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Abstract

Background: Antibiotic resistance has become an increasingly serious problem in the past decades. As an
alternative choice, antimicrobial peptides (AMPs) have attracted lots of attention. To identify new AMPs, machine
learning methods have been commonly used. More recently, some deep learning methods have also been applied
to this problem.

Results: In this paper, we designed a deep learning model to identify AMP sequences. We employed the
embedding layer and the multi-scale convolutional network in our model. The multi-scale convolutional network,
which contains multiple convolutional layers of varying filter lengths, could utilize all latent features captured by the
multiple convolutional layers. To further improve the performance, we also incorporated additional information into
the designed model and proposed a fusion model. Results showed that our model outperforms the state-of-the-art
models on two AMP datasets and the Antimicrobial Peptide Database (APD)3 benchmark dataset. The fusion model
also outperforms the state-of-the-art model on an anti-inflammatory peptides (AIPs) dataset at the accuracy.

Conclusions: Multi-scale convolutional network is a novel addition to existing deep neural network (DNN) models.
The proposed DNN model and the modified fusion model outperform the state-of-the-art models for new AMP
discovery. The source code and data are available at https://github.com/zhanglabNKU/APIN.
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Introduction
In recent years, antimicrobial peptides (AMPs) have
attracted lots of attention due to the well-known anti-
biotic resistance problem. AMPs are polypeptides
shorter than 100 amino acids, which are an important
part of host defense systems of animals and plants [1].
AMPs have antimicrobial activity under specific circum-
stances since the difference between microbial and host
cells in biochemical and biophysical provides a basis for
selective toxicity of AMPs [2]. AMPs exhibit many ad-
vantages including fast killing, low toxicity, and broad
range of activity [3]. Besides, AMPs show a lower likeli-
hood for antimicrobial resistance compared to many an-
tibiotics [4]. Due to the advantages of AMPs, they have
been a popular research area of bioinformatics.

To identify AMPs, many computational tools are pro-
posed such as CAMP [5], CAMPR3 [6], ADAM [7],
AMPer [8], AntiBP [9], AntiBP2 [10], AVPpred [11],
iAMP-2 L [12], EFC-FCBF [13], classAMP [14] and web-
based antimicrobial peptide prediction tools [15]. Many
of these tools applied various machine learning methods.
For example, support vector machine (SVM), random for-
est (RF), and artificial neural network (ANN) were
employed in CAMP. To apply machine learning methods,
feature engineering is a necessary step. The most popular
features for AMPs are amino acid composition. For ex-
ample, AntiBP employed basic amino acid counts over the
full peptide as the features. The pseudo-amino acid com-
position (PseAAC) method is also applied in some
methods [16].
For machine learning methods, feature construction of

protein sequences relies heavily on domain knowledges.
To avoid the complexity of feature engineering and re-
move the burden of feature construction, many deep
learning models have been applied to various problems in
bioinformatics [17] such as protein structure prediction
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[18, 19], protein classification [20], biomedical imaging
recognition [21, 22]. To apply deep learning to the prob-
lem of AMP identification, a deep neural network (DNN)
model was proposed [23]. This model employed a convo-
lutional layer [24] and a recurrent layer, which can capture
latent features of protein sequences, so it was shown to
outperform the state-of-the-art models in AMP identifica-
tion. Although this model is great, there is still room for
improvement. For example, a long short-term memory
(LSTM) layer [25] was employed due to its ability to
recognize and forget gap-separated patterns in this model.
However, this architecture of DNN model is usually ap-
plied in natural language processing (NLP) [26, 27], and is
not appropriate for AMP identification in our experiments
which is listed in Table 3 for comparison of modified
models.
In this paper, we have designed a multi-scale convolu-

tional network which contains multiple convolutional
layers of different filter lengths, and proposed a DNN
model based on the multi-scale convolutional network
to improve the performance of AMP identification. In
the proposed model, we have employed an embedding
layer and a multi-scale convolutional network. The em-
bedding layer can capture semantic information of
amino acids by converting each of them into a numerical
vector. The distance between vectors can represent the
relation between the corresponding amino acids. Many
word embedding models, such as word2vector [28] and
gloves [29], are widely used in text recognition tasks.
The choice of a multi-scale convolutional network is due
to its ability to capture latent features of motifs. Since a
multi-scale convolutional network contains multiple
convolutional layers, it can make use of all latent fea-
tures captured by their convolutional layers. Because of
the ability of the multi-scale convolutional network to
capture multi-scale motifs, the proposed model outper-
forms the state-of-the-art DNN model [23] in AMP
identification. To further improve the performance, we
also incorporated additional information into the pro-
posed model and proposed a fusion model.

Results
Dataset
We adopt four datasets in this paper. The first dataset
we used is made by Veltri et al. (2018) [23], containing
1778 AMPs constructed from the APD vr.3 database
[30] and 1778 non-AMPs constructed from UniProt
[31]. The dataset is split by Veltri et al. (2018) [23] into
a training set, a tuning set and a test set and the number
of AMP sequences are 712, 354, and 712 respectively.
More detailed information of this dataset can be found
in Veltri et al. (2018) [23]. In the rest of the paper, this
dataset is named DAMP dataset. The second dataset is
taken from AntiBP2 [10], which has 1998 peptide

sequences. AMPs have ∼75% overlap with DAMP data-
set and non-AMPs have no overlap with it. The third
dataset is an anti-inflammatory peptide (AIP) dataset,
which is from AIPpred [32]. This dataset contains 1258
AIPs and 1887 non-AIPs in training set, 420 AIPs and
629 non-AIPs in test set. The last dataset is from the
paper [15], which is composed of 10,278 sequences.
Table 1 summarizes the four datasets.

Setup and runtime performance
The proposed DNN model is constructed using Keras
[33], a Python neural network library, with a CPU-based
TensorFlow back-end [34]. The weights in our model of
11 are initialized with the default value of Keras. The
optimizer is RMSProp whose learning rate is set to
0.0002, and the loss function is ‘binary_crossentropy’.
Besides, the batch size is set to 32. Experiments are con-
ducted on a computer with Intel Xeon E3-1226v3 CPU
and the RAM of this computer is 8GB. The training of
each epoch takes about 56 s and the prediction of a pep-
tide sequence takes 6 ms on average.

Model tuning
First, we want to know how the model performs with
only one convolutional layer. We replaced the multi-
scale convolutional network with the single convolu-
tional layer. The performance of the modified model
with different filter size is shown in Fig. 1. As shown in
this figure, the accuracy (ACC) [35] of the modified
model is under 89% when this model only contains one
convolutional layer whose filter length is short. As the
filter length increases, the ACC also increases very fast.
The performance of the length between 6 and 20 is simi-
lar as shown in Fig. 1. The results of this experiment
show that any single convolutional layer whose filter
length is shorter than 7 could not capture enough infor-
mation of a peptide sequence in AMP identification, and
the convolutional layers with filter lengths longer than 7
have similar performance in this problem.
Then we want to find the best parameter N in our

multi-scale model. Figure 2 shows the performance of
the proposed model with different parameter N. As
shown in Fig. 2, when N is small, the performance of
this multi-scale model is similar to the model with one
convolutional layer. Conversely, when N gets larger, the
multi-scale model performs better. When N = 14, ACC

Table 1 Dataset summary

Dataset DAMP
dataset [23]

AntiBP2
dataset

AIP
dataset

APD3
dataset [15]

Positive
samples

1778 999 1678 1713

Negative
samples

1778 999 2516 8565
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score is the highest with low fluctuation. We finally
choose N = 14 in the proposed model.

Comparison with current main methods
To evaluate the proposed multi-scale DNN model, this
model is compared with the state-of-the-art models in-
cluding the traditional machine learning models and the
existing DNN model. Table 2 shows comparison results

of the state-of-the-art model. The results show that the
proposed model outperforms the existing DNN in all
evaluation metrics except sensitivity (SENS). To be spe-
cific, the accuracy of the proposed model is about 92.4%,
which is 1.3% higher than the existing DNN model, and
the specificity (SPEC) is about 94%, which is 1.51%
higher than the existing DNN model. Although the high-
est SENS is achieved by the RF model, the performance

Fig. 1 10-fold cross validation performance of the model with single convolutional layer. We replaced the multi-convolutional network with a
simple convolutional layer. This figure shows how the modified model performs when the filter length of the convolutional layer changes

Fig. 2 10-fold cross validation performance of the model with different parameter N
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of the proposed model is better than the performance of
the existing DNN model. The fusion model which makes
use of amino acid composition (AAC) [32] and dipeptide
composition (DPC) [32] further improves the perform-
ance. ACC of the fusion model reaches 92.55%.

Modification comparison
We modified the propose model and conducted a modi-
fication comparison by replacing or removing some
components in the proposed model in order to find out
the vital elements of the success of the proposed model
and discover the best architecture of DNN model in
AMP identification.
To be specific, we have tested the models in which we

replaced the embedding layer with one-hot encoding, or
replaced multi-scale convolutional network with simple
convolutional layer or replaced the pooling1 layers with
LSTM layers. Besides, we also have tested models with-
out pooling2 layer or with additional fully connected
(FC) layers. The results of modification comparison are
shown in Table 3. From the results, we find that the
multi-convolutional network is the most important part
in our model, and the ACC performance of the model
without this component drops to 90.44%. Also, the
embedding layer is significant in our model. When we
run the model without embedding layer, the ACC

performance drops to 91.43%. Additionally, using LSTM
to replace pooling1 doesn’t improve the performance of
AMP identification and increases runtime. This result
implies that LSTM is not a good choice for AMP identi-
fication in the proposed model. We also tested a model
in which we replaced the pooling1 layers with Gated Re-
current Unit (GRU) layers and its accuracy is 91.43%.
Because the structure of GRU is similar to LSTM, the
result doesn’t change obviously compared to replacing
pooling1 layers with LSTM layers. In addition, the re-
sults also show that additional fully connected layer or
removing pooling2 would not improve the performance.
We also analyzed the training time of each modified

model. The results are shown in Table 4. The results
show that replacing the embedding layer or multi-scale
convolutional network reduces the training time but the
accuracy decreases. Adding LSTM into the proposed
model not only increases the training time but also de-
creases the accuracy. Besides, adding FC layers or re-
moving pooling2 doesn’t apparently affect runtime.

Model performance on other datasets
To find out how the proposed model performs on other
datasets, we applied our model to AntiBP2 dataset, AIP
dataset and the APD3 benchmark dataset from paper [15].
We used 10-fold cross validation test on AntiBP2 data-

set to compare the proposed model with state-of-the-art

Table 2 Comparison with the state-of-the-art methods

Method SENS (%) SPEC (%) ACC (%) MCC auROC (%) P value

AntiBP2 87.91 90.8 89.37 0.7876 89.36 < 0.001

CAMP-ANN 82.98 85.09 84.04 0.6809 84.06 < 0.001

CAMP-DA 87.08 80.76 83.92 0.6797 89.97 < 0.001

CAMP-RF 92.7 82.44 87.57 0.7554 93.63 < 0.001

CAMP-SVM 88.9 79.92 84.41 0.691 90.63 < 0.001

iAMP-2 L 83.99 85.86 84.9 0.6983 84.9 < 0.001

iAMPpred 89.33 87.22 88.27 0.7656 94.44 < 0.001

gkmSVM 88.34 90.59 89.46 0.7895 94.98 < 0.001

DNN 89.89 92.13 91.01 0.8204 96.48 < 0.001

proposed model 91.01 93.64 92.41 0.8486 97.23 < 0.001

fusion model with DNN 88.48 93.26 90.87 0.8183 96.24 < 0.001

proposed fusion model 89.89 94.96 92.55 0.8523 97.3 < 0.001

Table 3 Comparison of modified models

Model SENS (%) SPEC (%) ACC (%) MCC auROC (%)

Replacing embedding layer 89.61 93.26 91.43 0.8282 96.75

Replacing multi-scale convolutional network 89.75 91.15 90.44 0.8091 96.08

Replacing pooling1 with LSTM 89.75 93.25 91.5 0.8305 96.27

Without pooling2 91.15 92.56 91.85 0.8371 96.3

Additional FC layers 90.31 93.68 91.99 0.8403 97.09

proposed model 91.01 93.64 92.41 0.8486 97.23
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models. Table 5 shows that the proposed DNN also out-
performs other state-of-the-art models on AntiBP2 data-
set. The accuracy of this dataset is 93.38%.
We compared the proposed model with the existing

DNN [23] and the AIPpred model which is state-of-the-
art on AIP dataset. The result is shown in Table 6. From
this table, we can see that the accuracy of the proposed
model on this dataset is 73.02% (0.38% lower than
AIPpred). However, the proposed model performs much
better than the existing DNN [23]. When using AAC,
DPC and some other features, the proposed fusion
model achieves a better performance than AIPpred
(ACC is 0.44% higher than AIPpred). This experiment
implies that the proposed model has a good applicability
and could also be applied to problems of other peptide
sequence identification.
We also tested these methods on the APD3 bench-

mark dataset. The prediction result is shown in
Table 7. The performance metrics indicate that our
proposed method and proposed fusion method per-
form better than other methods. Besides, we used
DeLong’s test to get differences between our two pro-
posed methods and other methods with the area
under receiver-operating curve (auROC) analysis. The
result is shown in Table 8. It also shows that our two
proposed methods over-perform other methods.

Discussion
We have designed a multi-scale convolutional DNN
model to identify AMP sequences. In terms of accuracy,
it overperforms other methods on three datasets. Al-
though the proposed model and the proposed fusion
model have no obvious advantage over AIPpred, the
former models use less information from sequences and
they’re easily to use. The propose model takes a little
longer time than some modified model but the runtime
is acceptable and the prediction accuracy has significant
improvements.

Conclusion
To identify AMPs, we have proposed a DNN model
based on the multi-scale convolutional layers. The pro-
posed DNN model mainly employs the embedding layer
and the multi-scale convolutional network. Through the
embedding layer, each amino acid in a peptide sequence
is converted into an embedding vector. The multi-scale
convolutional network can capture the local features,
and its max pooling layers and convolutional layers of
different filter lengths can help with the feature
selection. This model focusing on the local context
could improve the performance of AMP identification.
Furthermore, we have incorporated additional informa-
tion into the proposed model and developed a fusion
model. Compared with the state-of-the-art models, our
proposed model achieved better performance. Through
the model modification comparisons, we found that the
model without multi-scale convolutional network
achieved the worst results, which means the multi-scale
convolutional network is the most important part in our
model. We also applied the proposed model and pro-
posed fusion model to other datasets including an AMP
dataset and an AIP dataset and the APD3 benchmark
dataset. The results show that the fusion model could
achieve a better performance and our proposed model is
applicable for other peptide identification.

Methods
Structure of our proposed DNN
First, we tested and analyzed the state-of-the-art DNN
model which contains a LSTM layer. The LSTM layer
applied to AMP identification focuses on the whole se-
quence without caring about short motifs. However, it is
believed that proteins with similar functions may share
some short motifs [32]. This means that we can predict
AMPs based on these motifs shared with known AMPs.
With this mind, we designed a multi-scale convolu-

tional network, and then proposed a new DNN model
based on this network. The proposed DNN model
mainly employs a multi-scale convolutional network
containing many convolutional layers of different filter
lengths. Since each convolutional layer can capture

Table 4 Training time of modified models

Model Time for training
on each epoch(s)

Replacing embedding layer 13.69

Replacing multi-scale convolutional network 13.95

Replacing pooling1 with LSTM 121.4

Without pooling2 56.06

Additional dense layers 58.45

proposed model 56.36

Table 5 Comparison of the state-of-the-art methods on AntiBP2
dataset

Method ACC (%) MCC

CAMP-ANN 81.03 0.624

CAMP-DA 84.28 0.69

CAMP-RF 87.09 0.752

CAMP-SVM 86.69 0.739

iAMP-2 L 86.34 0.735

iAMPpred 92.84 0.858

AntiBP2 91.64 0.831

DNN 92.95 0.86

proposed model 93.38 0.862
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motifs of a fixed length, convolutional layers of different
filter lengths can detect motifs of different lengths. The
structure of our proposed model is shown in Fig. 3,
which shows that the proposed model mainly contains
an Embedding module, a Convolutional module, a Pool-
ing module and a Fully Connection module. In the pro-
posed model, we used dropout and set the parameter 0.2
to prevent overfitting.
As shown in Fig. 3, the sequence data has to be con-

verted to be fed into the model. A peptide sequence is
converted into a numerical vector of length 200, which
is larger than the length of the longest sequence. We
assigned an integer within 20 to each one of the 20 basic
amino acids. The sequence shorter than 200 will be pad-
ded with the number 0 to obtain a fixed vector length
200. The padded 0 s will be ignored by the model during
later data processing. Then the encoded data will be fed
into the embedding layer that can convert the data with
discrete representation into a word vector of a fixed size.
That they have a dense representation and can repre-
sent an abstract symbol (e.g. a word or an amino
acid) with a fixed vector can help reduce dimension.
Besides, the distance between two word vectors can
represent the relation between two symbols. Com-
pared to the one-hot encoding, the word vector is
more compact. As a result, the embedding layer will
output a sequence matrix given an amino acid sequence.
The matrix has a fixed-dimension of 128 × 200 in our

model. The embedding layer will be trained with the
whole model.
In the Convolutional module, we employed a multi-

scale convolutional network containing N convolutional
layers of different filter lengths. A filter will be activated
when a matching motif is detected. An amino acid se-
quence embedding presentation is given as

X ¼ v1; v2;…; v200½ �

where vi(∈R
128) is the embedding vector of i-th amino

acid. To extract local contexts, the output of each con-
volutional layer is as

y fð Þ
i ¼ δ wf xi þ b fð Þ

� �
; f ¼ 1; 2; 3;…; 64

where δ(∗) means a non-linear activation function which
is Rectified Linear Unit (ReLU) [36] in our model, w(f)

and b(f) are weight and bias of f-th filter, and xi is i-th
part which is to be convolved. xi is as [vi, vi + 1,…, vi + l]
where l is the filter length of this convolutional layer.
The Convolutional module takes the most important
part in recognizing the AMPs by the short motifs which
the convolutional layers can detect. A difference between
convolutional layers in the multi-scale convolutional net-
work is the filter lengths. Due to the filters of different
lengths, each of the convolutional layers screen motifs of
its length and then the results of all convolutional layers

Table 6 Comparison of the state-of-the-art methods on AIP dataset

Model SENS (%) SPEC (%) ACC (%) MCC auROC (%) P value

DNN 59.05 73.61 67.78 0.3273 71.12 < 0.001

proposed model 55.24 84.9 73.02 0.4245 76.8 < 0.001

AIPpred 75.8 71.11 73.4 0.46 80.1 < 0.001

fusion model with DNN 51.67 79.81 68.54 0.3285 71.23 < 0.001

proposed fusion model 60 83.15 73.88 0.4459 78.34 < 0.001

Table 7 Comparison of methods on APD3 dataset

Method SENS (%) SPEC (%) PREC (%) BalACC (%) ACC (%) MCC

CAMP-ANN 83.30 83.36 50.04 83.33 83.35 0.5549

CAMP-DA 88.09 81.25 48.44 84.67 82.39 0.5623

CAMP-RF 94.80 83.44 53.39 89.12 85.34 0.6388

CAMP-SVM 90.54 81.63 49.65 86.09 83.12 0.5848

gkmSVM – – – – – –

iAMP-2 L 88.32 86.12 56.00 87.22 86.49 0.6302

iAMPpred 93.46 79.02 47.12 86.24 81.43 0.5742

DNN 96.96 89.62 65.14 93.29 90.84 0.7471

proposed model 97.90 90.90 68.28 94.40 92.07 0.7761

proposed fusion model 98.25 91.00 68.58 94.62 92.21 0.7802

Note: the mark’—’ means that the result is not available. In this experiment, ‘gkmSVM’ method couldn’t be run successfully because the kernel requirement
isn’t satisfied
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Table 8 Comparison of auROC using DeLong’s test on APD3 dataset

Method 1 Method 2 auROC 1 auROC 2 Difference P value

proposed model CAMP-DA 0.9892 0.9069 0.0823 < 0.0001

proposed model CAMP-RF 0.9892 0.9528 0.0365 < 0.0001

proposed model CAMP-SVM 0.9892 0.9202 0.0690 < 0.0001

proposed model gkmSVM 0.9892 – – NA

proposed model iAMP-2 L 0.9892 0.8722 0.1170 < 0.0001

proposed model iAMPpred 0.9892 0.9466 0.0427 < 0.0001

proposed model DNN 0.9892 0.9802 0.0091 < 0.0001

proposed fusion model CAMP-DA 0.9918 0.9069 0.0849 < 0.0001

proposed fusion model CAMP-RF 0.9918 0.9528 0.0391 < 0.0001

proposed fusion model CAMP-SVM 0.9918 0.9202 0.0716 < 0.0001

proposed fusion model gkmSVM 0.9918 – – NA

proposed fusion model iAMP-2 L 0.9918 0.8722 0.1196 < 0.0001

proposed fusion model iAMPpred 0.9918 0.9466 0.0453 < 0.0001

proposed fusion model DNN 0.9918 0.9802 0.0117 < 0.0001

proposed fusion model proposed model 0.9918 0.9892 0.0026 < 0.0001

Note: the mark’—’ means that the result is not available. In this experiment, ‘gkmSVM’ method couldn’t be run successfully because the kernel requirement
isn’t satisfied

Fig. 3 The structure of the proposed model. The proposed model mainly uses embedding layer and convolutional layers. All sequences are
encoded into numerical vectors of length 200 and are fed into the embedding layer. Each embedding vector dimension is 128. Then the outputs
of embedding layer are fed into N convolutional layers. Each convolutional layer uses 64 filter kernels. These outputs are connected to feed into a
max pooling layer and outputs of the pooling layers are concatenated to fed into another max pooling layer. Finally the output will be fed into a
fully connection layer and passed through a sigmoid function. The final output is in range [0,1] as the prediction of the input sequence
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are different. To be specific, the filter lengths of all N
convolutional layers are 2, 4, 6, ..., 2 N.
Each convolutional layer’s output is fed into a max

pooling layer. The pooling layer helps reduce over-
fitting. Besides, the max pooling is similar as feature se-
lection, which selects the feature with max value. Next,
to make use of motifs of different size, all pooling layers’
outputs are concatenated. In other words, the results of
all different convolutional layers are concatenated. Then
the concatenated layer’s output is fed into another max
pooling layer. Finally, the output of pooling layer is fed
into a fully connected layer to get the final prediction.
The final dense layer uses a sigmoid function and its
output is in the range [0,1]. The final output greater
than 0.5 means the input sequence is an AMP, other-
wise, a non-AMP.
As described above, recurrent neural network (RNN)

or LSTM were not used in the proposed model. In our
experiments, adding LSTM or RNN did not improve the
performance of the proposed model significantly. The
results of experiments are discussed in Results section.
The features of motifs which convolutional layers detect
are used for our identification of new AMPs.

Model tuning and metrics
We evaluate our proposed model based on sensitivity
(SENS), specificity (SPEC), precision (PREC), balanced

accuracy (BalACC), accuracy (ACC) [35] and Matthew’s
Correlation Coefficient (MCC) [37]. All of them are
based on the number of true positive (TP), true negative
(TN), false positive (FP), false negative (FN). They are
defined as

SENS ¼ TP
TP þ FNð Þ � 100%

SPEC ¼ TN
TN þ FPð Þ � 100%

PREC ¼ TP
TP þ FPð Þ � 100%

BalACC ¼ 1
2
� TP

TP þ FNð Þ þ
TN

TN þ FPð Þ
� �

� 100%

ACC ¼ TP þ TN
TP þ TN þ FP þ FNð Þ � 100%

MCC ¼ TP � TNð Þ− FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

Besides, we also make use of auROC [38]. The receiver
operating curve (ROC) can represent the performance of
a model by showing the TP rate as a function of FP rate.
As the discrimination threshold changes, the TP rate
and FP rate change. The auROC is the area under the

Fig. 4 The structure of the proposed fusion model. There are two parts in the fusion model. The proposed structure is on the left. An additional
fully connected network is on the right and this part make use of the DPC and AAC of peptide sequences. This network incorporates redundant
information into the proposed model

Su et al. BMC Bioinformatics          (2019) 20:730 Page 8 of 10



ROC, which is in range [0.5,1]. 0.5 means random guess,
while 1 means that the prediction is always correct.
To reflect different filter lengths bring about different

prediction results, a 10-fold cross validation based on a
single convolutional layer was conducted. Besides, to
find out the best parameter N which is the number of
convolutional layers in the multiscale convolutional net-
work, we conducted a 10-fold cross validation to evalu-
ate the parameter N. In this procedure, we merged the
training set and tuning set and only took ACC into con-
sideration to choose N. After N was chosen, we merged
the training set and tuning set as a new training set to
train the proposed model and then evaluated the pro-
posed model and compared it with the state-of-the-art
models based on the prediction results of the test set.

Fusion model
To further improve the performance of the proposed
model, redundant information [39] of a peptide se-
quence is incorporated into the proposed model via a
hybrid approach. We combined the proposed model
with a fully connected network into a fusion model to
capture multi-type features. Besides peptide sequences,
amino acid composition (AAC) [32] and dipeptide com-
position (DPC) [32] are used in this fusion model. AAC
is a vector which represents the fractions of 20 amino
acid in its peptide sequence. It is defined as

AAC ið Þ ¼ number of amino acid ið Þ
Length of the peptide

; i ¼ 1; 2; 3;…; 20

DPC is a vector which represents the ratio of 400 pos-
sible dipeptides in a given sequence. It is calculated as

DPC ið Þ ¼ number of dipeptide ið Þ
Total number of all dipeptides

; i ¼ 1; 2; 3;…; 400

DPC has a fixed length of 400 which represents the
400 possible dipeptides.
Figure 4 shows the structure of the fusion model.

There are two parts in this model. One is the proposed
DNN model and another one is an additional fully con-
nected network. The DPC and AAC are concatenated
into a vector which has a length of 420. Then this vector
is fed into a dense layer with 64 units and each unit use
a sigmoid function. The output of this layer with the
output of pooling layer in proposed model are
concatenated. The concatenated vector is fed into a final
dense layer with 1 unit. The final dense layer uses a sig-
moid function and its output is in the range [0,1]. We
only make use of DPC and AAC in this model, which
are easy to obtain, and thus this model also can be ap-
plied to any sequence dataset.
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