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Abstract

Background: Many disease causing genes have been identified through different
methods, but there have been no uniform annotations of biomedical named entity
(bio-NE) of the disease phenotypes of these genes yet. Furthermore, semantic
similarity comparison between two bio-NE annotations has become important for
data integration or system genetics analysis.

Results: The package pyMeSHSim recognizes bio-NEs by using MetaMap which
produces Unified Medical Language System (UMLS) concepts in natural language
process. To map the UMLS concepts to Medical Subject Headings (MeSH),
pyMeSHSim is embedded with a house-made dataset containing the main headings
(MHs), supplementary concept records (SCRs), and their relations in MeSH. Based on
the dataset, pyMeSHSim implemented four information content (IC)-based
algorithms and one graph-based algorithm to measure the semantic similarity
between two MeSH terms. To evaluate its performance, we used pyMeSHSim to
parse OMIM and GWAS phenotypes. The pyMeSHSim introduced SCRs and the
curation strategy of non-MeSH-synonymous UMLS concepts, which improved the
performance of pyMeSHSim in the recognition of OMIM phenotypes. In the curation
of 461 GWAS phenotypes, pyMeSHSim showed recall > 0.94, precision > 0.56, and
F1 > 0.70, demonstrating better performance than the state-of-the-art tools DNorm
and TaggerOne in recognizing MeSH terms from short biomedical phrases. The
semantic similarity in MeSH terms recognized by pyMeSHSim and the previous
manual work was calculated by pyMeSHSim and another semantic analysis tool
meshes, respectively. The result indicated that the correlation of semantic similarity
analysed by two tools reached as high as 0.89–0.99.

Conclusions: The integrative MeSH tool pyMeSHSim embedded with the MeSH MHs
and SCRs realized the bio-NE recognition, normalization, and comparison in
biomedical text-mining.
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Background
Biomedical named entity (bio-NE) recognition, normalization, and comparison are fun-

damental tasks for extracting and utilizing valuable biomedical information from text-

ual data. They are important to disease diagnosis [1], drug repositioning [2], over-

representation analysis [3], and genetic analysis [4]. These functions are realized by

identifying key entities in unstructured texts, mapping identified entities to a controlled

vocabulary, and measuring the semantic similarity between the vocabulary terms [5].

Medical Subject Heading (MeSH) is a controlled vocabulary that can be used in bio-NE

recognition, normalization and comparison [6]. It consists of three main record types in-

cluding descriptor records, qualifier records, and supplementary concept records (SCRs).

MeSH is curated by the National Library of Medicine (NLM) and serves as the index sys-

tem in PubMed/MEDLINE and other NLM databases. Since 2002, NLM has used Med-

ical Text Indexer (MTI) to provide indexing recommendations based on MeSH in the

bio-NE recognition for literatures [7]. Due to its precise literature annotations, MeSH has

become more and more popular for normalizing bio-NEs such as disease names, in med-

ical and genetic public databases [8, 9]. Like the structure of Gene Ontology [10] and Dis-

ease Ontology, the structure of MeSH as a directed acyclic graph [11] allows the

comparison of semantic similarity between two MeSH terms in the graph.

Several MeSH tools have been developed to realize bio-NE recognition,

normalization, or comparison. As a MeSH tool for bio-NE recognition and

normalization, NLM MeSH has provided an online browser (https://meshb.nlm.nih.

gov/search) to parse MeSH terms from the input phrases. However, the browser is nei-

ther tolerant to even subtle difference of input phrases from MeSH terms, nor applic-

able to batch processing. Although some Bio-NE tools based on machine learning

method have come out with good performance on specific corporas, they were de-

signed for recognizing certain categories, like diseases and chemicals, of MeSH terms

from literature abstracts, and have unknown performance for other categories of MeSH

terms or from short biomedical phrases. As MeSH tools for bio-NE comparison,

meshes [12] and meshSim [13] have recently been developed to measure MeSH seman-

tic similarity by using the R dataset MeSH.Hsa.eg.db [3] as data framework. However,

the lack of SCRs in MeSH dataset limits the use of tools both meshes [12] and meshSim

for comparing rare diseases such as “alzheimer’s disease 7” and “Bardet-Biedl syndrome

11”. Furthermore, there is still a lack of an integrated one-stop MeSH toolkit to realize

bio-NE recognition, normalization, and comparison.

To solve above problems, an integrative python package pyMeSHSim was developed to

realize bio-NE recognition, normalization and comparison for MeSH terms. It can directly

parse MeSH terms from free biomedical texts and measure the semantic similarity between

the MeSH term pairs. Additionally, a lightweight comprehensive MeSH dataset was gener-

ated and embedded as the data framework into pyMeSHSim, which enables batch process-

ing and the application of pyMeSHSim to both common diseases and rare diseases.

Material and methods
Dataset construction

A comprehensive MeSH dataset is fundamental to MeSH tools. However, the MeSH

dataset used by most popular MeSH tools contains only MeSH Main Headings (MHs),
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a component of MeSH descriptor records, but it contains no SCRs. To construct a

comprehensive MeSH dataset, we extracted MeSH information, including MHs, SCRs,

and their relations, from Unified Medical Language System (UMLS, 2018AA version)

which is a large biomedical thesaurus integrating nearly 200 vocabularies including

MeSH [14].

The multiple-to-one relationship between MeSH-synonymous UMLS concepts and

MeSH MHs was curated from the table MRSAT in UMLS. For example, the MeSH

MH “Alzheimer Disease” (D000544) includes seven MeSH concepts, each of which cor-

responds to several MeSH entry terms and a UMLS concept (Supplementary Table 1).

In our dataset, we included the MeSH MHs and related UMLS concepts, while we ex-

cluded the MeSH concept and MeSH entry term information. Moreover, we curated

the most useful “parent” and “child” relationship between MeSH MHs from the table

MRREL in UMLS.

The one-to-one relationship between MeSH-synonymous UMLS concepts and SCRs

was curated from the table MRSAT in UMLS. In our dataset, we included the SCRs

and its corresponding UMLS concepts, as well as the “narrower” and “broader” rela-

tionship between SCRs and MeSH MHs curated from the table MRREL in UMLS.

The qualifier records and other MeSH descriptor records except MeSH MHs were

not included in our dataset. In the study, we used “MeSH term” to refer to MeSH MH

or SCR.

Bio-NE recognition and normalization

The bio-NE recognition were realized by MetaMap [15], a widely used biomedical nat-

ural language processing software recognizing UMLS concepts from free texts. Al-

though machine learning methods might have better performance than MetaMap in

recommending MeSH MHs to MEDLINE citations, their use were constrained by the

requirement of large amount of training data to establish the model and by the poten-

tial imbalance of the training data [16]. However, disease phenotypes from GWASdb

[17], OMIM [18], and GAD [19] and drug indications in public databases DrugBank

[20] and TTD [21] could not provide large amount of training data required by ma-

chine learning, while MetaMap required no training data, which was the advantage of

MetaMap. The UMLS concepts curated by MetaMap were then converted to MeSH

terms based on our dataset. MeSH-synonymous UMLS concepts were directly con-

verted to MHs or SCRs, while non-MeSH-synonymous UMLS concepts, as free texts,

were first processed into MeSH-synonymous UMLS concepts and then converted to

MHs or SCRs.

Bio-NE comparison

We compared the bio-NEs based on the similarity between their corresponding MeSH

terms. The semantic similarity was usually calculated by graph-based or information

content (IC)-based method. The graph-based method measured the node distance be-

tween two MeSH terms in the MeSH hierarchical structure, while the IC-based method

depended on the specificity and informativeness of MeSH terms [22].

We retrieved the number of publications indexed by MeSH terms using the NCBI E-

Utility [23], and calculated the IC values as below.
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D dð Þ ¼ Descendants of df g ð1Þ

P dð Þ ¼ freq D dð Þð Þ
N

ð2Þ

IC dð Þ ¼ − log P dð Þð Þ ð3Þ

Where D(d) is the sum of all the descendent terms of MeSH term d; freq(x) is the

number of publications indexed by term x; N is the total number of publications

indexed by MeSH; and IC(d) is the IC value of term d.

We implemented the following four IC-based algorithms:

Simres d1; d2ð Þ ¼ IC MICA d1; d2f gð Þ ð4Þ

Simlin d1; d2ð Þ ¼ 2� IC MICA d1; d2f gð Þ
IC d1ð Þ þ IC d2ð Þ ð5Þ

SimJC d1; d2ð Þ ¼ 1− min 1; IC d1ð Þ þ IC d2ð Þ−2� IC MICA d1; d2f gð Þð Þ ð6Þ

Simrel d1; d2ð Þ ¼ Simlin d1; d2ð Þ � 1−10−IC MICA d1;d2f gð Þ
� �

ð7Þ

Where d1 and d2 are MeSH terms; Simlin, Simres, Simrel, and SimJC correspond to

Lin’s [24], Resnik’s [25], Schlicker’s [26], and Jiang and Conrath’s [27] algorithms, re-

spectively; MICA (the most informative common ancestor) is the ancestor of the se-

lected two MeSH terms with the maximal IC value among all ancestors. We designated

MICA as 0, which was between MeSH terms from different categories denoted by the

first character of the tree number of MeSH terms. For example, MICA between the

MeSH terms “Tauopathies” (tree number: “C10.574.945”) and “Schizophrenia” (tree

number: “F03.700.750”) is 0 because they belonged to different categories (“C” for dis-

eases vs “F” for psychiatry and psychology).

We also implemented the graph-based Wang’s [28] algorithm as below.

A dð Þ ¼ Ancestor of df g ð8Þ
Sd að Þ ¼ max ωnaf g; a∈A dð Þ ð9Þ

SVd ¼
X
t∈A dð Þ

Sd tð Þ ð10Þ

SimWang d1; d2ð Þ ¼

X
t∈A d1ð Þ∩A d2ð Þ

Sd1 tð Þ þ Sd2 tð Þð Þ

SVd1 þ SVd2
ð11Þ

Where d is a MeSH term; A(d) is the ancestors deduced from tree numbers of d; na
is the number of edges between d to a; Sd(a) is the semantic contribution of a to d;

SVd is the total semantic contributions of all ancestors to d; SimWang(d1, d2) is Wang’s

algorithm score between MeSH terms d1 and d2; ω is a tuneable weight in [0,1] range

used to measure the relation between two terms. In this study, we tuned ω from 0 to 1

with a step of 0.1 to test the robustness of our results (Supplementary Table 2, Supple-

mentary figure 1A, 1B), and set it to 0.6, when pyMeSHSim using Wang’s algorithm

had the highest correlation with meshes for all the algorithms.

Noteworthily, both IC-based and graph-based methods depended on the tree num-

ber, but some MeSH terms may have more than one tree number, thus resulting in
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multiple similarity values between one pair of MeSH terms. We retained only the max-

imal similarity value between two MeSH terms.

Package detail

The pyMeSHSim consists of three subpackages (1) the metamapWrap subpackage rec-

ognizing bio-NEs from the text, (2) the data subpackage normalizing UMLS concepts

into MeSH terms by the embedded MeSH dataset, and (3) the Sim subpackage compar-

ing semantics of MeSH terms by measuring the distance between MeSH terms (Fig. 1).

Detailed descriptions of the subpackages and their parameters are provided in the refer-

ence manual (Supplementary File 1, https://pymeshsim.readthedocs.io/en/latest/).

1) The metamapWrap subpackage

The bio-NE recognition and normalization of pyMeSHSim were realized by the meta-

mapWrap subpackage which was a wrapper for MetaMap [15]. The subpackage meta-

mapWrap curated MeSH-synonymous UMLS concepts from free texts including non-

MeSH-synonymous UMLS concepts, and then converted the curated MeSH-

synonymous UMLS concepts into corresponding MeSH terms via the data subpackage.

We set parameters “-N -J semantic_type _list -R MSH -I -z -conj -Q 4 -silent --sldi”,

where semantic_type list was the list of disease-related semantic types (corresponding

to “inpo,dsyn,phpranab,orgf,clna,hlca,genf,orga,neop,emod,inbe,lbtr,anst,npop,celc,cell,

bpoc,acty,mobd,celf,evnt,sosy,patf,tisu,moft,fndg,bdsu,ortf,menp,acab,comd,sbst,cgab”,

UMLS to MeSH

metamapWrap

data

Sim

Restricting to MeSH
Recommended parameters 
Filter rules

Main Headings
Supplementary Concept 
Records
Record relationships

Information Content
Path
Term library

Free  text

UMLS  concepts

MeSH records

Main Headings

Semantic similarity

Parsing text

SCRs to MHs

Calculation

Bio-NEs
recognition

Bio-NEs
normalization

Bio-NEs
comparison

Fig. 1 The components and workflow of pyMeSHSim. pyMeSHSim consists of three subpackages, including
metamapWrap, data and Sim. In bio-NE recognition, metamapWarp curates the UMLS concepts from free
text. In bio-NE normalization, data translates UMLS concepts to MeSH terms, and maps SCRs to MHs using
selected records and relationships between records in MeSH. In bio-NEs comparison, Sim uses IC-based and
graph-based methods to measure semantic similarity between two bio-NEs
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as can be seen in the manuals) as the default of pyMeSHSim. Users can customize the

parameters to suit their needs.

2) The data subpackage

The MeSH dataset was embedded into the data subpackage in bcolz format with a

corresponding data interface (Supplementary Table 3). It included five tables: (1) Table

MainHeadingDetailData contained all the MH information, including MeSH unique id,

tree code, prefer name, category, term semantic type, IC frequency, and UMLS id. The

semantic type was derived from the UMLS table MRSTY, and each UMLS concept was

characterized by at least one of the 133 semantic types [29]; (2) Table Supplement-

MainHeading contained all the UMLS concepts related to MHs; (3) Table RNDetail-

Data stored the basic information of SCRs; (4) Table RNandRBRel exhibited the

narrower-and-broader relationship between SCRs and MHs; (5) Table ParentChildRel

contained the fundamental tree structure. The five tables made possible the conversion

of UMLS concepts into MeSH terms and the measurement of the semantic similarity

between MeSH terms.

3) The Sim subpackage

The bio-NE comparison of pyMeSHSim was conducted with the Sim subpackage by

measuring the distance between MeSH terms. Each narrower record of the SCR was

converted into one or more broader terms of MHs before the measurement. Like the

tool meshes, pyMeSHSim offered five representative semantic similarity measurements,

including four information content (IC) based (Lin’s, Resnik’s, Schlicker’s, and Jiang

and Conrath’s) and one graph-based (Wang’s) algorithms.

Results
Evaluation with OMIM phenotypes

To test whether the introduction of SCRs and our curation strategy of non-MeSH-

synonymous UMLS concepts contributes to improving the performance of pyMeSHSim

in bio-NE recognition, we compared the genes annotated with MeSH MHs and SCRs

from OMIM [18] phenotype-gene pairs. The OMIM phenotype-gene pairs were col-

lected from the database disease-connect [30], which used MetaMap to process the dis-

ease phenotypes into MeSH-synonymous and non-MeSH-synonymous UMLS

concepts. MeSH-synonymous UMLS concepts were directly converted into MHs and

SCRs by using pyMeSHSim. Subsequently, SCRs were further converted into their

“broader” MHs. Non-MeSH-synonymous UMLS concepts, as free texts, were processed

into MeSH-synonymous UMLS concepts. Based on the source of their corresponding

UMLS concepts, we classified OMIM phenotypes into MH, SCR, and non-MeSH

groups. And then, we compared the genes corresponding to the same MHs from all the

three groups (Fig. 2). The genes without Entrez IDs were excluded, since Entrez IDs

were required for the following disease enrichment analysis. The MHs with less than

10 genes in at least two groups were also excluded. After the filtering, 36 MHs and

1498 MH-gene pairs (Supplementary Table 4) were remained, including 761 MH-gene
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pairs from MH group, 522 from SCR group, and 215 from non-MeSH group. About

87.5% MH-gene pairs in SCR group were also present in MH group, indicating high

overlap of genetic features between subtype diseases and its corresponding MH dis-

eases, and validating the significance of SCRs in disease curation (Fig. 3). Additionally,

the 59.5% overlap of MH-gene pairs was found between non-MeSH group and MH

group and 10.7% overlap between non-MeSH group and SCR group, indicating the ef-

fectiveness of our curation strategy of non-MeSH-synonymous UMLS concepts.

To further validate the reasonability of introducing SCR and our curation strategy of

non-MeSH-synonymous UMLS concepts, we hypothesized that the additional MH-

gene pairs derived from SCRs and non-MeSH-synonymous UMLS concepts should im-

prove the gene enrichment in the MH diseases. We remained the seven MHs with at

least 5 non-overlap MH-gene pairs in SCR group and non-MeSH group, and tested the

enrichment of genes corresponding to MHs in the diseases by using the UMLS-based

disease enrichment analysis tool DOSE [31]. For each of the seven MHs, the addition

of genes from SCR and non-MeSH groups led to more significant enrichment in the

disease mapped to the MH (Table 1). Especially, the addition of 50 genes of the MeSH

MH Osteochondrodysplasias (D010009) from SCR and non-MeSH groups to the 14

genes from the MH group led to the higher p value (6.57E-35 vs 8.87E-19) of enrich-

ment in the disease Osteochondrodysplasias (Table 1), suggesting the contribution of

the introduced SCRs and curation strategy of non-MeSH-synonymous UMLS concepts

to the improved performance of pyMeSHSim in bio-NE recognition and normalization.

Fig. 2 OMIM UMLS diseases processing pipeline. MeSH-synonymous UMLS concepts were mapped to MHs or SCRs
by pyMeSHSim directly. Meanwhile, non-MeSH-synonymous UMLS concepts were processed as free texts into MeSH-
synonymous UMLS concepts, and then mapped to MeSH terms. All gene symbols were mapped to Entrez IDs. SCRs
were mapped to its broader MHs. MHs with at least 10 genes in at least two groups were remained for further analysis
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Fig. 3 Venn diagrams. Venn diagram of MH-gene pairs in MH, SCR and Non-MeSH groups. Yellow, red and
blue circles represent MH, Non-MeSH and SCR groups respectively. The digital shows number of MH-gene
pairs in each group and overlapped number of MH-gene pairs between different groups

Table 1 Disease enrichment analysis of the genes assigned to the MHs before and after addition
of MH-gene pairs from SCR and non-MeSH groups

OMIM diseases1 MH-
gene
pairs
(MH
group
/ all)2

Enriched UMLS diseases with DOSE P value
(MH
group /
all)4

MH ID MH description UMLS ID UMLS description MH ID3

D057130 Leber Congenital Amaurosis 17/22 C0339527 Leber Congenital Amaurosis D057130 3.43E-33
/
1.45E-42

D020754 Spinocerebellar Ataxias 23/28 C0087012 Ataxia, Spinocerebellar D020754 1.93E-30
/
2.84E-38

D052177 Kidney Diseases, Cystic 19/25 C1691228 Cystic Kidney Diseases D052177 8.05E-19
/
2.37E-20

D010009 Osteochondrodysplasias 14/64 C0029422 Osteochondrodysplasias D010009 8.87E-19
/
6.57E-35

D002925 Ciliary Motility Disorders 26/31 C0008780 Ciliary Motility Disorders D002925 1.60E-23
/
3.90E-33

D015419 Spastic Paraplegia,
Hereditary

28/36 C0037773 Spastic Paraplegia,
Hereditary

D015419 1.22E-37
/
2.71E-45

D007938 Leukemia 18/51 C0085669 Acute leukemia D007938 3.26E-10
/
6.63E-26

1 The OMIM diseases were collected from the database disease-connect (34) with at least five MH-gene pairs outside the
MH group.
2 (Number of MH-gene pairs in MH group) / (number of MH-gene pairs in all the three groups including MH, SCR and
non-MeSH group).
3 The MH ID was mapped from the UMLS ID by pyMeSHSim.
4 (The enrichment P value of genes in MH group) / (The enrichment P value of genes in all the three groups).
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Evaluation with GWAS phenotypes

To evaluate the performance of pyMeSHSim on bio-NE recognition, we took the man-

ual work of Nelson’s group in parsing 461 GWAS phenotypes to MeSH terms as the

gold standard, and compared the performance of pyMeSHSim with DNorm and Tag-

gerOne, which are the state-of-the-art machine learning based tools for locating and

identifying disease and chemical concepts [32–34].

DNorm and TaggerOne integrated different Lexical resources as training data, and

could recognize MeSH terms and OMIM terms from free text. In the performance

comparison, we only extracted the MeSH results from these two softwares. PyMeSH-

Sim successfully recognized MeSH terms from 442 (96%) GWAS phenotypes, while

DNorm and TaggerOne only identified 129 (28%) and 192 (42%) (Supplementary

Table 5). There were 158 phenotypes specifically identified by pyMeSHSim but not by

DNorm/TaggerOne. Regarding the categories of recognized MeSH terms, pyMeSHSim

successfully identified terms in 15/17 categories, while DNorm and TaggerOne, which

were designed for disease or chemical entity recognition, identified terms mainly in “C”

(Diseases) and “F” (Psychiatry and Psychology) categories (Supplementary Table 6).

Even for phenotypes in the “C” category, pyMeSHSim (> 0.94) showed higher recall

than DNorm (> 0.32) and TaggerOne (> 0.49) across all the similarity thresholds used

to determine matches with Nelson’s manual work as true positives (Supplementary

Table 5, Fig. 4). Despite the lower precision of pyMeSHSim (> 0.56) than DNorm (>

0.62) and TaggerOne (> 0.64), the differences in precision were subtle when consider

only perfect match (Table 2, Fig. 4), and the overall performance F1 of pyMeSHSim (>

0.70) was always higher than DNorm (> 0.42) and TaggerOne (> 0.55) (Fig. 4). The

lower performance of DNorm and TaggerOne maybe since they were not MeSH term

taggers. Additionally, the recall, precision and F1 were all higher for pyMeSHSim with

SCRs than that without SCRs, demonstrating the contribution of SCRs to improved

performance of pyMeSHSim in bio-NE recognition and normalization.

We then investigated the phenotypes in the “C” category specifically tagged by

pyMeSHSim or DNorm/TaggerOne with the same MeSH term as Nelson’s manual

work, and found 38 phenotypes specifically identified by pyMeSHSim (Supplemen-

tary Table 7), while only five by DNorm/TaggerOne (Supplementary Table 8). The

38 phenotypes specifically identified by pyMeSHSim included 26 phenotypes tagged

with related MeSH terms by DNorm/TaggerOne (similarity Lin score > 0), and 12

missed by them. Among the 12 phenotypes, “Graves` disease” (D006111), “Paget’s

disease” (D010001), and “Behcet’s disease” (D001528) might be missed due to spe-

cial symbol “`”. Meanwhile, the five phenotypes not perfectly identified by

pyMeSHSim included three tagged with related MeSH terms by pyMeSHSim, and

two missed by it (“Tumor biomarkers” and “Coronary artery calcification”). The

phenotype “Tumor biomarkers” was correctly recognized by pyMeSHSim as

D014408 (Tumor biomarkers), while tagged as D009369 (Neoplasms) by Nelson’s

group and DNorm. The other phenotype “Coronary artery calcification” was mis-

takenly identified as D002113 (Calcification, Physiologic) by pyMeSHSim, while as

D061205 (Vascular Calcification) by Nelson and TaggerOne. These results of error

analysis demonstrated better performance of pyMeSHSim than DNorm and Tagger-

One in recognizing MeSH terms from short biomedical phrases like GWAS

phenotypes.
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Fig. 4 Recall, Precision and F1 of pyMeSHSim, DNorm and TaggerOne. a-d. Performance of pyMeSHSim
without SCRs (a), pyMeSHSim with SCRs (b), DNorm (c) and TaggerOne (d). The similarity between MeSH
terms identified by the tools and Nelson’s manual work were called as a true positive or false positive when
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only perfect matched terms would be considered as true positives. The recall ( TP

TPþFN), precision ( TP
TPþFP) and

F1 (2�precision�recall
precisionþrecall ) of the tools were calculated at each similarity threshold

Table 2 Performance comparing pyMeSHSim, DNorm, TaggerOne to Nelson’s manual work with
similarity threshold set to 1

Method Recalla Precisionb F1c

pyMeSHSim (with SCRs) 0.94 0.56 0.70

pyMeSHSim (no SCRs) 0.94 0.54 0.68

DNorm 0.32 0.62 0.42

TaggerOne 0.49 0.64 0.55

a all ¼ TP
TPþFN, where TP (true positive) is the number of phenotypes whose parsing results matched the manual work at

determined similarity threshold. The similarity between MeSH terms identified by the two methods were measured with
Lin score, and called as a TP or FP when their similarity was higher or lower than the determined threshold. FN (false
negative) is the number of unrecognized phenotypes.
b cision ¼ TP

TPþFP, where FP is the number of phenotypes whose parsing results mismatched the manual work at
determined similarity threshold.
c 1 ¼ 2�precision�recall

precisionþrecall .
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We further compared the parsing results of pyMeSHSim with Nelson’s manual work,

and found 114 phenotypes differently tagged (similarity Lin score = 0) and 17 missed by

pyMeSHSim. The manual work preferred mapping the phenotypes to disease category

(C). For example, phenotypes like “Vitamin E levels”, “Hematology traits” and “Pulmon-

ary function” were parsed as “Vitamin E Deficiency” (D014811), “Hematologic Diseases”

(D033461) and “Lung Diseases” (D008171) by Nelson’s group, while identified as “Vita-

min E” (D014810), “Hematology” (D006405) and “Lung” (D008168) by pyMeSHSim.

However, such preference of the manual work could lead to bias. For example, “Eye

color”, “Hair color” and “Serum urate” were parsed as “color vision defects”, “hair dis-

eases” and “urinary calculi” by Nelson’s group, while as “Color, Eye”, “Color, Hair” and

“Acid, Uric” by pyMeSHSim (Supplementary Table 5). Therefore, at least a part of the

parsing differences between the manual work and pyMeSHSim were attributed to hu-

man bias in the manual work. Meanwhile, among the 17 phenotypes not recognized by

pyMeSHSim, “IgG levels”, “IgM levels”, “IgE levels”, “PR interval” and “QT interval”

might be missed due to the abbreviations inside (Supplementary Table 5).

To test the semantic similarity function of pyMeSHSim, we calculated all the seman-

tic similarities between the curated MeSH terms using pyMeSHSim and the latest se-

mantic analysis tool meshes (Supplementary Table 2). The similarity calculated by both

packages was 1 when the MeSH terms were the same, and was 0 when MeSH terms

were of different categories. The 55 GWAS phenotypes with the different term pairs in

the same category were found resulting from the recognition respectively via pyMeSH-

Sim and Nelson’s group work. The pyMeSHSim succeeded in calculating the similar-

ities between the term pairs of all the 55 phenotypes, while meshes was only capable of

comparing MH-MH pairs, and it failed to compare SCR-MH pairs of 15 phenotypes

(Supplementary Table 2). Of the 15 SCRs parsed by pyMeSHSim, 13 were mapped to

the same MHs as parsed by Nelson’s group. The similarity correlation of the remaining

40 term pairs between pyMeSHSim and meshes was 0.89 (Rel’s)-0.97 (Res’) (Table 3,

Supplementary Table 2, Supplementary figure 1B), demonstrating similar, if not better,

performance of pyMeSHSim to that of meshes in bio-NE comparison.

Discussions
Effectiveness of pyMeSHSim

PyMeSHSim aims to provide users a one-stop MeSH toolkit for bio-NE recognition,

normalization and comparison, and multiple efforts were made to confirm its effective-

ness. For example, (i) We compared the performance of pyMeSHSim in bio-NE recog-

nition and normalization with manual work in parsing GWAS phenotypes, and found

high consistency between them, indicating the great potential of pyMeSHSim for aiding

professional manual curation of bio-NEs; (ii) We compared the performance of

pyMeSHSim in bio-NE recognition and normalization with another two tools base on

machine learning methods, and showed higher sensitivity and accuracy of pyMeSHSim

Table 3 Correlation of calculated semantic similarities between pyMeSHSim and meshes

Method Lin’s Res’ Jiang’s Rel’s Wang’s

Correlation coefficient 0.97 0.99 0.89 0.98 0.97

P value < 2.2e-16 < 2.2e-16 1.2e-14 < 2.2e-16 < 2.2e-16
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in parsing short biomedical phases like GWAS phenotypes; (iii) We converted the

OMIM phenotypes to MeSH terms using pyMeSHSim, and demonstrated improved ef-

fectiveness in bio-NE recognition and normalization by including SCRs in its embedded

dataset; (iv) We compared the similarity measurement between pyMeSHSim and

meshes and showed comparable performance in bio-NE comparison.

Caveat

Considering that MeSH is one of the most widely used biomedical vocabulary,

pyMeSHSim will further contribute to data integration. In addition, the introduction of

SCRs to the implemented dataset enables pyMeSHSim to handle rare diseases in public

databases like OMIM and Orphanet (www.orpha.net). However, whether general con-

cepts such as MHs or specific concepts such as SCRs are preferable will depend on the

end use. Users should be cautious to select the according right terms in using

pyMeSHSim.

Conclusions
We developed pyMeSHSim, an integrative, lightweight, and data-rich python package

for biomedical text mining. To the best of our knowledge, this is the first one-stop

MeSH toolkit integrating the functions of bio-NE recognition, normalization and com-

parison. PyMeSHSim is expected to be widely used as a powerful tool in bioinformatics,

computational biology, and biomedical research.
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