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Abstract

Background: Gene selection refers to find a small subset of discriminant genes from
the gene expression profiles. How to select genes that affect specific phenotypic
traits effectively is an important research work in the field of biology. The neural
network has better fitting ability when dealing with nonlinear data, and it can
capture features automatically and flexibly. In this work, we propose an embedded
gene selection method using neural network. The important genes can be obtained
by calculating the weight coefficient after the training is completed. In order to solve
the problem of black box of neural network and further make the training results
interpretable in neural network, we use the idea of knockoffs to construct the
knockoff feature genes of the original feature genes. This method not only make
each feature gene to compete with each other, but also make each feature gene
compete with its knockoff feature gene. This approach can help to select the key
genes that affect the decision-making of neural networks.

Results: We use maize carotenoids, tocopherol methyltransferase, raffinose family
oligosaccharides and human breast cancer dataset to do verification and analysis.

Conclusions: The experiment results demonstrate that the knockoffs optimizing
neural network method has better detection effect than the other existing
algorithms, and specially for processing the nonlinear gene expression and
phenotype data.
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Introduction
In recent years, large amounts of biological data (such as genomes, transcriptomes,

and phenotypes) have been generated with the maturity and rapid development of

many high-throughput technologies. In this context, it’s possible to mine gene loci for

specific phenotypic traits (such as crop vitamin A content, agronomic traits, human

diseases, etc) from the genome-wide data. In recent years, Genome-Wide Association

Study (GWAS) and linkage analysis have become important ways of gene location and

fine allele discovery. At present, a lot of quantitative trait loci controlling various

phenotypic traits have been mapped by biologists using these methods. However, link-

age analysis method needs to construct segregated population, longer cycle and low

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Guo et al. BMC Bioinformatics          (2020) 21:414 
https://doi.org/10.1186/s12859-020-03717-w

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03717-w&domain=pdf
mailto:liujianxiao321@163.com
mailto:liujianxiao321@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


accuracy. Generally, it can only limit the Quantitative Trait Locus (QTL) within 10 cM

and 20 cM, and the work of QTL fine mapping is time-consuming and labor-

consuming. At the same time, the statistical efficacy of GWAS is relatively low. Gener-

ally, this method can only locate the major QTL, and the false positive rate is relatively

high.

Gene selection refers to find a small subset of discriminant genes for specific pheno-

typic traits using microarray data. Gene selection plays an important role in gene ex-

pression analysis, and it has important research significance in increasing crop yields,

improving crop quality, diagnosing and treating human diseases. The bioinformatics-

based gene selection method overcomes the shortcomings of traditional biological ex-

periment methods, such as high cost, time-consuming and laborious, etc. The

bioinformatics-based methods mainly use machine learning related algorithms to per-

form biological computation, and thus to mine pathogenic genes. At present, it has be-

come a research hotspot of bioinformatics and an effective method of pathogenic gene

mining. The main challenge of selecting genes is that there are fewer samples, more

features (genes), and higher noise in the data. At present, there are mainly three kinds

of machine learning related gene selection methods: filter method, wrapper method

and embedded method.

1. The filter method mainly refers to score each feature gene according to divergence

or correlation, and select genes by setting a threshold. The often used filter method

includes -test feature selection [1], correlation-based feature selection (CFS) [2],

information gain [3], chi-square test, mutual information [4], etc. The filter method

is easy to implement, but it ignores the complex interactions between genes.

Therefore, the gene selection accuracy of filter method is often worse than other

kinds of methods.

2. The wrapper method mainly uses some intelligent optimization algorithms to

search the optimal genes in the feature space. For example, genetic algorithm finds

the smaller set of feature genes that the optimization criterion does not deteriorate

[5, 6]. The ant colony optimization [7] and artificial bee colony (ABC) algorithms

[8] are also used into gene selection. Some research work combines the intelligent

optimization algorithms with other methods to realize gene selection. The

representative methods include using information gain and swarm optimization

algorithm [9], support vector machine (SVM) and artificial bee colony [10], cellular

learning automata and ant colony algorithm [11], evolutionary and artificial

intelligence method [12], genetic operators [13], etc. In recursive feature

eliminating method, it eliminates some features after each training and carries out

next training based on the new feature set until satisfying the requirements [14].

This method can obtain the best performance through optimizing the objective

function, but the computational complexity is often too large. In addition, Markov

blanket [15] and sequential search-based algorithm [16] are also used to select im-

portant genes for specific phenotypes.

3. The embedded method takes feature gene selection as a part of the model building.

It trains data using some machine learning algorithms and obtains the weight

coefficients of each feature gene. Then it selects important genes according to the

weight coefficients. The typical embedded methods mainly include random forest
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[17, 18], regularized logistic regression [19], least absolute shrinkage and selection

operator (LASSO) [20], ridge regression [21], elastic net [22] and so on. Among

them, random forest method improves the gene selection performance by

combining multiple decision trees. It selects the important genes by ranking each

feature after training. LASSO constructs a linear model through setting some

feature coefficients to zero and uses the nonzero ones as the selected genes.

As we known, the relationship between gene expression and phenotype is often com-

plex and nonlinear. Through using multiple hidden layers and activation functions,

neural network has the characteristics of better fitting ability in dealing with complex

non-linear data, automatic feature extraction and good flexibility. This work includes

the following three aspects:

1. We propose an embedded method, which integrates gene selection into the

process of neural network training. After the training is completed, we can evaluate

the importance of genes according to the calculated weight coefficient of each

gene.

2. Neural networks are often considered as a black-box model due to its internal

complexity. It is difficult to discover the key genes that affect the decision-making

of neural networks. In order to make the training results interpretable, we intro-

duce the idea of knockoffs into the neural network [23]. By constructing the knock-

off feature genes of the original feature genes [24], this method not only make each

feature gene to compete with each other, but also make each feature gene compete

with its knockoff feature gene. That is to say, we can evaluate the importance of

genes for the phenotype traits with the help of the knockoff feature genes.

3. We use the real maize carotenoids, tocopherol methyltransferase, raffinose family

oligosaccharides and human breast cancer dataset to do evaluation and validation.

Experiment results show the knockoffs optimizing neural network method can

mine candidate genes more effectively when to deal with complex non-linear data

with independently identically distribution. It has better detection effect compared

with the existing 5 kinds of commonly used gene selection methods.

Results
Dataset

We have assembled a global maize germplasm collection with 527 inbreds for associ-

ation mapping panel (AMP) with different populations (including 143 lines for NSS,

non-stiff-stock; 33 for SS, Stiff-stock; 232 for TST, Tropical and Semi-tropical; and the

left 119 are regarded as MIXED). This population is released from the major temperate

and tropical/subtropical breeding programs of China, International Maize and Wheat

Improvement Center (CIMMYT) and the Germplasm Enhancement of Maize (GEM)

project in the US, which were chosen to be the representative of maize genetic diversity

and/or for their promise in maize improvement. All of the lines were previously assayed

by the 50 K Maize SNP array (commercially available from Illumina). Deep RNA se-

quencing was also performed on 368 of the 527 lines using kernels harvested 15 days

after pollination (DAP). We get about 1 million 60 thousand high quality SNP markers
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and expression of 28,769 genes, which cover about 70% of the predicted genes in maize

genome [25]. All the dataset can be got through http://www.maizego.org/ and http://

modem.hzau.edu.cn/ [26].

To evaluate the effectiveness of our method, we chose 4 published genes loci harbor-

ing the well-known genes, that is, crtRB1 and lycE for maize carotenoids pathway [27,

28], VTE4 for maize tocopherol methyltransferase [29], ZmGOL for maize raffinose

family oligosaccharides [30], of which the four are well-known for their function vari-

ation through expression. We select a region upstream and downstream of the 4 noted

genes within 1MB respectively to do the experiment.

It has been reported that in Zea mays crtRB1 (also known as HYD3) were signifi-

cantly associated with carotenoid variation in association panel, and alleles associated

with reduced transcript expression correlate with higher β-carotene concentrations

[27]. lycE, which encodes a lycopene beta cyclase, commits the first branch point of

lycopene cyclization [31]. Previous studies have shown that the transcriptional regula-

tion of lycB and lycE are the critical regulatory points in carotenoid biosynthesis [32,

33]. VTE4, which encodes the γ-tocopherol methyltransferase, is a major gene involved

in natural phenotypic variation of α-tocopherol. The reported natural variation in

ZmVTE4 promoter region among the association panel affect kernel α-tocopherol con-

tent through regulation gene expression [34]. ZmGOL, galactinol synthase 1, is the gene

with function of regulating seed vigor by manipulation of raffinose family oligosaccha-

rides [30].

Experiment comparison and analysis

We compare the performance of our methods with five baseline methods: random for-

est (RF) [17, 18], support vector regression with linear kernel function (SVR_LKF) [35],

mutual information (MI) [36], elastic net [22], neural network without knockoffs(Non-

Knockoffs). Our knockoffs optimization neural network gene selection method in this

work is named as Knockoffs-NN. In the method of RF, we measure the importance of

each feature through calculating the Gini coefficient [18]. In SVR_LKF, we measure the

importance of each feature by the coefficients in the primal problem [35]. In MI, we

get the relevance between each gene and phenotype trait through calculating the mu-

tual information.

We can get the ranking of target gene according to the weight coefficient has been

calculated in different methods. We use Eq. (1) to calculate the power of the target

gene. In the equation, rank refers to the ranking of the target gene and num refers to

the total number of genes in the dataset. Obviously, higher ranking of target gene de-

notes the greater of the corresponding power.

power ¼ 1 −
rank

num ð1Þ

In Knockoffs-NN, we first load the data to generate a m × n matrix, which is denoted

as X ∈ℝm × n. It means there are n genes and m samples in the dataset. The element xij
in X represents the expression of the j-th gene in the i-th sample. Y ∈ℝm × 1 represents

the phenotype trait of each sample. We do the standardization on the dataset X firstly,

and generate knockoff feature genes using MATLAB based on the reference code in

[24] (http://web.stanford.edu/group/candes/knockoffs/software/knockoffs/). Then we
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can get a m × 2n matrix, in which the first n dimension represent the original feature

genes and next n dimension represent the knockoff feature genes. We take the m × 2n

matrix as the input of our neural network (Fig. 7). Then we get a m × n matrix after

coupling through the coupling layer. The multi-layer perceptron (MLP) is used to learn

the function from input n feature genes to the output Y. After the training is com-

pleted, we evaluate the importance of each gene through calculating the weight coeffi-

cient (Eq. (10)). In order to ensure the accuracy comparison, we train the neural

network 10 times with different random seeds and obtain the average weight coefficient

of each feature gene. In our experiment, we use ReLU activation function, L1

regularization and mean square error loss function. We use the batch gradient descent

method and optimize the loss function by the Adam algorithm. The hyperparameters

setting (such as learning rate, number of hidden layers) in our experiments is shown in

Table 1.

Validation of crtRB1 for maize carotenoids

For crtRB1(GRMZM2G152135), there are 22 genes shown expression in the region up-

stream and downstream of crtRB1 within 1MB in 15DAP kernels, with the above 6

kinds of methods to detect the candidate genes for 4 relative traits, that is, AC (α-caro-

tene), BC (β-carotene), LUT (lutein) and ZEA (zeaxanthin). The results are shown in

Fig. 1, in which abscissa represents 4 traits. The ordinate refers to the effectiveness of

each method, which is calculated using Eq. (11). In order to fully explain the experi-

ment result, we illustrate the ranking information of crtRB1(GRMZM2G152135) about

different phenotypes of 6 kinds of methods, as shown in Table 2. In the table, the num-

ber refers to the ranking of the target gene predicted by all the methods. It can be seen

that the smaller of the number (the higher of the ranking), the better performance of

the method.

In Fig. 1 and Table 2, we can see the Knockoffs-NN method can detect strong signals

that crtRB1(GRMZM2G152135) having effect of AC, BC, ZEA and LUT. Knockoffs-NN

has the best learning effect than the other 5 kinds of methods. The learning effect of

MI is the worst of all, and the other 4 methods are in the middle. In addition, we can

see the 6 kinds of methods having not very good detection effect for the phenotype of

LUT. This is related to the dataset correctness of phenotype LUT. The methods of RF,

SVR_LKF, Elastic-Net and Non-Knockoffs can also detect GRMZM2G152135 is affecting

AC, BC and ZEA basically. In all, our Knockoffs-NN has the best detection accuracy for

Table 1 Parameters setting in the experiment

Parameter setting Value

Activation function ReLU

Regularization L1

Loss function Mean square error (MSE)

Optimization Batch gradient descent and Adam (recommend mini-batch for large
samples)

Number of hidden layer 1

Number of hidden layer neurons
(genes)

Number of genes

Learning rate 0.0001
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all the phenotypes. The reason is the importance of each feature gene is evaluated

by the weight after training data in RF, SVR_LKF, MI, Elastic-Net. These methods

only focus on the effect of different genes on the phenotype traits, rather than

whether the genes themselves are important or not. But in Knockoffs-NN method,

the original feature genes and knockoff feature genes are taken as the input of

neural network to do training. Each gene can compete with each other in the

training process. Through comparing the weight coefficient of original feature

genes and knockoff feature genes, Knockoffs-NN method determines the importance

of each gene. This can increase the stability and reliability of Knockoffs-NN

method. In addition, the neural network method is suitable for dealing with com-

plex and non-linear data.

Validation of lcyE for maize carotenoids

For lcyE (GRMZM2G012966), there are 19 genes shown expression in the region up-

stream and downstream of lycE within 1MB in 15DAP kernels, with the above 6 kinds

of methods to detect the candidate genes for 4 relative traits, that is, AC (α-carotene),

BC (β-carotene), LUT (lutein) and ZEA (zeaxanthin). The result is shown in Fig. 2. The

ranking information of lcyE(GRMZM2G012966) about different phenotypes using 6

kinds of methods is illustrated in Table 3.

Through Fig. 2 and Table 3, we can see the Knockoffs-NN method has the best learn-

ing effect on the phenotypes of AC and BC. For ZEA, MI has the best detection effect

and the learning effect of Knockoffs-NN is slightly worse than MI. But for the pheno-

type of LUT, MI has the worst detection effect than the other 5 kinds of methods

Fig. 1 Result of gene crtRB1(GRMZM2G152135) for maize carotenoids

Table 2 The ranking of crtRB1(GRMZM2G152135) about different phenotypes

Methods RF SVR_
LKF

MI Elastic-
Net

Non-
Knockoffs

Knockoffs-
NNTraits

AC 1 1 4 1 1 1

BC 1 2 14 1 1 1

ZEA 1 2 7 2 1 1

LUT 5 12 5 20 13 4
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apparently. In the whole, Knockoffs-NN has better learning effect than the other 5 kinds

of methods for all the phenotypes.

Validation of VET4 for maize tocopherol

For VTE4(GRMZM2G035213), there are 23 genes shown expression in the region upstream

and downstream of VTE4 within 1MB in 15DAP kernels, with the above 6 kinds of methods

to detect the candidate genes for 4 relative traits, that is gamma, alpha, total and ratio. The

results are shown in Fig. 3. The ranking information of VTE4(GRMZM2G035213) about dif-

ferent phenotypes using 6 kinds of methods is illustrated in Table 4.

Through Fig. 3 and Table 4, we can see the 6 kinds of methods have better detection

effect for all the phenotypes. The detection effect of Non-Knockoffs, Elastic-Net and

Knockoffs-NN is slightly worse that SVR_LKF, MI and RF for the phenotype of gamma.

MI has the best learning effect for all the phenotypes. For the phenotype of total, the

detection accuracy of MI is slightly better than Knockoffs-NN. This may be related to

the linear characteristics of the data. Neural network is suitable for dealing with com-

plex non-linear data, and has better fitting ability. In addition, the knockoffs framework

is suitable for the data with independently identically distribution. In all, our Knockoffs-

NN method can detect strong signals that VTE4(GRMZM2G035213) is affecting the 4

phenotypes of maize tocopherol.

Validation of ZMGOL for maize raffinose

For the gene of ZmGOL (GRMZM5G872256), there are 215 genes shown expression in

the region upstream and downstream of ZmGOL within 1MB, with the above 6 kinds

Fig. 2 Result of gene lcyE(GRMZM2G012966) for maize carotenoids

Table 3 The ranking of lcyE(GRMZM2G012966) about different phenotypes

Methods RF SVR_
LKF

MI Elastic-
Net

Non-
Knockoffs

Knockoffs-
NNTraits

AC 3 10 4 5 3 1

BC 1 1 6 1 2 1

ZEA 3 14 1 3 15 3

LUT 3 1 5 3 1 2
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methods to detect the candidate genes for the trait of raffinose family oligosaccharides.

The results are shown in Fig. 4. Table 5 shows the ranking information of ZmGOL

(GRMZM5G872256) about 6 kinds of methods for maize raffinose. The detailed results

of ZmGOL(GRMZM5G872256) for maize raffinose family oligosaccharides is shown in

Table 6. It shows the top-5 genes and the corresponding eigenvalues that have been

calculated using different methods.

From Tables 5, 6 and Fig. 4, we can see the learning effect of various methods are

quite different on the target gene GRMZM5G872256. It ranked 36th in RF method,

24th in SVR_LKF method, 209th in MI method, 5th in Non-Knockoffs, 21th in Elastic-

Net method and 1st in our Knockoffs-NN method. It can be seen that the neural net-

work related methods (Knockoffs-NN and Non-Knockoffs) have better detection effect.

This is related to the fact that the neural network method is suitable for dealing with

complex, non-linear data with a large number of features. In addition, this dataset has

the characteristics of non-linear and with independently identically distribution, which

is suitable for the Knockoffs-NN method. Therefore, our Knockoffs-NN method has the

best detection effect obviously.

Validation of human breast dataset

There are 286 samples and 13,698 genes in the human breast cancer data (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034). On the basis of the top-10

genes available at https://www.genecards.org/ of breast cancer, we selected 90 genes

from 13,698 genes to do experiment. We take the average value of 10 experiment re-

sults to do comparison. Figure 5 shows the result of top-5 genes about human breast

Fig. 3 Result of gene VTE4(GRMZM2G035213) for maize tocopherol

Table 4 The ranking of VTE4(GRMZM2G035213) about different phenotypes

Methods RF SVR_
LKF

MI Elastic-
Net

Non-
Knockoffs

Knockoffs-
NNTraits

ratio 1 1 1 1 1 1

gamma 1 1 1 2 4 5

alpha 1 1 1 1 1 1

total 4 11 1 5 3 2
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cancer dataset. The gene ranking information about the top-5 genes using 6 kinds of

methods is illustrated in Table 7.

Because the number of samples and feature genes is 107 and 13,698 respectively in this

dataset, we use random sampling method to include the other 90 unrelated genes to do

the experiment. However, due to the small number of samples and the large randomness

of the selected genes, the learning effect of 6 kinds of methods is not very good. But we

still can see Knockoffs-NN performs better than other methods in the whole.

Discussion
According to the above experiment results, it can be seen that our Knockoffs-NN method

is more stable than other 5 kinds of methods. And it has the best detection effect in all

the 6 kinds of methods. Although other methods may be performed well on one trait, but

they are less stable on the whole. The reason is that these methods only focus on the ef-

fect of different genes on the phenotype traits, rather than whether the genes themselves

are important or not. While our Knockoffs-NN method constructs the knockoff feature

genes of the original feature genes in the neural network. Then it takes the original feature

genes and knockoff feature genes as the input of neural network to do training. In the

training process, each gene can not only compete with each other but also compete with

its knockoff feature gene. This method can determine the importance of each gene

through comparing the weight of original feature genes and knockoff feature genes. That

Fig. 4 Result of gene ZmGOL(GRMZM5G872256) for maize raffinose

Table 5 The ranking of ZmGOL(GRMZM5G872256) about maize raffinose

Methods RF SVR_
LKF

MI Elastic-
Net

Non-
Knockoffs

Knockoffs-
NNTrait

M71 36 24 209 21 7 1
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is to say, this method can evaluate the importance of genes for the phenotype traits with

the help of the knockoff feature genes. Therefore, the Knockoffs-NN method can evaluate

whether the genes themselves are important or not. In addition, the neural network

method is suitable for dealing with complex and non-linear data.

Conclusions
Genes are genetic information that controls biological traits. Mining genes affecting

specific phenotypic trait has important research significance for crop quality im-

provement, diagnosis and treatment of human diseases. At present, more and more

studies have used machine learning related methods for gene selection. These

methods can not only mine candidate genes associated with phenotypic traits effi-

ciently, but also greatly reduce the time and cost of biology research. This work

proposes a kind of embedded gene selection method based on knockoffs optimizing

neural network. This method introduces the idea of knockoffs into the neural net-

work construction. It constructs the knockoff feature genes of the original feature

genes, and realizes the feature gene selection by calculating the weight coefficient

of each feature gene after training. This method not only make each feature gene

to compete with each other, but also make each feature gene compete with its

knockoff feature gene. We mainly describe the specific process of constructing

knockoff feature genes. This method can deal with the complex relationships be-

tween genes and phenotypes, and then mine candidate genes affecting specific

phenotypic traits. The effectiveness of the method is validated using the real data-

sets, including maize carotenoids, tocopherol methyltransferase, raffinose family

Fig. 5 Results of human breast cancer dataset

Table 7 The gene ranking of human breast cancer dataset

Methods RF SVR_
LKF

MI Elastic-
Net

Non-
Knockoffs

Knockoffs-
NNRanking

RCA2 62 67 62 70 75 52

DH1 84 37 84 52 64 41

RBB2 33 88 33 59 76 39

BRIP1 67 39 67 29 49 16

ATM 87 70 87 78 64 41
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oligosaccharides and human breast cancer. The experiment results show that our

knockoffs optimizing neural network method has better gene selection effect than

the other 5 kinds of existing methods. Specially, the proposed method is suitable

to process the complex non-linear data with independently identically distribution.

This characteristic is just for dealing with the data of gene expression and

phenotypes.

Although the knockoffs optimizing neural network has a good learning effect on each

dataset, there are still some shortcomings need to do further research. Firstly, the neural

network is prone to overfitting during the training process due to the high-dimensional

characteristic of the gene expression data. This may lead to the selected feature genes not

accurate enough. We plan to select a part of candidate genes firstly from the original

genes using the traditional gene selection method, and then further to select the target

genes by our proposed Knockoffs-NN method. Secondly, we found that when the sample

number is 10 times more than gene feature number, our method has better normalization

ability. But in the biological area, the number of genes may be very large and our method

may not perform well enough. In addition, the source code that is currently used to gener-

ate knockoff genes can only handle nonsingular matrices with the number of samples is

larger than the number of features. We will further to do improvement according to the

framework of knockoffs optimizing neural network. We endeavor to process the dataset

with number of samples is less than the number of gene features, and then conduct exper-

iments on new datasets. Finally, how to handle the multi-classification tasks, for example,

gene selection for multiple phenotypes, is still a problem to be solved.

Methods
Neural network

Neural network has better fitting ability when to deal with the complex non-linear data

by utilizing multiple hidden layers and activation functions. The activation function can

increase the fitting ability to the non-linear data. The most commonly used activation

function is the Rectified Linear Units (ReLU) function, as shown in Eq. (2).

f xð Þ ¼ max 0; xð Þ ð2Þ

Different loss functions are used for different learning problems. For example, the mean

square error loss function is generally used to deal with regression problems, as shown in

Eq. (3). In the equation, y denotes the true value, f(x, W) denotes the predicted value after

training. W represents parameters in the model of neural network. Firstly, we initialize the

parameter W randomly and then update it through the gradient descent method.

cost ¼ y − f x;Wð Þð Þ2 ð3Þ

We use softmax function to deal with multi-classification problems, as shown in Eq.

(4). In the equation, C represents the number of categories and W represents the

weight matrix.

cost ¼ −
X
k

Y k logðsof tmaxðWTXkÞÞ; so f tmaxðwT
c xÞ ¼

expðwT
c xÞXC

c¼1

expðwT
c xÞ

; ð4Þ
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Knockoff feature

For each sample in the dataset, we use x = (X1,…,Xk) to represent the original feature

(gene) and ~x ¼ ð~X1;⋯; ~XkÞT to represent the knockoff features. The original feature x

and knockoff feature ~x need to satisfy the following two conditions [24].

(1). For any subset S ⊂ {1,⋯, k}, it needs to satisfy ðx; ~xÞswapðSÞ ¼d ðx; ~xÞ, where swap(S)

represents exchanging j and for any j ⊂ S. represents the same data distribution. For

example, n = 2, s = {2},we can get ðX1;X2; ~X1; ~X2Þswapðf2gÞ ¼d ðX1; ~X2; ~X1;X2Þ.
(2). ~x ╨ Y ∣ x. It represents ~x independent of Y in the condition of given x.

Knockoffs-NN approach

The framework of knockoffs-NN

The framework of our method is shown in Fig. 6. In Fig. 6, the knockoff gene features

are generated based on the original genes firstly. Taken the original genes and knockoff

genes as the input and phenotype trait as output, then we use the neural network to

realize the model training. We select the optimal neural network parameters and realize

model selection based on the validation dataset. Finally, we calculate the weight coeffi-

cient of each gene after the training is completed. In order to insure the accuracy, we

repeat the above process several times with different random seeds and obtain the aver-

age weight coefficient of each gene.

Constructing knockoff features

Constructing accurate knockoff features

We can construct knockoff features according to the two conditions described in the

section of Knockoff feature. Supposing x ∼Ν(0, Σ), Σ represents covariance matrix and

Fig. 6 The framework of our method
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Σ ∈ ℝp × p. The joint distribution of x and ~x satisfying the above two conditions is shown

in Eq. (5) [24].

x; ~xð Þ∼N 0;Gð Þ;G ¼ Σ Σ − diag pf g
Σ − diag pf g Σ

� �
ð5Þ

In Eq. (5), diag{p} is an arbitrary diagonal matrix selected in a way that the joint co-

variance matrix G is positive semidefinite. We can obtain the knockoff feature ~x from

conditional distribution sampling of ~xjx, as shown in Eq. (6) [24].

~xjx∼Ν x − diag pf gΣ − 1x; 2 diag pf g − diag pf gΣ − 1 diag pf g� � ð6Þ

More generally, if the data does not obey the Gaussian distribution, the knockoff fea-

tures can be constructed using the following methods. Any knockoff features ð~X1;⋯;

~XkÞ of (X1,⋯, Xk) satisfy the two conditions. If the elements in vector X are independ-

ent, then any independent copy of X needs to satisfy the two conditions. That is to say,

any ~X that is independently sampled from the same joint distribution as X satisfies

these two conditions. We can construct the knockoff feature ~X using Algorithm 1 [24].

In Algorithm 1, PðXijX − i; ~X1:i − 1Þ represents the conditional distribution of Xi given

ðX − i; ~X1:i − 1Þ . X−i represents all the features except for the i-th feature. Firstly, we

sample ~X1 from the conditional distribution of P(X1|X2). Then we can get PðX1:2; ~X1Þ
and PðX2jX1; ~X1Þ can be calculated. In the next iteration, we sample ~X2 from the

conditional distribution of PðX2jX1; ~X1Þ. Then we can get the knockoff features ~X1; ~X2

according to Algorithm 1.

Constructing approximate knockoff features

According to Algorithm 1, we can obtain the accurate knockoff features. But it will

consume a lot of time because the conditional distribution needs to be calculated at

each step. To simplify this process, we can use the approximate knockoff feature con-

struction method [37].
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Constructing approximate knockoff features no longer requires ðX; ~XÞswapðSÞ and ðX;
~XÞ having the same distribution, but it requires them to have the same mean and co-

variance. It is easy to ensure the mean having the same value. Eq. (7) needs to be satis-

fied to ensure the covariance having the same value.

cov X;X
� � ¼ G;G ¼

X X
− diag pf gX

− diag pf g
X

 !
ð7Þ

It is necessary to select parameter s to produce a semi-positive definite covariance

matrix. We can construct approximate knockoff features using the following two steps.

Step 1: Select the approximate value ∑approx of ∑ and solve the optimization problem

shown in Eq. (8).

minimize
X

j
1 − p̂ j

��� ��� subject to p̂ j≥0; diag p̂f g≤2
X

approx
ð8Þ

Step 2: Solve the optimization problem shown in Eq. (9).

maximize γ subject to diag γp̂f g≤2Σ ð9Þ

The returning value γp̂ is the selected parameter p in Eq. (6). Among them, step 2

can be solved quickly using the binary search method (γ ∈ [0, 1]). The conditional distri-

bution ~xjx can be obtained using Eq. (6), and thus to get the knockoff feature genes.

In general, we can choose ∑approx as the m-block diagonal approximation of ∑. Then

we can divide the operation of step 1 into m sub-problems, which are smaller and eas-

ier to calculate and can be processed in parallel. If the approximation is accurate

enough, larger values of γ can be got. It means that the approximation value and the

exact value of the knockoff variables are identical.

Knockoff filter construction

After obtaining the knockoff feature gene ~x, we can select important feature genes by sort-

ing the knockoff statistic variables of W j ¼ f jðZ j; ~Z jÞ [23]. fj(.,.) represents the anti-

symmetric function with f jðZ j; ~Z jÞ ¼ − f jð~Z j;Z jÞ. It should be noted that the measure-

ment of feature importance and the construction of knockoff statistic W are not same for

different fitting model algorithms. Strictly speaking, the knockoff variables should satisfy

the flipping attribute. It means that any exchange of Xj and ~X j will only change the sign of

Wj, but it will not change the sign of other variables of Wk (k ≠ j). It is conceivable that if a

feature gene j is important, its corresponding knockoff variable Wj will be a large positive

value. On the contrary, if a feature gene j is not important, the value of Wj is close to zero.

On the basis of the knockoff variable Wj, we rank it according to |Wj|. Next, we select

feature genes on the basis of the threshold T, which can be calculated using two

methods shown in Eq. (10).

T ¼ min t∈ω;
j : W j≤ − t
� ��� ��

j : W j≥t
� ��� �� ≤q

( )
;Tþ

¼ min t∈ω;
1þ j : W j≤ − t

� ��� ��
1∨ j : W j≥ t
� ��� �� ≤q

( )
ð10Þ
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In Eq. (10), |{}| represents the set size. ω = {|Wj| : 1 ≤ j ≤ p}\{0}, and it represents the

unique set of non-zero values based on |Wj|. |Wj| represents the absolute value of Wj.

q represents the false discovery rate (FDR) we expected, and 1 ∨ |{j :Wj ≥ t}| represents

max(1, |{j :Wj ≥ t}|).

In all, we can get the knockoff feature set W after using the neural network to fit the

model. Then we select all the feature genes j that satisfy Wj ≥ T as the final selected im-

portant genes, which satisfying the condition that FDR is less than or equal to q.

Knockoffs optimizing neural network

Neural networks generally contain one input layer, multiple hidden layers and one out-

put layer. In neural network, the layers are generally fully connected. In order to make

the training results interpretable and discover the key genes in neural networks, we use

knockoffs into neural network construction and select important genes affecting spe-

cific phenotypic traits according to the weight of each gene after training. Using the

idea of DeepInk proposed in [23], we introduce a coupling layer which contains p fil-

ters. Each filter j connects the original features (genes) Xj and knockoff features (genes)
~X j by weights zj and ~z j. zj and ~z j have the same initial values. In the process of training,

zj and ~z j will compete with each other. After training, if the feature gene j is important,

the value of zj will be much larger than ~z j . On the contrary, if feature gene j is not im-

portant, then the value of zj will be close to ~z j . Except for each feature gene competing

with its knockoff feature gene, it is also necessary to allow each feature gene to com-

pete with each other. In order to achieve this goal, we use linear activation function in

the coupling layer. After passing through the coupling layer, we connect the output of

p values to a multi-layer perceptron (MLP) to learn the function from input feature

genes to output Y. In the multilayer perceptron, we have multiple activation layers with

Fig. 7 The gene selection framework of knockoff optimizing neural network
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alternating linear and non-linear changes. Each layer learns the mapping from input to

hidden layer, and the last layer can learn the mapping of output Y (phenotype).

When there is 1 hidden layer and each layer contains p neurons, the network structure

is shown in Fig. 7. We choose ReLU activation function, L1 regularization and mean

square error loss function. In Fig. 7, Ge1, Ge2,…,Gep represent the input of the original

genes. ~Ge1; ~Ge2;…; ~Gep represent the constructed knockoff feature genes, and Phe repre-

sents phenotypic trait. zj and ~z j represent the weight vectors of the input layer connecting

the coupling layer, and their initial values are same to ensure fair competition. W(0) ∈

ℝp × 1 represent the weight vector of coupling layer connecting multilayer perceptron.

W(1) ∈ℝp × p and W(2) ∈ℝp × 1 represent the weight matrix of the input layer connecting

the hidden layer and the hidden layer connecting the output layer respectively.

As shown in Fig. 2, the importance measurement of Zj and ~Z j are determined by the

following two criteria. (1) The relative importance of Gej and its knockoff feature ~Gej ,

represented by filter weights of z = (z1,⋯, zj)
T and ~z ¼ ð~z1;⋯;~z jÞT . (2) The relative im-

portance of the jth feature gene in p features, represented by a weight matrix, w =

W(0)⊙ (W(1)W(2)W(3)). ⊙ represents Hadamard product. Then we define Zj and ~Z j

using Eq. (11).

Z j ¼ z j � wj; ~Z j ¼ ~z j � wj ð11Þ

Then we can get the knockoff variables using W j ¼ Z2
j − ~Z

2
j . The gene selection is

performed using the method described in the section of constructing Knockoff features.

It should be noted that we need to find the best network structure and hyperpara-

meters for fitting about different data. After determining the network structure and

hyperparameters, we can obtain the knockoff feature genes through training the model.

Then it performs the final feature gene selection according to the threshold T.
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