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Abstract

Background: Since protein-DNA interactions are highly essential to diverse biological events, accurately positioning
the location of the DNA-binding residues is necessary. This biological issue, however, is currently a challenging task in
the age of post-genomic where data on protein sequences have expanded very fast. In this study, we propose
iProDNA-CapsNet – a new prediction model identifying protein-DNA binding residues using an ensemble of capsule
neural networks (CapsNets) on position specific scoring matrix (PSMM) profiles. The use of CapsNets promises an
innovative approach to determine the location of DNA-binding residues. In this study, the benchmark datasets
introduced by Hu et al. (2017), i.e., PDNA-543 and PDNA-TEST, were used to train and evaluate the model, respectively.
To fairly assess the model performance, comparative analysis between iProDNA-CapsNet and existing state-of-the-art
methods was done.

Results: Under the decision threshold corresponding to false positive rate (FPR) ≈ 5%, the accuracy, sensitivity,
precision, and Matthews’s correlation coefficient (MCC) of our model is increased by about 2.0%, 2.0%, 14.0%, and
5.0% with respect to TargetDNA (Hu et al., 2017) and 1.0%, 75.0%, 45.0%, and 77.0% with respect to BindN+ (Wang et
al., 2010), respectively. With regards to other methods not reporting their threshold settings, iProDNA-CapsNet also
shows a significant improvement in performance based on most of the evaluation metrics. Even with different
patterns of change among the models, iProDNA-CapsNets remains to be the best model having top performance in
most of the metrics, especially MCC which is boosted from about 8.0% to 220.0%.

Conclusions: According to all evaluation metrics under various decision thresholds, iProDNA-CapsNet shows better
performance compared to the two current best models (BindN and TargetDNA). Our proposed approach also shows
that CapsNet can potentially be used and adopted in other biological applications.
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Introduction
In biochemistry, the protein-DNA interaction is consid-
ered to be one of the vital activities that has strong impacts
on diverse biological events including DNA synthesis,
transcription, splicing, and restoration [1–3]. Therefore,
high precision in determining the protein-DNA binding
residues is crucial not only for protein function analysis
but also for novel drug discovery [4]. For years, a lot of
studies have been conducted to gain more understand-
ings about the natural mechanism of protein-DNA inter-
actions [5, 6]. Besides, to make an empirical confirma-
tion on protein-DNA interaction, many high-throughput
experimental advances have been designed such as pro-
tein microarray assays [7], ChIP-Seq [8], and protein
binding microarray (PBM) [9]. Nevertheless, the identi-
fication of protein-DNA binding residues using experi-
mental advances usually brings a great burden of cost
and time. Since handling on experimental assays is com-
plicated, using computation advances to identify DNA-
binding residues is now preferable. On the other hand,
the ceaselessly increasing number of unannotated protein
sequences has motivated researchers to find better tools
for this biological problem. Thus, employing computa-
tional models to predict the locations of the protein-DNA
binding residues has become one of the most concerned
topics in bioinformatics [1, 5, 10]. In the last decade, a
number of computational models have been developed to
identify DNA-binding residues [1, 11]. Based on the used
features, these methods can be classified into three major
groups: (i) structure-based models [12, 13], (ii) sequence-
based models [10, 14], and (iii) hybrid models (using both
sequence and structural features) [15].

In general, the structure-based and hybrid models fre-
quently come up with better prediction accuracies com-
pared to sequence-based models due to efficient expo-
sure of specific distinctions between DNA-binding and
non-binding residues [15]. The B-factor, surface curva-
ture, and depth index (DPX), for instances, are three of
numerous structure-based features that have been vastly
employed to identify DNA-binding residues [15] with
fairly good performances. Structure-based and hybrid
models, however, also find more difficulties in circum-
stances in which no defined 3D-structure proteins are
available. This situation is common for newly investi-
gated proteins with only peptide sequences being deter-
mined because performing 3D-structural reconstruction
for a particular protein usually time-consuming. Despite
being supported by some popular homology modeling
tools (e.g., MODELLER [16] and I-TASSER [17]), 3D-
structural reconstruction for a new protein is still not a
simple work because of large structural inconsistencies
between the computer-aided rebuilt structure and the
actual one, especially when appropriate structural templates
are unavailable [18]. Moreover, the fast ever-growing

genome sequencing technologies also add more distance
between a number of protein sequences and their rebuilt
structures. Hence, using sequence-based computational
models to identify DNA-binding residues seems to be
more realistic and reasonable to meet the needs.

In comparison with structure-based methods,
sequence-based models do not require protein struc-
tural information to predict DNA-binding residues.
The last decade has seen significant growth in machine
learning-based models (e.g., DNABR [19], DP-Bind [12],
BindN [10], and MetaDBsite [6]) used for prediction of
DNA-binding residues based on given sequences. These
sequence-based methods use only protein sequence
information to identify DNA-binding residues under the
support of several common learning algorithms including
Random Forest (RF) [20], Support Vector Machine (SVM)
[21], k-Nearest Neighbors (k-NN) [22], and Extreme
Gradient Boosting (XGBoost) [23]. In 2006, Wang et al.
proposed BindN [10], a prediction model using the SVM
algorithm receiving sequence features comprising of the
hydrophobicity index, the molecular mass of a residue,
and the pKa value of the side chain as model inputs. A
year later, DP-Bind [14] developed by Hwang et al. was
introduced as a web-based prediction tool that combined
three learning algorithms encompassing kernel logistic
regression, penalized logistic regression and SVM to
improve the performance. This tool ultilizes the position-
specific scoring matrix (PSSM) profiles generated from
protein sequences. In 2015, Wong et al. published a
new computational model that utilized not only protein
sequences but also DNA sequences to enhance feature
specificity to predict possible interactions between a
nucleotide and protein residues from distinctive defined
DNA-binding domain families [24]. Additionally, Wong et
al. also proposed the kmerHMM [25] - a hidden Markov
model (HMM) utilizing belief propagations. This model
is capable of adapting and converting protein binding
microarray raw data into another form so-called median-
binding intensities of single k-mers to recognize DNA
motifs. Although these existing models have come up
with certain achievements, further studies for model
improvement is still needed.

Using machine learning algorithms to construct pre-
diction models for protein-DNA binding residues is not
straightforward due to the inherent data imbalance in the
residues. In fact, the number of non-binding residues is
predominant over that of DNA-binding residues. There-
fore, using resampling techniques is currently the most
frequent solution for class imbalance [26, 27]. In this
scenario, over-sampling and under-sampling are the two
most commonly applied techniques as described in previ-
ous studies [26–28]. Over-sampling expands the training
dataset and hence training time and predicting time usu-
ally elongate. Additionally, this technique is often claimed
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to cause the over-fitting problem. On the contrary, under-
sampling reduces the training dataset and therefore leads
to implicit risk of feature losses or weak feature char-
acterization. In 2016, Hu et al. suggested a prediction
model with a solution for the class imbalance. They pro-
posed combining an under-sampling technique and a suit-
able boosting ensemble algorithm. Then, their proposed
ensembled learning model was constructed using various
distinctive classifiers on the modified balanced dataset
[29].

In this study, we applied the capsule neural network
(CapsNet) architecture [30], one of the latest deep learn-
ing approaches, on the PSSM features generated from the
training and test datasets introduced by Hu et al. [29].
PSSM has been shown to be a suitable data representa-
tion for applying deep learning architectures, especially
convolutional neural networks (CNNs), on various bioin-
formatics problems in general and on binding prediction
problems in particular [31]. CapsNet is an advanced deep
learning architecture; however, it has not been widely
applied in bioinformatics except for a recent work on pre-
diction of protein post-translational site modification [32].
Compared to CNN architectures having similar compu-
tation costs, CapsNet often archives better performance
[30]. On small training datasets, CapsNet also outper-
forms CNNs as the result of having ability to characterize
hierarchical relationships between simple and complex
features [30, 32]. We anticipated using CapsNet with
PSSM features would outperform other algorithms which
have been successfully used in prediction of protein-
DNA binding residues. Our method used 10-fold cross-
validation and trained 10 CapsNet models from 10 sub-
training datasets. To deal with the class imbalance issue,
random under-sampling (RUS) [33] was applied on each
sub-training dataset. Eventually, these 10 CapsNet mod-
els were ensembled and fed with the test dataset to obtain
the final testing results. For a fair assessment, we com-
pared our proposed approach with other state-of-the-art
methods using the same test dataset.

Materials and methods
Benchmark datasets
For model construction and evaluation, we used PDNA-
543 and PDNA-TEST as the training dataset and the
independent test dataset, respectively. These two datasets
resemble those used in the TargetDNA method [29].
Totally there are 584 non-redundant protein sequences
obtained after removing redundant sequences using the
CD-hit software [34] with the identity threshold of 30%.
The training dataset has 543 protein sequences while
the independent test dataset has 41 protein sequences.
The training dataset consists of DNA-binding residues
(positive samples) and 134,995 non-binding residues (neg-
ative samples). In the test dataset, there are 734 positive

samples and 14,021 negative samples. The detailed infor-
mation of PDNA-543 and PDNA-TEST is summarized in
Table 1.

Feature representation
The position-specific scoring matrix (PSSM) has been
widely used to extract features from protein sequences.
We used the PSI-BLAST (Position-Specific Iterative Basic
Local Alignment Search Tool) [35] against the Swiss-Prot
database [36] with three iterations and a cut-off E-value
of 0.01 to generate a PSSM profile from an input protein
sequence. In the generated matrix, each of L rows repre-
sents the corresponding amino acid in the input protein
sequence with length L, and each of 20 columns rep-
resents a particular amino acid among the total of 20
standard amino acids building up the protein structure.
Equation (1) shows how the PSSM profile with respect to
a protein P with L amino acids being calculated.

PPSSM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1→1 E1→2 · · · E1→j · · · E1→20
E2→1 E2→2 · · · E2→j · · · E2→20

...
... · · · ... · · · ...

Ei→1 Ei→2 · · · Ei→j · · · Ei→20
...

... · · · ... · · · ...
EL→1 EL→2 · · · EL→j · · · EL→20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where Ei→j is the score of the mutation from an amino
acid in the ith position of the protein sequence to the
standard amino acid j (j = 1, 20) during evolution. Posi-
tive scores suggest the mutation Ei→j happens more often
than expected by chance while negative scores indicate the
opposite. Then each score x in the PSSM profile is rescaled
to the interval (0, 1) using the standard logistic function:

f (x) = 1
1 + e−x . (2)

Then, the window sliding technique was applied to the
rescaled PSSM to obtain the PSSM feature vector for each
amino acid since the PSSM score of a particular amino
acid and its neighbors may affect the DNA-binding ability.
We set the window size to 21, leading to the size of 21×20
for each PSSM feature vector.

Model architecture
The architecture of our proposed CapsNet model, as
shown in Fig. 1, consists of two 2-dimensional convo-
lutional layers (CNN and PrimaryCaps) and one fully
connected layer (BindCaps). The first layer, CNN, detects
basic features of the input PSSM corresponding to a pro-
tein sequence. The 21 × 20 PSSM is convolved with 256
filters of size 7 × 7 at stride 1 with ReLU activation func-
tion to produce a 15 × 14 × 256 tensor. For improving
the training speed, performance, and stability of the Cap-
sNet model and preventing overfitting, we added a batch
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Table 1 Data distribution in the training set (PDNA-543) and the independent testing set (PDNA-TEST)

Dataset No. of Sequences No. of Positive Samples (a) No. of Negative Samples (b) Ratio (a/b)

PDNA-543 543 9,549 134,995 14.137

PDNA-TEST 41 734 14,021 19.102

normalization sub-layer [37] and a dropout sub-layer [38]
with the neuron dropping rate of 0.7 at the end of the first
layer.

The second layer, PrimaryCaps, consists of 32 primary
capsules which combines the basic features detected in the
first layer. This is done by the use of 8 filters with the size
of 7 × 7 × 256 with stride 2 in each capsule that takes the
15 × 14 × 256 tensor from the CNN layer as input and
produces a 5×4×8 output tensor. Here, 8 is the dimension
of the capsule vectors in PrimaryCaps which is similar to
that in the original CapsNet architecture [30]. Since there
are 32 capsules, the shape of the output of this layer is 5 ×
4 × 8 × 32. A batch normalization sub-layer is included
with a dropout sub-layer with the neuron dropping rate of
0.2 at the end of PrimaryCaps. A non-linear “squashing”
function is used to scale the length of the output vector
of each capsule to [0, 1] since it is the probability that the
current input represents the encoded entity:

vj =
∥∥sj

∥∥2

1 + ∥∥sj
∥∥2

sj∥∥sj
∥∥ , (3)

where vj is the vector output of capsule j and sj is its input.
The next layer, BindCaps, has two 16-dimensional

“binding” capsules corresponding to 2 possible labels of
the input protein sequence: positive and negative (indi-
cating whether protein-DNA binding exists at the cen-
tered amino acid or not). The input of each capsule in
this layer is a 5 × 4 × 8 × 32 tensor. In other words,
they are 5 × 4 × 32 8-dimensional vectors, each is
assigned with an 8 × 16 weight matrix which then mul-
tiplies with an 8-dimensional input vector to produce a
16-dimensional vector. These 16-dimensional vectors are
weighted (the weights are determined by the dynamic
routing algorithm) and summed over, and the results are
then passed through the squashing function to produce
two 16-dimensional vectors as the output. The com-
putation between the PrimaryCaps and BindCaps lay-
ers is illustrated in Fig. 2 and the complete dynamic
routing algorithm is described in [30]. There are 640
8-dimensional capsules (each ui is an 8-D vector) in Pri-
maryCaps. Each is produced by multiplying ui by a weight
matrix Wi,j (size of 8×16). Capsule vector Vj (j = 1 or 2) in
BindCaps is a 16-dimensional vector which is computed

Fig. 1 Architecture of the proposed CapsNet model
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Fig. 2 Computation between two layers: PrimaryCaps and BindCaps

by passing the weighted sum over all output ûj|i from Pri-
maryCaps through the squashing function. Parameter ci,j
is determined by the iterative dynamic routing process.
Similar to the previous two layers, a batch normaliza-
tion sub-layer and a dropout sub-layer with the neuron
dropping rate of 0.1 are included at the end of BindCaps.
The L2-norms of the two 16-dimensional vectors are then
computed to obtain the final output of the CapsNet model
as a 2-dimensional vector.

The loss function for training our CapsNet model is the
sum of two separate margin losses, Lk for each “binding”
capsule, k:

Lk = Tk max(0, 0.9 − ‖vk‖)2

+ 0.5(1 − Tk) max(0, ‖vk‖ − 0.1)2,
(4)

where vk is the output of “binding” capsule k and Tk = 1
if protein-DNA binding exists.

The architecture of our CapsNet model is relatively
similar to the encoder in the original capsule neural net-
work [30]. In addition to the differences in the number
filters in each layer, we decreased the filter size in the
first two layers from 9 × 9 to 7 × 7 and included batch
normalization and dropout in all the layers. Our prelim-
inary experimental results confirmed that reducing filter
size and including dropout helped the model to be less
prone to overfitting and integrating batch normalization
improved validation performance.

Model training and testing
The diagram of training and testing our model is
described in Fig. 3. First, PSSM features are extracted from
both the training set (PDNA-543) and the test set (PDNA-
TEST) to form the training feature set and the test feature
set, respectively. The training feature set is then divided
into 10 mutually exclusive stratified folds, and they are
combined to form 10 combinations of 9 training folds and
1 validation fold. For each of the combinations, a Cap-
sNet model was trained using a balanced training subset
created from the 9 training folds using random under-
sampling (RUS) [33], and the model was optimized and
validated on the validation fold. Adam optimization algo-
rithm [39] was used along with each minibatch of 256
samples. Under the learning rate of 0.0001, the model was
trained with a maximum of 300 epochs. During the train-
ing iteration, the early stopping strategy was used in such
the way that if no improvement in validation loss after 20
consecutive epochs, the training process would be auto-
matically terminated. The learning rate would be halved
whenever the validation loss did not improve after 10 con-
secutive epochs. The number of iterations used in the
routing algorithm was set to 3 (by default) and the margin
loss function was employed. The best model was saved at
the end of the training process. During testing, these 10
trained CapsNet models were fed with the test feature set
and then the final testing results were calculated by aver-
aging the predictions from all the models and compared
with the truth labels.
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Fig. 3 Diagram of training and testing the CapsNet models

In our experiments, all the deep-learning models were
implemented using Keras 2.2.4 and TensorFlow 1.13.1.
Model training and testing were performed on an i5
9600k workstation with the Ubuntu 18.04.1 LTS operat-
ing system and equipped with 16GB RAM and one GPU
NVIDIA GTX 1080Ti. It took about 6 seconds to train 1
epoch and 43 seconds to complete testing.

Cross-Validation
In order to compare our framework with other related
methods, we also performed 10-fold cross-validation on
the training dataset (PDNA-543). As shown in Fig. 4, the
model training process in this case is somewhat differ-
ent from that in “Model training and testing” section.
First, we extracted the PSSM feature set from the PDNA-
543 dataset. Then, the feature set was randomly split
into 10 mutually exclusive folds using stratified sampling.
Each fold was in turn used as the validation set while
the remaining 9 folds were use as the training set for

training a CapsNet model. RUS was then applied to the
training set for rebalancing whereas the validation set was
left intact. The model was trained using the balanced 9-
fold training dataset for 100 epochs and then tested once
on the validation fold to obtain the predictions on that
fold. This process was repeated for 10 times with all 10
different validation folds to produce 10 different predic-
tion arrays. These prediction arrays were concatenated
for the predictions on the whole PDNA-543 dataset and
used to compare with the truth labels to produce the
cross-validation results.

Evaluation metrics
In this study, five evaluation metrics, including Sensitiv-
ity (SN), Specificity (SP), Accuracy (ACC), Precision (PR),
and Matthews’s correlation coefficient (MCC) were used
to evaluate the model performance. These mathemati-
cal expressions of these evaluation metrics are specified
below:
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Fig. 4 10-fold cross-validation process

Accuracy (ACC) = TP + TN
TP + TN + FP + FN

(5)

Sensitivity (SN) = TP
TP + FN

(6)

Specificity (SP) = TN
TN + FP

(7)

Precision (PR) = TP
TP + FP

(8)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)

where TP, FP, TN, and FN are abbreviated terms of True
Positive, False Positive, True Negative, and False Negative
values, respectively. These evaluation metrics, however,
changes under the adjustment of the decision thresh-
old when making prediction. To fairly compare our pro-
posed approach with state-of-the-art methods, we set the
threshold in the same way as in [29], i.e., select the thresh-
old so that we have the following cases: (i) FPR (False
Positive Rate, which is equal to 1 - Specificity) ≈ 15%, (ii)
FPR ≈ 5%, and (iii) SN ≈ SP (Sensitivity is approximately
equal to Specificity) during cross-validation and testing.
We also set the threshold so that FPR ≈ 8% when test-
ing. In addition, since the Area Under the Curve (AUC)
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of the Receiver Operating Characteristic (ROC) curve
is independent on the threshold, we also used AUC as
an important metric to evaluate the performance of our
models. Higher AUC values mean better performances.

Results and discussion
Cross-Validation and model evaluation
Tables 2 and 3 show the performances of our models
on the training dataset (PDNA-543) using 10-fold cross-
validation and on the test dataset (PDNA-TEST), respec-
tively, under four different settings of the decision thresh-
old including (i) default threshold = 0.5, (ii) FPR ≈ 5% (SP
≈ 0.95), (iii) FPR ≈ 15% (SP ≈ 0.85), and (iv) SN ≈ SP. The
agreement between cross-validation outcomes and testing
outcomes under the four different settings shows that our
models are good at generalization. This is also confirmed
by the two almost-identical ROC curves in Fig. 5.

For the PDNA-543 dataset, among the four settings, the
accuracy when FPR ≈ 5% holds the first place, followed by
those when FPR ≈ 15%, SP ≈ SN, and the default thresh-
old. The specificity and precision when FPR ≈ 5% are
also significantly higher than those of other thresholds.
When FPR ≈ 5%, the accuracy, specificity, and precision
are increased by about 9.0–22.0%, 12.0–27.0%, and 46.0–
92.0%, respectively, compared to the other setups. The
MCC of the model increases following the decrease in FPR
and varies between 0.282 and 0.313. Under the threshold
corresponding to FPR ≈ 15%, the MCC is higher than the
other setups. In contrast, using the default threshold leads
to the highest value of sensitivity.

For the PDNA-TEST dataset, under the threshold cor-
responding to FPR ≈ 5%, the accuracy, specificity, preci-
sion, and MCC come up with significantly higher values
compared to other setups. The accuracy drops by about
10.0%, 22.0%, and 22.0% when changing the setting from
FPR ≈ 5% to FPR ≈ 15%, SP ≈ SN, and the default
threshold, respectively. Using the threshold correspond-
ing to SP ≈ SN returns higher sensitivity compared to
other setups but not significantly different from using the
default threshold due to only small adjustment between
sensitivity and specificity.

Besides, we also set another threshold so that FPR ≈ 8%
in order to observe possibly new trend of change. This set-

Table 2 10-fold cross-validation performances of
iProDNA-CapsNet on the training dataset (PDNA-543) under
various decision thresholds

Setting ACC (%) SN (%) SP (%) PR (%) MCC AUC

Threshold = 0.5 74.73 77.38 74.55 17.32 0.282 0.832

FPR ≈ 5% 91.21 36.31 95.00 33.34 0.301 0.832

FPR ≈ 15% 83.66 64.21 85.00 22.78 0.313 0.832

SP ≈ SN 76.02 76.02 76.02 17.93 0.287 0.832

Values which are significantly higher than the others are in bold

Table 3 Performances of iProDNA-CapsNet on the test dataset
(PDNA-TEST) under various decision thresholds

Setting ACC (%) SN (%) SP (%) PR (%) MCC AUC

Threshold = 0.5 75.72 74.79 75.77 13.59 0.245 0.833

FPR ≈ 5% 92.38 42.17 94.93 29.78 0.315 0.833

FPR ≈ 8% 91.13 45.73 93.45 26.23 0.302 0.833

FPR ≈ 15% 84.05 65.38 85.00 18.17 0.285 0.833

SP ≈ SN 75.34 75.36 75.34 13.47 0.245 0.833

Values which are significantly higher than the others are in bold

ting gives similar performance compared to the case when
FPR ≈ 5% with smaller values of all the metrics except
sensitivity.

Comparative analysis
Table 4 shows the performance of our models com-
pared with that of other state-of-the-art methods (data
excerpted from [29]) including BindN [10], ProteDNA
[40], MetaDBSite [6], DP-Bind [14], DNABind [41],
BindN+ [42], and TargetDNA [29]. All the methods were
tested on the same test dataset (PDNA-TEST), and among
those methods, only BindN+ and TargetDNA provided
performance information with two settings correspond-
ing to FPR ≈ 5% and FPR ≈ 15%.

Under the threshold corresponding to FPR ≈ 5%, the
accuracy, sensitivity, precision, and MCC of our model
increases by about 2.0%, 2.0%, 14.0%, and 5.0% with
respect to TargetDNA and 1.0%, 75.0%, 45.0%, and 77.0%
with respect to BindN+, respectively. In comparison with
BindN+, our model come up with a significant improve-
ment in precision (45.0%) and MCC (about 77.0%) and
these surges are very meaningful to indicate the small vari-
ation among different-run values as well as high stability of
our model. In comparison with TargetDNA, our model’s
precision remarkably rises by 14.0% and this outgrowth
reflects the considerable decline in variation among the
different-run values. Besides, the specificity among meth-
ods in comparison is not significantly different. Therefore,
under the threshold corresponding to FPR ≈ 5%, our pro-
posed method seems to cover the weaknesses of both
TargetDNA and BindN+. On the other hand, under the
threshold corresponding to FPR ≈ 15%, the accuracy in
our model, TargetDNA, and BindN+ all decrease by about
10.0%, 7.5%, and 9.5% and these declines are not far dif-
ferent from each other. Additionally, the specificity of the
three models also drops in the range from 9.0% to 12.0%.
In terms of precision, the fall in this metric decreases
from our model (64.0%), followed by BindN+ (33.0%) and
TargetDNA (27.0%). With regards to MCC, our method
and TargetDNA share a common pattern of downward
change, while upward change is observed in BindN+.
When changing the threshold corresponding to FPR ≈ 5%



Nguyen et al. BMC Bioinformatics 2019, 20(Suppl 23):634 Page 9 of 12

Fig. 5 ROC curves for iProDNA-CapsNet on PDNA-543 (blue dashed line) in model testing and on PDNA-TEST (orange solid line) in 10-fold
cross-validation

to that corresponding to FPR ≈ 15%, the sensitivity of our
model, TargetDNA, and BindN+ all demonstrates with a
remarkable growth by about 65.0%, 80.0%, and 100.0%,
respectively, as a result of a trade-off between sensitivity
and specificity.

Among the methods with unknown threshold settings,
ProteDNA [40] is the only one having higher accuracy and
precision compared to our model. However, our model’s

MCC is twice as high as ProteDNA’s MCC. Given the
crucial role of MCC over other metrics as confirmed
[43], we can therefore take that our model remains its
competitive role with high stability. For the rest of the
other approaches including MetaDBSite [6], DP-Bind [14],
and DNABind [41]), our proposed method also shows
a significant improvement in accuracy, precision, and
MCC. The sensitivity of our model under the threshold

Table 4 Performance comparison between iProDNA-CapsNet and other state-of-the-art methods

Method Setting ACC (%) SN (%) SP (%) PR (%) MCC

BindN Unknown 79.15 45.64 80.90 11.12 0.143

ProteDNA Unknown 95.11 4.77 99.84 60.30 0.160

MetaDBSite Unknown 90.41 34.20 93.35 21.22 0.221

DP-Bind Unknown 81.40 61.72 82.43 15.53 0.241

DNABind Unknown 79.78 70.16 80.28 15.70 0.264

BindN+ FPR ≈ 5% 91.58 24.11 95.11a 20.51 0.178

FPR ≈ 15% 83.69 50.81 85.41 15.42 0.213

TargetDNA FPR ≈ 5% 90.89 45.50a 93.27 26.13 0.300

FPR ≈ 15% 84.52b 60.22 85.79b 18.16 0.269

iProDNA-CapsNet FPR ≈ 5% 92.38a 42.17 94.93 29.78a 0.315a

FPR ≈ 15% 84.05 65.38b 85.00 18.17b 0.285b

Values which are significantly higher than the others are in bold with aFPR ≈ 5% and bFPR ≈ 15%



Nguyen et al. BMC Bioinformatics 2019, 20(Suppl 23):634 Page 10 of 12

corresponding to FPR ≈ 5% is about 900.0% and 125.0%
higher than ProteDNA and MetaDBSite respectively while
this metric under the threshold corresponding to FPR ≈
15% notably grown by about 150.0%, >1,300.0%, 200.0%,
and 6.0% compared to BindN, ProteDNA, MetaDBSite,
and DP-Bind. The precisions of our model under the
threshold corresponding to FPR ≈ 5% and the threshold
corresponding to FPR ≈ 15% are remarkably higher than
those of other methods. The improvement in precision
fluctuated from roughly 140.0% (compared to MetaDB-
Site) to 270.0% (compared to BindN). Although Prot-
eDNA has been reported to have an accuracy of 95.11%,
a specificity of 99.84%, and a precision of 60.30%. Among
the three reported metrics of ProteDNA, only its precision
is far higher than that of our model but its very low MCC
has weakened the trust-ability of this model. Among all
the methods, our model obtained a meaningfully higher
MCC which are boosted from about 8.0% (compared to
DNABind) to 220.0% (compared to ProteDNA).

Our method, iProDNA-CapsNet, achieves very good
values for MCC [43], which is an important metric whose
crucial role has been far confirmed. Among the com-
mon evaluation metrics, MCC is the only one that uses
up all information of the confusion matrix. Moreover,
with respect to imbalanced datasets, MCC is the most
important and informative metric that correctly assesses
whether a prediction model is stable and robust while a
single accuracy metric would not be sufficient to deter-
mine that status. With this dataset, MCC is therefore
the most important metric. Eventually, under the thresh-
old corresponding to FPR ≈ 5% and FPR ≈ 15%, our
model shows its superior performance and high stability
compared to other methods.

Software availability
We deployed our model to an user-friendly and freely
accessible web server at https://github.com/ngphubinh/
iProDNA-CapsNet. Users can easily submit a protein
sequence in FASTA format and receive the prediction
result of protein-DNA binding residues in the sequence.
We provided four different settings of the decision thresh-
old as specified in this manuscript, including the (i) default
threshold = 0.5, (ii) FPR ≈ 5% (SP ≈ 0.95), (iii) FPR ≈
15% (SP ≈ 0.85), and (iv) SN ≈ SP. The procedure to
predict protein-DNA binding residues starts on our web
server when there is a query protein sequence submitted
in the FASTA format along with a decision threshold and
an optional email address. The corresponding PSSM pro-
file is then extracted by PSI-BLAST incorporated into our
server, and subsequently the PSSM feature set is derived
by placing a sliding window on each amino acid in the
sequence (with zero padding in some of the first and last
amino acids). Finally, the feature set is submitted to our
iProDNA-Capsnet model for prediction, and the results

will be sent back to users. When viewing the result page,
users can choose a desired decision threshold from a list
ranging from 0.05 to 0.95 with the step of 0.05 to refine
the prediction result on the submitted protein sequence.

Conclusions
In this paper, a novel deep learning framework - Cap-
sNet combining with PSSM features is proposed for the
prediction of protein-DNA binding residues. iProDNA-
CapsNet has significantly better performance than the
state-of-the-art methods. In particular, the robustness and
efficiency of iProDNA-CapsNet have been demonstrated
by the remarkable improvement in most of the evaluation
metrics, especially for MCC and accuracy. Additionally,
the application of a new deep learning architecture so-
called CapsNet to address this biological issue opens a
new direction in similar topics, for example, RNA-protein
binding [44] and ATP-protein bindings [45].
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