase in speedup can be also 
explained by the CES and NPS tasks and processors subdivision. Figure 3 shows both 
subdivisions along time for a 3-samples case that has been run with 12 processors.

We notice from Fig. 3 that NS components are actually run as soon as the necessary 
resources are available. The NPS is then penalized by Eq. 4 because it actually does not 
need to repeat all NS tasks N times and the fixed time component (F) is less than what 
assumed. That is, our actual speedup can be lower than expected. Nonetheless this 
reduction is small because the NPS is still affected by a slowdown compared to the CES, 

Fig. 1 Speedup comparison. Expected speedup for CES compared to the NPS for 2 and 3 samples as a 
function of the available number of processors and PaCo proportion γ . The magenta dashed line represents 
the measured speedup of the real pipeline tested. The green dashed-dotted line represents the expected 
performance gain based on the estimated proportion of sequential execution time of our pipeline. In the 
2-samples figure there are three observed speedups associated to all the combinations of two samples out of 
the three available. In the 3-samples figure there is a single observed speedup associated as there is only one 
possibile triplet out of the three available samples



Page 7 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  

since the PaCo tasks allocate all processors ending up being executed sequentially (see 
NPS panel in Fig. 3). In contrast, the CES is slightly penalized by Eq. 5, given that the NS 
component is actually less than what assumed.

Furthermore, we observe from Fig.  1 two different behaviours respectively for the 
2-samples case and the 3-samples one. In the former, the observed speedups are lower 
than expected but they increase until exceeding it, whereas in the latter the observed 

Fig. 2 Single tasks’ speedup comparison. Performance gain of several PaCo tasks with respect to the number 
of processors exploited and the comparison with the Amdahl’s law predictions. The points represent the 
actual measured speedup. The dashed-lines shows the best Amdahl’s fit with the associated γ . On the left 
plot we report tasks behaving according to Amdahl’s law. On the right plot we report tasks with significant 
departure from Amdahl’s law predictions, with a speedup for high number of processors lower than 
expected. Only PaCo tasks with a significant speedup behaviour are reported

Table 1 Average speedup of CES over NPS for all PaCo tasks taking on average at least 15 min

Number of processors stands for the number of available processors managed by both strategies

Task 4 processors 8 processors 16 processors
Mean ± Std (s) Mean ± Std (s) Mean ± Std (s)

(a) 2-samples execution

 Align to nuclear 1.75 ± 0.01 2.84 ± 0.02 3.19 ± 0.04

 Align to exome 1.76 ± 0.01 1.79 ± 0.01 2.87 ± 0.07

 Identify INDELs nuclear 1.95 ± 0.01 1.83 ± 0.01 2.15 ± 0.09

 Compute BQSR nuclear 2.38 ± 0.03 2.69 ± 0.02 2.91 ± 0.15

 Post BQSR nuclear 3.09 ± 0.01 3.17 ± 0.03 3.1 ± 0.04

Task 6 processors 12 processors 24 processors
Mean ± Std (s) Mean ± Std (s) Mean ± Std (s)

(b) 3-samples execution.

 Align to nuclear 2.05 ± 0.01 3.72 ± 0.01 3.91 ± 0.05

 Align to exome 1.61 ± 0.01 2.06 ± 0.01 3.62 ± 0.05

 Identify INDELs nuclear 1.88 ± 0.03 2.2 ± 0.06 2.75 ± 0.16

 Compute BQSR nuclear 2.96 ± 0.02 3.26 ± 0.03 3.96 ± 0.14

 Post BQSR nuclear 4.32 ± 0.03 4.37 ± 0.12 4.43 ± 0.04



Page 8 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60 

speedup approaches the expected one but it is always below it. This difference can be 
explained by looking at the memory usage of both cases, reported in Fig. 4 analogously 
to Fig. 3. In the 3-samples case we notice a memory overloading problem in a middle 
step of the pipeline between 4th and 6th hours of execution. We do not have the same 
limit with the 2-samples case, where we run our pipeline as if the available memory is 
unbounded (see Additional file 5). We can then assume that the actual speedup in the 

Table 2 Summary statistics of completed tasks per hour (median, lower and upper quartiles are 
reported)

Only tasks taking at least 1 min are considered. Number of processors stands for the number of available processors 
managed by both strategies

Processors NPS CES
Median (Q1–Q3) Median (Q1–Q3)

(a) 2-samples execution

 4 3 (1–5) 4.5 (2–10)

 8 4 (2–6) 9 (4–12)

 16 3 (2–8) 7.5 (4–16.5)

Processors NPS CES
Median (Q1–Q3) Median (Q1–Q3)

(b) 3-samples execution

 6 3 (2–6) 6 (2–15)

 12 4 (2–5) 16.5 (4–21.75)

 24 3 (2–4) 13.5 (8.25–18)

Fig. 3 Pipelines execution comparison (processors allocation). Representation of a pipeline execution on all 
3 samples based on processors usage along time for both NPS and CES. Each rectangle represents a task, its 
base and height are respectively equal to the allocated processors and to the time elapsed. The hatch type 
indicates the paired-matched sample that a task works on. The hatch color specifies the data type taken 
as input by a task. The color identifies the task type. See Fig. 5 for comprehensive legend. See Fig. 4 for its 
corresponding memory usage



Page 9 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  

3-samples case would exceed the theoretical one as the 2-samples case speedups do, but 
this does not happen due to technical limitations.

All Figures for other processors and memory usage cases (2-samples and different 
number of processors) are reported in Additional files 2–5.

Discussion
Nowadays, many researchers working in the bioinformatics field design and implement 
pipelines for the processing and analysis of biological data. Different execution strategies 
of these pipelines can lead to considerable differences in execution times. In this paper 
we discuss two strategies which a bioinformatics pipeline can be run with when a mul-
tiple samples execution is required: NPS and CES. Our objective was to determine the 
best strategy among these two approaches in a general case of running a whole bioinfor-
matics pipeline for N samples simultaneously and with at most K available processors. 
As explained above, each strategy consists respectively in:

• running the pipeline for all samples simultaneously by allowing each sample’s pipe-
line to potentially allocate all K processors (NPS), this is the standard approach for 
WMSs;

• running the pipeline for all samples simultaneously by equally splitting K processors 
across samples’ pipelines (CES).

Fig. 4 Pipelines execution comparison (memory usage). Representation of a pipeline execution on all 3 
samples based on memory usage along time for both NPS and CES. Each rectangle represents a task, its base 
and height are respectively equal to the allocated amount of memory and to the time elapsed. The hatch 
type indicates the paired-matched sample that a task works on. The hatch color specifies the data type taken 
as input by a task. The color identifies the task type. See Fig. 5 for comprehensive legend. See Fig. 3 for its 
corresponding processors usage



Page 10 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60 

We expressed mathematically that the CES is always the most efficient strategy, when 
there are no other technical limitations, and we did measure it with actual executions 
on a WES pipeline developed in our lab (detailed in “Methods” section).

Although we examined a simple case of CES, we obtained performance gains in 
terms of speedup up to 2–2.4 with respect to the NPS. These gains are fairly con-
sistent with the single-task level expectations given by Eq. 7 that we projected onto 
the pipeline-level. Nevertheless, several aspects need always to be addressed, as sug-
gested by our results, since stepping from a single-task level to the pipeline level is 
not completely straightforward.

First, Eqs.  4 and 5 still consider an optimistic linear speedup for all PaCo steps. 
As shown in Fig.  2, PaCo tasks are known to follow a speedup lower than the one 
expected from Amdahl’s law with respect to supplied processors. Then the CES over 
NPS speedup could be expected to reach greater values. Indeed, by limiting the pro-
cessors of the PaCo tasks, the CES reduces the overall waste of resources given by the 
sub-linear scaling of such tasks. We expect this advantage to play an instrumental role 
in the near future since bioinformatics pipelines are progressively being developed 
around PaCo tasks.

Secondly, both equations are obtained assuming the NS component to be either a sin-
gle step or a series of sequential steps. As we saw in Fig. 3, none of these assumptions 
is true at pipeline level because all samples’ NS components are mutually independent. 
This fact implies that samples’ NS components can generally be run as soon as neces-
sary resources are available, resulting in a machine usage optimization and eventually 
in an execution time reduction for both strategies. Therefore, we generally can expect a 
speedup decrease when the organization of the NS components is similar between the 
NPS and the CES (to see an example of this effect observe the first 2 hours of execution 
with both strategies in Fig.  3). This happens when the NPS slowdown compared with 
CES does not hinder significantly the whole execution. Otherwise, we expect an increase 
in speedup, since the CES always manages to optimize available resources, whereas the 
NPS tends to focus them only on few tasks. These expectations are confirmed by the 
results shown in Fig. 1, where the speedup is lower than expected when using few pro-
cessors (4 and 6 respectively with 2 and 3 samples) and it increases when the number of 
processors is increased, approaching the expected values.

Third, the use of the other machines resources at the pipeline level, such as memory 
usage, cache and disk I/O operations, can be much heterogeneous across tasks, which 
means it is likely that above a certain number of samples one of them will cause a 
bottleneck at some point of the execution. In our experimentation we discovered a 
memory bottleneck for the 3-samples case which interfered with the performance of 
CES. Thus, a general N samples execution on a K cores machine is actually affected by 
shared and limited amount of memory, cache and disk I/O speed. Bottlenecks of such 
kind, which are pipeline and machine dependent, are expected to bound the number 
of samples that can be executed concurrently limiting the theoretical increase of CES 
speedup. It is noteworthy, though, that alongside a reduction in latency and a smart 
managing of processors, the CES also accidentally improves memory usage. In fact, as 
can be seen in Fig. 4 the NPS underutilizes the available memory, while the CES has 
less unused resources throughout its execution.



Page 11 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  

Fourth, Eqs.  4 and 5 are true when all N samples share the same execution time T, 
which is a very rough approximation since this quantity depends necessarily on the input 
data size. If T across samples is roughly uniform, i.e. same order of magnitude, then the 
previous approximation is reliable. When this condition is not met, the CES does not 
always guarantee to be faster than the NPS because the execution time becomes the 
time needed by the largest sample. Besides, in such cases, the CES risks to waste a lot 
of machine resources when all small samples end their run and only the largest sample 
still has to complete. Thus, properly tailored concurrency strategies need to be designed 
when samples input size variance is large. To this end, instead of evenly distributing 
processors, an effective improvement could be achieved by a concurrent strategy that 
allocate processors based on input size relative to the other inputs, i.e. largest samples 
get more processors. Usually samples are acquired by the same experimental design and 
therefore they are roughly of the same size. This was true for our 3 samples, so that we 
could test the CES without the need of more advanced strategies.

Conclusions
With this paper we described a general approach, the CES, to run bioinformatics pipe-
lines for multiple samples that is alternative to the NPS and might be followed to boost 
performances. Performance gains are achieved by a strategy based on the idea of limit-
ing the individual resources assigned to each sample’s pipeline and to let them concur. 
With a bioinformatics pipeline developed in our lab we found CES speedups over NPS 
up to 2–2.4. We noticed that more complex concurrent schemes may yield faster execu-
tions; though this would require to measure all pipeline’s tasks behaviours and to have a 
deep knowledge of machine resources (processors, memory, cache and disk I/O speed) 
in order to find an optimal distribution. Since most of such tasks use tools developed 
by specialized companies, these may aid bioinformaticians by providing documentation 

Fig. 5 Legend for Figs.3 and 4



Page 12 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60 

about speedups as a function of number of processors and input data size, alongside 
memory usage and disk access.

These findings have implications for the feasibility of low-power clusters to be used 
in bioinformatics analyses, as the division of resources has not to necessarily occur on 
the same machine but on multiple ones. Since CES limits each task to relatively few 
resources, one can potentially distribute all tasks across multiple machines with lower 
requirements in terms of resources, such as low-power machines. We did not thoroughly 
analyse this possibility, but in some preliminary analysis we observed no significant dif-
ference to occur between using a cluster of low-power machines and a single high per-
forming machine server [13]. The main benefits of this alternative are the noteworthy 
saving on electrical costs and the chance to acquire a greater amount of resources with 
multiple low power machines for the same cost of a single traditional server. The feasibil-
ity of running bioinformatics pipelines on low-power machine clusters with CES is yet 
to be fully explored, but might potentially offer the chance to time-effective executions 
alongside relevant savings.

Methods
WES pipeline

We decided to exploit a WMS called Snakemake [8], which adapts the GNU Make con-
cept reimplemented leveraging Python language. We chose this system due to its ability 
of handling intermediate files, its rich options set and its user friendliness. Furthermore, 
Snakemake is able to use the Conda environment management system [14] both for cre-
ation and activation of several environments at runtime.

Our pipeline follows the typical steps for somatic variants calling from WES data and 
it has been validated with specific version of tools, most of which are provided auto-
matically by Conda (see Additional file 6: Table 5). After preliminary trimming (Adapter-
Removal) [15, 16], reads are mapped to the selected reference human genome with BWA 
MEM [1]; resulting BAM are post-processed with tools from SAMtools, Picard [2, 17] 
and GATK (sorting, indexing, marking of duplicates, indel realignment, base quality 
score recalibration) [18]. Indels and SNVs are then independently called with MuTect 
[19] and VarScan2 [20], annotated with ANNOVAR [21] and filtered with in-house 
scripts. Additionally, this pipeline is also able to call mitochondrial variants: trimmed 
reads are independently aligned to a reference exome and those that aligned off-target 
are collected (Picard) and re-aligned to the mitochondrial genome. From this point, 
BAM post-processing, variant calling, annotation and filtering are executed as for the 
nuclear genome variants. Further, our pipeline benchmarks everyone of its steps thanks 
to Snakemake, which relies on psutil to retrieve information about each task, such as 
execution time and memory usage.

Input data

WES FASTQ files were downloaded from NCBI’s Sequence Read Archive (SRA) [22]. 
They derive from three pairs of matched tumour-normal GIST samples (SRR1299130–
SRR1299131, SRR1299134–SRR1299135, SRR1299140–SRR1299141), whose genomic 
DNA was enriched by exome capture with SureSelect Human All Exon 50Mb kit 



Page 13 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  

(Agilent Technologies) and sequenced on the Illumina HiSeq 2000 platform in 100-bp 
paired-end reads. Digital size ranges from 4.1GB to 5.7GB.

Tested executions

We tested the following processors configurations by using Snakemake’s cores option. 
At first we sequentially run our pipeline on all samples by first supplying 2, then 4 and 
8 processors.

Afterwards we organized our three samples in the three possible pairs and we inde-
pendently run each of them using both the NPS and the CES. We tested three proces-
sors settings: 4, 8 and 16 processors. Both strategies exploited the same number of 
available processors but, as previously explained, the latter strategy split this number 
equally over samples, whereas the former did not.

Lastly we compared the two strategies by running our pipeline on all three samples 
within the same execution. We still set up three processors configurations (6, 12, 24) 
and we independently used both strategies. We decided to complete the three pairs 
and triplet runs with several processors settings in order to accurately explore the 
mathematical domain of Eq. 7.

Machine server technical specifications

We performed all our computations on a standard high-performance machine server 
equipped with two Xeon E5− 2620v4 CPUs, 2TB of storage (HDD) and 128GB of 
memory (RAM). In detail, the mounted Xeon E5− 2620v4 CPU consists of a Broad-
well-EP microarchitecture with 2.10(3.00)GHz frequency, 8 cores and 20MB of cache.

Abbreviations
WGS: Whole genome sequencing; WMS: Workflow management system; NPS: Naive parallel strategy; CES: Concurrent 
execution strategy; PaCo: Parallelly computable; WES: Whole exome sequencing; GIST: GastroIntestinal stromal tumour; 
NGS: Next-generation sequencing; NS: Non-scalable; EP: Embarrassingly parallel; SRA: Sequence read archive.

Supplementary information
Supplementary information accompanies this paper at https:// doi. org/ 10. 1186/ s12859- 020- 03780-3.

Additional file 1: Tables 1–4. Average execution time for pipeline’s tasks, for all processors configuration and for 
each strategy.

Additional file 2: Figure 1. Representation of all executions (6, 12 and 24 processors) on all 3 samples based on 
processors usage along time for both NPS and strategies (Fig. 3 as well).

Additional file 3. Figure 2. Representation of all executions (6, 12 and 24 processors) on all 3 samples based on 
memory usage along time for both NPS and strategies (Fig. 4 as well).

Additional file 4. Figure 3. Representation of all executions (4, 8 and 16 processors) on 2 samples based on proces-
sors usage along time for both NPS and strategies (all possible 2-samples combinations are reported).

Additional file 5. Figure 4. Representation of all executions (4, 8 and 16 processors) on 2 samples based on 
memory usage along time for both NPS and strategies (all possible 2-samples combinations are reported).

Additional file 6. Table 5. Description of the NGS pipeline used for this paper.

Acknowledgements
We would like to thank the “EDIMES” lab (University of Bologna), the INFN Gruppo V “AIM—Artificial Intelligence in Medi-
cine” and the INFN “TTLab—Laboratorio di Trasferimento Tecnologico dell’INFN in Emilia Romagna” for their scientific 
support.

https://doi.org/10.1186/s12859-020-03780-3


Page 14 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60 

Authors’ contributions
DD and NC performed the work and wrote the manuscript; EG, GC and CS ideated the project; EF developed the pipe-
line; EG, EF, GC, DR and CS helped with the analysis; EG, GC, CS and EF helped in writing the paper. All authors read and 
approved the final manuscript.

Funding
This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 
No 116026 H2020 EU "HARMONY" project. This Joint Undertaking receives support from the European Union’s Horizon 
2020 research and innovation programme and EFPIA. Moreover the research leading to these results has received 
funding from the European Union’s Horizon 2020 research and innovation programme “VEO” Grant n. 874735, and from 
ETN-ITN “ImforFuture” Grant n. 721815. The “HARMONY” and “VEO funding bodies were partially used to pay staff salaries, 
while the “ImforFuture” funding body partially supported the purchase of the high performing machine server used for 
the experiment.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the National Center for Biotechnology Information 
(NCBI) repository: SRR1299130 (https:// www. ncbi. nlm. nih. gov/ sra/? term= SRR12 99130), SRR1299131 (https:// www. ncbi. 
nlm. nih. gov/ sra/? term= SRR12 99131), SRR1299134 (https:// www. ncbi. nlm. nih. gov/ sra/? term= SRR12 99134), SRR1299135 
(https:// www. ncbi. nlm. nih. gov/ sra/? term= SRR12 99135), SRR1299140 (https:// www. ncbi. nlm. nih. gov/ sra/? term= SRR12 
99140), SRR1299141 (https:// www. ncbi. nlm. nih. gov/ sra/? term= SRR12 99141).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Physics and Astronomy, University of Bologna, 40127 Bologna, BO, Italy. 2 Department of Experimental, 
Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, BO, Italy. 3 Istituto Scientifico Romagnolo per lo 
Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy. 

Received: 28 February 2020   Accepted: 24 September 2020

References
 1. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;. 

https:// doi. org/ 10. 1093/ bioin forma tics/ btp324.
 2. Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;. https:// doi. org/ 10. 1093/ bioin 

forma tics/ btp352.
 3. Houtgast EJ, et al. GPU-accelerated BWA-MEM genomic mapping algorithm using adaptive load balancing. In: Pro-

ceedings of the 29th international conference on architecture of computing systems—ARCS 2016, vol 9637. Berlin: 
Springer; 2016, pp. 130–142

 4. Weeks NT, Luecke GR. Optimization of SAMtools sorting using OpenMP tasks. Cluster Comput. 2017;. https:// doi. 
org/ 10. 1007/ s10586- 017- 0874-8.

 5. Schmied C, et al. An automated workflow for parallel processing of large multiview SPIM recordings. Bioinformatics. 
2016;. https:// doi. org/ 10. 1093/ bioin forma tics/ btv706.

 6. Piro VC, et al. MetaMeta: integrating metagenome analysis tools to improve taxonomic profiling. Microbiome. 2017;. 
https:// doi. org/ 10. 1186/ s40168- 017- 0318-y.

 7. Cornwell MI, et al. VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-
seq analysis. BMC Bioinformatics. 2018;. https:// doi. org/ 10. 1186/ s12859- 018- 2139-9.

 8. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;. https:// doi. org/ 
10. 1093/ bioin forma tics/ bts480.

 9. Jafar Taghiyar M, et al. Kronos: a workflow assembler for genome analytics and informatics. GigaScience. 2017;. 
https:// doi. org/ 10. 1093/ gigas cience/ gix042.

 10. Kluge M, et al. Watchdog—a workflow management system for the distributed analysis of large-scale experimental 
data. BMC Bioinformatics. 2018;. https:// doi. org/ 10. 1186/ s12859- 018- 2107-4.

 11. Kotliar M, et al. CWL-Airflow: a lightweight pipeline manager supporting Common Workflow Language. GigaS-
cience. 2019;. https:// doi. org/ 10. 1093/ gigas cience/ giz084.

 12. Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS 
conference proceedings—1967 spring joint computer conference, AFIPS 1967; 1967. https:// doi. org/ 10. 1145/ 14654 
82. 14655 60

 13. Curti N, et al. Cross-environment comparison of a bioinformatics pipeline: perspectives for hybrid computations. 
In: Euro-Par 2018: parallel processing workshops. Cham: Springer; 2019, pp. 638–649. https:// doi. org/ 10. 1007/ 
978-3- 030- 10549-5

 14. Anaconda software distribution. https:// anaco nda. com/

https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299130
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299131
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299131
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299134
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299135
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299140
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299140
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1299141
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1007/s10586-017-0874-8
https://doi.org/10.1007/s10586-017-0874-8
https://doi.org/10.1093/bioinformatics/btv706
https://doi.org/10.1186/s40168-017-0318-y
https://doi.org/10.1186/s12859-018-2139-9
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/gigascience/gix042
https://doi.org/10.1186/s12859-018-2107-4
https://doi.org/10.1093/gigascience/giz084
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/978-3-030-10549-5
https://doi.org/10.1007/978-3-030-10549-5
https://anaconda.com/


Page 15 of 15Dall’Olio et al. BMC Bioinformatics           (2021) 22:60  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 15. FASTQC a quality control tool for high throughput sequence data. https:// www. bioin forma tics. babra ham. ac. uk/ 
proje cts/ fastqc/

 16. Lindgreen S. AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes. 2012;. https:// 
doi. org/ 10. 1186/ 1756- 0500-5- 337.

 17. Picard. http:// broad insti tute. github. io/ picard/
 18. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, 

DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing 
data. Genome Res. 2010;. https:// doi. org/ 10. 1101/ gr. 107524. 110. 20.

 19. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G. 
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 
2013;. https:// doi. org/ 10. 1038/ nbt. 2514.

 20. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: 
somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;. 
https:// doi. org/ 10. 1101/ gr. 129684. 111.

 21. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequenc-
ing data. Nucleic Acids Res. 2010;. https:// doi. org/ 10. 1093/ nar/ gkq603.

 22. Bethesda (MD): National Library of Medicine (US), N.C.f.B.I.: National Center for Biotechnology Information (NCBI). 
https:// www. ncbi. nlm. nih. gov/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1186/1756-0500-5-337
https://doi.org/10.1186/1756-0500-5-337
http://broadinstitute.github.io/picard/
https://doi.org/10.1101/gr.107524.110.20
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1101/gr.129684.111
https://doi.org/10.1093/nar/gkq603
https://www.ncbi.nlm.nih.gov/

	Impact of concurrency on the performance of a whole exome sequencing pipeline
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Application of Amdahl’s law to identical processes
	CES speedup at single-task level on real data
	CES speedup at pipeline level on real data

	Discussion
	Conclusions
	Methods
	WES pipeline
	Input data
	Tested executions
	Machine server technical specifications

	Acknowledgements
	References


