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Abstract

Background: The protein ki67 (pki67) is a marker of tumor aggressiveness, and its expression has been proven to
be useful in the prognostic and predictive evaluation of several types of tumors. To numerically quantify the pki67
presence in cancerous tissue areas, pathologists generally analyze histochemical images to count the number of
tumor nuclei marked for pki67. This allows estimating the ki67-index, that is the percentage of tumor nuclei positive
for pki67 over all the tumor nuclei. Given the high image resolution and dimensions, its estimation by expert
clinicians is particularly laborious and time consuming. Though automatic cell counting techniques have been
presented so far, the problem is still open.

Results: In this paper we present a novel automatic approach for the estimations of the ki67-index. The method
starts by exploiting the STRESS algorithm to produce a color enhanced image where all pixels belonging to nuclei
are easily identified by thresholding, and then separated into positive (i.e. pixels belonging to nuclei marked for
pki67) and negative by a binary classification tree. Next, positive and negative nuclei pixels are processed separately
by two multiscale procedures identifying isolated nuclei and separating adjoining nuclei. The multiscale procedures
exploit two Bayesian classification trees to recognize positive and negative nuclei-shaped regions.

Conclusions: The evaluation of the computed results, both through experts’ visual assessments and through the
comparison of the computed indexes with those of experts, proved that the prototype is promising, so that experts
believe in its potential as a tool to be exploited in the clinical practice as a valid aid for clinicians estimating the
ki67-index. The MATLAB source code is open source for research purposes.

Keywords: Color enhancement, Human vision model, Image processing, Image segmentation, Artificial intelligence,
Histochemical image analysis, ki67 cell nuclei counting

Background
In the anatomopathological field, experts often concen-
trate on the visual analysis of histochemical images;
indeed, immunohistochemistry allows producing high-
resolution images where proteins of interest are visual-
ized through specific stains by exploiting the principle of
(labelled) antibodies binding specifically to antigens in
biological tissues. Particularly, the expression of the

human ki67 protein (pki67) is strictly associated with
cell proliferation [1–5].
Being associated with the proliferative activity of cell

populations, the pki67 is nowadays used as a marker of
tumor aggressiveness [6, 7], and several research studies
have already investigated the utility of its quantification
in the prognostic and predictive evaluation of several
types of tumors, such as breast, meningioma, soft tissue,
lung, prostate, cervix and central nervous system cancers
[8–17] and [18–21].
The expression of pki67 in cancerous tissue areas is

quantified by the so-called ki67-index, that is the
percentage of tumor nuclei positive for pki67 (positive
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nuclei) over all the tumor nuclei (positive nuclei and
negative nuclei). Clinical experts estimate it in a visual
way by counting positive and negative nuclei through a
careful observation of histochemical images where cells
are marked through apposite colorants. Though nuclei
counting protocols have been defined [22] to help
obtaining precise counting results, researches have
shown that the ki67-index is one of the hardest to com-
pute [23, 24]. Indeed, visual inspection is a laborious and
time-consuming task that produces not-replicable and
not accurate estimates, affected by high inter- and intra-
observer variability [25–27]; this failure is probably due
to the huge dimension of the treated tissue images that
cannot be exhaustively analyzed by experts, due to their
limited time. As a result, in the clinical routine, the
ki67-index is never measured by applying state of the art
counting procedures to precisely count nuclei [22], but
it is visually estimated by observing the expression of
pki67 in a limited number of small tissue patches, and
averaging the results.
Thanks to the advent, and subsequent proliferation, of

whole-slide digital scanners, together with the continu-
ous increase in computational power, and the substantial
advances in the digital image processing and pattern
recognition fields, in the past decade a lot of clinical and
research work has been devoted to the development of
Computer Aided Diagnosis (CAD) systems [28–30]
helping pathologists during their analysis of immunohis-
tochemical (IHC) images [31]. Reviews such as those
presented in [32–41] are evidence of the continuous and
increasing interest in the development of CAD analyzing
histological images to identify nuclei. Moreover, studies
specifically focusing on the segmentation of pki67 and
on the estimation of the ki67 labeling index [42–46]
highlight the clinical need of an automated system pro-
viding an accurate, repeatable, and trustable estimate.
Unfortunately, despite the major research effort targeted
and focused on ki67 expression analysis from histo-
logical images, the problem is still widely open.
Indeed, image problems, depending on the presence of

tissue folds and/or cuts, unspecific colorations, uneven
color cast, and unwanted background structures, mis-
guide the image analysis systems [47, 48]. Though some
promising methods exist, the quality of their results
often depends on several thresholds whose tuning is
particularly difficult for users such as clinicians, who are
not computer science experts. Other methods use
particularly complex image processing techniques, and
given the high image resolutions and dimensions, they
are too expensive in terms of computational time and
memory storage. Finally, in the latest years, some effect-
ive deep learning methods have been presented [43, 49]
that could solve this problem thanks to their impressive
generalization capability; however, due to the high

number of parameters to be learnt even when using
transfer learning [50], they require a huge training set
obtained by manual labeling procedures. As an example,
the interesting work proposed in [43], identifies isolated
nuclei thanks to a deep network, which is trained on a
labeled set composed of 450 microscopic images with
2048 × 1536 pixel. The images have been extracted from
90 (histologically confirmed) slides, and contain almost
259,884 nuclei (131,053 immunopositive and 128,831
immunonegative) nuclei. To estimate the time needed to
create such a huge training set, we asked three experts,
E5, E15 and E30, with respectively five, fifteen and thirty
years of expertise in the field, to label ten image patches
with dimension of 1024 × 1024 pixels, and to record the
time spent while labeling. To speed the manual labeling
process, the three experts alternately worked at the
labeling. It took 50 h (5 h per image patch) to label the
ten patches. Due to clinicians’ work overload, spending
so much time for manual training is not acceptable, and
hampers the ample application of these effective state-
of-the-art deep learning methods. Moreover, learning
techniques, and especially deep learning techniques, are
black-boxes which are often avoided in the clinical field
when “interpretations” are at the basis of research.
Though the problem of “interpretable” machine learning
techniques has recently started to be seriously investi-
gated in literature [51–56], this research field is still at
its early stage and lacks well established techniques for
providing either interpretations of predicted output, or
counterfactual explanation, which explain how to modify
the input to obtain a different output. The lack of inter-
pretations cause clinicians to mistrust machine learning
techniques and deep learning techniques and prefer
rule-based systems.
Despite the aforementioned difficulties, automatic ana-

lysis is increasingly demanded for its objective, precise
and repeatable numerical estimates on a statistically
significant number of high-resolution images.
In this paper, we present our prototype solution to the

problem of automatically estimating the ki67-index. To
augment the visibility of marked (positive) and unmarked
(negative) nuclei, our method firstly applies the Spatio-
Temporal Retinex inspired Envelope with Stochastic
Sampling (STRESS) algorithm [57], a “Spatial Color Algo-
rithm” [58] (SCA) that enhances colors, increases contrast
and compensates for color cast. As a result, nuclei whose
brightness could cause under-segmentation are made
evident. Furthermore, when nuclei clusters are present,
contrast enhancement has the effect of increasing color
difference among adjacent nuclei; in this way, separation
of adjoining nuclei is made easier. After this preprocessing
stage, a simple thresholding step allows us to segment
pixels belonging to all the nuclei, both those positive and
those negative for pki67 (positive nuclei and negative
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nuclei, respectively). This step is followed by a Bayesian
tree classifier, which is an interpretable machine learning
techniques whose rules allow identifying marked and un-
marked pixels based on three color features. Each of the
two binary masks (positive nuclei mask and negative nu-
clei mask) identifying, respectively, marked and unmarked
pixels contains both isolated regions, corresponding to
isolated nuclei, which can be recognized for they have an
“acceptable” area and a round shape, and bigger regions
with an inadequate area and shape, which correspond to
nuclei clusters. Since positive and negative nuclei differ for
their morphological shape, to identify single nuclei in the
two masks, they are processed separately. At first, to
recognize regions with a round shape similar to nuclei,
two Bayesian trees employing morphological features have
been trained. One Bayesian tree recognizes eligible posi-
tive nuclei shapes. The other Bayesian tree recognizes eli-
gible negative nuclei shapes. The Bayesian trees are then
used to classify the regions selected by two consecutive
multiscale procedures, applied separately to the positive
nuclei mask and to the negative nuclei mask. The first
method employs Laplacian of Gaussian filters (at different
scales), while the second method applies a modified ver-
sion of the STRESS algorithm (with different radii). The
proposed method effectively identifies both isolated re-
gions and nuclei belonging to nuclei clusters. It has been
evaluated by counting nuclei on 105 sections or fields ac-
quired with different resolutions and settings, and then
comparing the computed estimates to those obtained by
three experts; the promising results computed by the pre-
sented approach confirm its potential as a valid tool to be
used in the clinical routine basis as an aid to pathologists.
This paper is structured as described in the following.

Section 2 describes the results achieved by the research
study. Precisely, in subsection 2 the developed method
for the automatic count of cell nuclei is presented; in
section 2.3 we report experiments performed to test the
robustness of our method with respect to different image
acquisitions, and different parameter settings, in subsec-
tion 5.1 we describe the images used for developing and
testing the presented work. Finally, conclusions and
future works are reported in section 3.

Results
In this section, we describe the result of our research work,
which is a prototype for the estimation of the ki-67 index.
In particular, after enhancing the image colors (see subsec-
tion 2.4), a classifiers (see subsection 2.2) is used to extract
markers characterized by any color and shape; secondly,
two consecutive multiscale approaches (see subsection 2.5
and subsection 2.6) process the segmented areas to detach
clustered nuclei and detect eligible nuclei shapes thanks to
a second classifier (see subsection 2.3). The experimental

results (see subsection 2.7) show the effectiveness of our
method.

Learning the color appearance of nuclei-pixels and the
morphological appearance of nuclei
In this section, we describe the classification trees used in
the following steps of our method.
The first Bayesian tree, referred as BT3Class

Color in the follow-
ing, employs color features to classify pixels as belonging
to either background, positive, or negative nuclei, while
the two other Bayesian trees, referred as BTPOS

Shape and

BTNEG
Shape in the following, are used to select binary regions

whose shape is similar to that of positive or negative nu-
clei respectively. To let clinicians select training pixels and
shapes, we have developed a simple user interface that
shows sample sub-images and asks experts to draw poly-
gons around positive nuclei, negative nuclei, and back-
ground regions.

Training of BT3Class
Color

The manual labeling procedure identifies NPos +Nneg +
Nback pixels that are separated into the three classes con-
taining, respectively, all pixels in positive nuclei regions,
all pixels in negative nuclei regions, all pixels in back-
ground regions. Each pixel is characterized by a color pco-
lor expressed either in the RGB color space, that is
pcolor = {Rp,Gp, Bp}, or in the HSV color space, that is pco-
lor = {Hp, Sp,Vp}. Coding each pixel p as a 3D vector
pcoded = {Rp, Bp,Hp}, whose features are the red- and blue-
channel color values from the RGB representation and the
hue value from the HSV color representation, a training
set composed of coded pixels and their labels (POS, NEG,
BACK) is formed and used as input to train a Bayesian
tree classifier, which classifies each coded pixel as belong-
ing to one of the following three classes: background pixel,
positive nuclei pixel (positive pixels), negative nuclei pixel
(negative pixels).

Training of BTPOS
Shape and BTNEG

Shape

To capture the information about the nuclei shape, from
the manually drawn positive/negative and background re-
gions, we have first computed the minimum area among all
positive (minAP) and all negative regions (minAN), the two
median areas (medAP,medAN), the two maximum areas
(maxAP,maxAN), and the minimum (minRP,minRN), the
median (medRP,medRN), and the maximum (maxRP,
maxRN) among the radii of the positive and the negative
nuclei regions.
Next, each manually labelled nuclei region has been

coded by computing morphological properties such as: the
compactness (Comp), the eccentricity (Ecc), the length of
the minor (MinAxis) and major (MaxAxis) axis of the el-
lipse containing the region, the area of the convex hull
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(Aconvex), the perimeter (P), the area (A), the ratio of area
and perimeter ðPAÞ, the minimum (minRad) and maximum
(maxRad) distance among the area border and the area
skeleton, the ratio minRad maxRad , the bounding box of the

region (BB), the ratio ð A
BBÞ , and the ratios ð A

minAP ;
A

medAP ;
A

maxAP ;
MinAxis
minRP ;MaxAxis

maxRP ;MinAxis
medRP ;MaxAxis

medRP Þ for positive areas,

while the ratios ð A
minAN ; A

medAN ; A
maxAN ;MinAxis

minRN ;MaxAxis
maxRN ;MinAxis

medRN

;MaxAxis
medRN Þ for negative regions.
Briefly, each positive region has been represented by a

vector of 20 features:

RegPos ¼ ½Comp;Ecc;MinAxis;MaxAxis;Aconvex; P;A;
P
A
;minRad

;maxRad;
minRad
maxRad

;BB;
A
BB

;
A

minAP
;

A
medAP

;
A

maxAP
;

MinAxis
minRP

;
MaxAxis
maxRP

;
MinAxis
medRP

;
MaxAxis
medRP

�

ð1Þ
Similarly, each negative region has been represented by

a vector of 20 features:

RegNeg ¼ ½Comp;Ecc;MinAxis;MaxAxis;Aconvex;P;A;
P
A
;minRad

;maxRad;
minRad
maxRad

;BB;
A
BB

;
A

minAN
;

A
medAN

;
A

maxAN
;

MinAxis
minRN

;
MaxAxis
maxRN

;
MinAxis
medRN

;
MaxAxis
medRN

�

ð2Þ
Regarding background areas, they have been coded twice

to relate the background regions to both the positive and
the negative nuclei regions. The first coding comprises the
features:

RegPosBACK ¼ ½Comp; Ecc;MinAxis;MaxAxis;Aconvex; P;A;
P
A
;minRad

;maxRad;
minRad
maxRad

;BB;
A
BB

;
A

minAP
;

A
medAP

;
A

maxAP

;
MinAxis
minRP

;
MaxAxis
maxRP

;
MinAxis
medRP

;
MaxAxis
medRP

�

ð3Þ
while the second coding comprises the features:

RegNEG
BACK ¼ ½Comp; Ecc;MinAxis;MaxAxis;Aconvex; P;A;

P
A
;minRad

;maxRad;
minRad
maxRad

;BB;
A
BB

;
A

minAN
;

A
medAN

;
A

maxAN
;

MinAxis
minRN

;
MaxAxis
maxRN

;
MinAxis
medRN

;
MaxAxis
medRN

�

ð4Þ
Note that the only difference in the coding of the

background areas is in the last seven features, which
relate the morphological description of the region to
the statistics collected by the manual segmentation.
The coded regions have been used to form two train-

ing sets. The first training set has been used to train the

Bayesian tree, BTPOS
Shape , recognizing shapes similar to

those of positive nuclei. It is composed by NRegPOS
vectors coding the manually drawn NRegPOS positive
nuclei regions (RegPOS(i) for all i = 1, …, NRegPOS) plus
NRegBACK vectors coding the manually drawn NRegBACK
background regions ( RegPosBACKðiÞ for all i = 1, …,
NRegBACK). Note that, in this case, the coding vector is
the one that relates background regions to positive nuclei
regions (see Eq. 3).
Similarly, the second training set has been used to

train the Bayesian tree, BTNEG
Shape , recognizing shapes

similar to those of negative nuclei. It is composed by
NRegNEG vectors coding the manually drawn NRegNEG
negative nuclei regions (RegNeg(i) for all i = 1, …,
NRegNEG) plus NRegBACK vectors coding the manually
drawn NRegBACK background regions (RegNEG

BACKðiÞ for all
i = 1, …, NRegBACK). Note that, in this case, the coding
vector is the one that relates background regions to
negative nuclei regions (see Eq. 4).
The described classification trees are used by the

prototype as described in what follows.

Image enhancement and rough nuclei segmentation
The first step of the prototype detects all the pixels be-
longing to nuclei that are both positive and negative for
pki67. This step must overcome difficulties due to low
contrasted nuclei characterized by a feeble color, which
are considered by experts as subtle for they are “barely
visible”. Besides, some nuclei are often “weakly positive”
for pki67 and are therefore characterized by a color ap-
pearance that is a mixture of brownish and blueish. As
an example, in the sub-image in Fig. 1a the reader may
observe that some blue nuclei are characterized by a
light color sometimes very similar to the background;
furthermore, some positive nuclei have a low contrasted
bluish appearance. To obtain an effective segmentation
we firstly enhance color and contrast in the processed
images by applying the STRESS algorithm [57], a color
compensation algorithm which has shown to provide
effective results when applied for image dehazing [59],
enhancing astrophotographs images [60], and spatio-
temporal color correction of movies [61].
STRESS is a spatial color algorithm, where each pixel p0 is

assigned a new RGB value computed as the mean of N
stretched color (RGB) values. Each stretched color value is
computed by stretching the value of p0 between the mini-
mum and maximum color values among those obtained by
sampling M pixels in a circular neighborhood of radius R
around p0. STRESS is therefore governed by parameters N
(number of iterations), M (number of sampled value), and R
(the radius of the sampling area centered on each pixel p0 to
be modified. When treating 20x (40x) images, we set them
to N20x= 128,M20x= 8 (N40x= 256,M40x= 16), though other
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values have proven to produce similar results (as shown in
the experimental results, Section 2.7). Regarding parameter
R, its value is set to be the length of the maximum radius of
the nuclei to be detected, that is R = max (maxRP,maxRN).
An example of image resulting from the application of
STRESS is shown in Fig. 1b. The algorithm produces
impressive results; in the resulting RGB color image, “barely
visible” nuclei are brought out and made clearly visible, as
per opinion of experts E5, E15 and E30.
After applying STRESS, candidate nuclei pixels are

simply detected by selecting all the pixels for which
the mean value over the red, green, and blue color
channels is less than or equal to 225 (this threshold
value has been experimentally set, though we experi-
mented also values in the range [200,…, 240], which
produce similar results).
The color of the selected candidate pixels are then

coded as described in subsection 2.1.1 and fed as input to

BT3Class
Color with the aim of discarding false positive pixels,

and separate pixels belonging to positive nuclei from those
belonging to negative nuclei. In this way, false positive
pixels belonging to background are discarded, while the
remaining pixels are split into two binary masks, called

mPOS
nuclei and mNEG

nuclei in the following, that identify, respect-
ively, pixels belonging to positive nuclei and pixels belong-
ing to negative nuclei (see Figs. 1c and 2b, d).
Figure 1 shows a sample sub-image on the left (A),

the image resulting from the application of the
STRESS algorithm (B), and the classification result
(C), which has been achieved by training BT 3Class

Color with
pixels contained in 30 background areas (for a total
of 3477 pixels), 34 negative nuclei with a median area
of about 115 pixels (for a total of 3904 negative
pixels), and 37 positive nuclei with median area of
about 192 pixels (for a total of 7056 positive pixels)
from two sub-images (note that in our image database
positive nuclei are generally bigger than negative
ones). In Fig. 1c the borders of the computed binary

Fig. 2 Nuclei masks. a: sample sub-image. b: positive nuclei mask identifying pixels belonging to positive nuclei. c: round shaped regions (white)
and regions left in the positive nuclei mask (gray). d: negative nuclei mask identifying pixels belonging to negative nuclei. e: round shaped
regions (white) and regions left in the negative nuclei mask (gray)

Fig. 1 Results of the rough segmentation step. Left (a): original sub-image. Center (b): color-enhanced image after applying STRESS. Right (c): the
borders of segmented nuclei areas are highlighted in yellow (nuclei positive for pki67) and red (nuclei negative for pki67). Lots of clustered nuclei
are visible

Barricelli et al. BMC Bioinformatics          (2019) 20:733 Page 5 of 14



nuclei-masks (which will be simply referred as mPOS
nuclei ,

for positive nuclei, and mNEG
nuclei , for negative nuclei, in

the following) are shown; precisely, the borders of
mPOS

nuclei are yellow, while the borders of mNEG
nuclei are red.

The reader may observe that in both masks, nuclei
are connected, and lots of nuclei clusters are present
in the segmentation results. In the next subsections,
we describe a multiscale refinement procedure, which
is aimed at analyzing the pixels in the computed
masks to identify and differentiate clustered nuclei
from isolated ones.
Regardless, both E15 and E30 assessed the segmenta-

tion and classification results computed by this segmen-
tation step and issued a favorable judgment. Precisely,
no false positive area was found to be included into the
segmented areas, while few nuclei areas remained un-
detected; however, both E15 and E30 considered them
as negligible for they are barely visible.

Multiscale nuclei detection by Laplacian of Gaussian (log)
filtering
The prototype must analyze the pixels identified by the nu-
clei masks (see Fig. 2b, d) to detect circular regions of varying
radii. For this reason, we employ a multiscale approach and
apply it separately on the pixels in mPOS

nuclei and mNEG
nuclei. In the

following, we describe the procedure we applied to the pixels
identified by the generic mask, referred to as m�

nuclei . Note
that the described procedures employs BTPOS

Shape (see subsec-

tion 2.1.2) when working onmPOS
nuclei, and BTNEG

Shape when work-

ing on mNEG
nuclei . In the following the employed Bayesian tree

will be referred and BT �
Shape.

Precisely, given the computed nuclei mask m�
nuclei , the

first step applies BT �
Shape to detect isolated nuclei shaped

regions (see subsection 2.1.2); the detected regions are
recorded in the final result and removed from m�

nuclei to
avoid considering them in the following step (see Fig. 2c,
e). Next, the multiscale approach is applied on the gray
level sub-image Igray.
Specifically, to detect blob-like structures, Igray is

filtered with Laplacian of Gaussian filters [62] with
varying radii and standard deviations. Each filter has a
radius value r in the range [rMin, rMax], which are
respectively the minimum and the maximum of all the
radii of the manually signed nuclei regions; the standard
deviation of the LoG filter with radius r equals 1

3 r.
After each filtering, the filtered image Ilogr is thre-

sholded by keeping the 65% of the pixels in m�
nuclei

with the highest value (the percentage value of 65%
has been experimentally chosen, though values in the
range [55%, ...,75%] are also well suited). When the
filtering iteration ends, each pixel in m�

nuclei has a vote
that tells how many times the pixels has been

selected by the thresholding procedure. All votes are
recorded in an image I�VOTES , where only pixels in the
mask can take a value different from zero. For the
sake of clarity, Fig. 3 shows the voting images IPOSVOTES

and INEGVOTES; obtained for the positive (Fig. 3a) and the
negative nuclei (Fig. 3c). It may be noted that in the
voting images, I�VOTES; clustered nuclei are visible. To
separate them, we iteratively threshold the voting
image. Precisely, for each connected region in m�

nuclei ,
we keep a percentage, percLog (percLog ∈ {75, 60, 45, 30,
15}), of pixels with the highest value in I�VOTES . After
each thresholding, the connected regions formed by
the selected pixels are fed to BT �

Shape to detect eligible

nuclei regions. The detected regions are recorded in
the final results and removed from m�

nuclei.
In the right column of Fig. 3 we show with white

color the positive (Fig. 3b) and negative (Fig. 3d) nu-
clei regions (with their centroids in red) detected by
the described multiscale processing. Gray colored re-
gions are those that are still left in the mask m�

nuclei.

Multiscale nuclei detection by stress filtering

Regions that are still present in m�
nuclei after the multiscale

procedure described above are often characterized by low
contrast, so that the separation among adjacent nuclei is
barely visible. To enhance the color contrast in those re-
gions we have filtered Igray with a modified version of

Fig. 3 Voting images and result of the multiscale approach. Top (a,
b): analysis of the positive nuclei mask. Bottom (c, d): analysis of the
negative nuclei mask. Left (a, c): voting image. Right (b, d): the
detected nuclei (white) are identified by their centroid (red). The
gray areas are those left in the nuclei mask
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STRESS (referred as “masked STRESS” in the following),
which differs from STRESS because it employs a mask to
filter the randomly chosen samples around the point p0.
Precisely, for each iteration, masked STRESS randomly
samples M points among those located in a binary mask
and laying within a distance R from p0. Using a mask to
restrict the allowable samples, masked STRESS is obliged
to work on the range of colors covered by pixels in the
mask, thus creating major contrast where needed.
To allow a visual comparison, in Fig. 4 we show the re-

sults computed by applying STRESS (Fig. 4b) on Igray (with
parameter values R = 14, N = 128, M = 8) and those com-
puted by applying masked STRESS (Fig. 4c) with the same
parameter values. In the picture produced by masked
STRESS, the separation among nuclei is more evident.
To detect and separate nuclei in the regions that are

left in the mask m�
nuclei; we consider each region separ-

ately. Precisely, given the binary region reg contained in
m�

nuclei , we start computing the median and the mini-
mum of all the region thicknesses, [thickmin,…, thickmed]
(the minimum and the median thicknesses of a binary
region reg are computed as the minimum and the me-
dian of all the distances among the skeleton of reg and
the points on the perimeter of reg). Next for each thick-
ness value, thick ∈ [thickmin,…, thickmed], we apply to Igray
by the masked STRESS algorithm with parameter values
N = 128, M = 8, R = thick, and using reg as the mask.
Next, the resulting image is processed by employing an
iterative thresholding procedure similar to that described
in subsection 2.5. Precisely, at each iteration, we select a

percentage, percSTRESS (percSTRESS ∈ {85, 70, 55, 40, 25 }),
of the pixels with the lowest value; connected regions in
the obtained binary image are then analyzed to detect
eligible nuclei regions. Precisely, we select as nuclei re-
gions those connected regions characterized by all the
following properties:

– the area is less than the maximum eligible area (that
is maxAP for positive nuclei, and maxAN for
negative nuclei, see subsection 2.1)

– the area is bigger than half of the smallest eligible
area (that is minAP for positive nuclei, and minAN
for negative nuclei, see subsection 2.1),

– the ratio among the length of the minor (minAxis)
and the major (maxAxis) axis of the ellipse
containing the region is minAxis

maxAxis
> 0:6.

Selected regions are then removed from reg and re-
corded in the final result. This iterative procedure is re-
peated for the values of the aforementioned values of
perc or until reg is empty.
When all the regions have been processed with the

aforementioned iterative procedure, the mask m�
nuclei

generally contains only small regions generally corre-
sponding to nuclei whose shape is very different from
those seen by the Bayesian tree classifiers. These regions
are anyway added to the final result.
To allow a visual assessment of the achieved results, in

Fig. 5 we show 4 sub-images where the centroids of the
detected nuclei have been superimposed in yellow

Fig. 4 Comparison of results obtained by STRESS (b) and masked STRESS (c). Both the images have been computed by using parameters R = 14,
N = 128, M = 8

Fig. 5 Example of computed results. The centroids of detected nuclei are marked in yellow for positive nuclei, and in dark blue for negative nuclei
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(positive nuclei) and in black (negative nuclei). Results
are promising though the images are quite noisy and
characterized by different color characteristics.
We recall that, as described in section 5.1.1, each sub-

image belong to a manually identified tumor region, and
that each tumor region is characterized by its own prolifer-
ation activity, described by the ki67-index estimate for that
region. To estimate the ki67-index for a specific tumor re-
gion, T, when all the nuclei (positive for ki67 and negative
for ki67) are found in all the sub-images belonging to T,
the segmentation results are recomposed to compute the
final ki67-index estimate for T as the percentage of all the
ki67 positive nuclei detected in T (i.e. the sum of the posi-
tive nuclei in all sub-images extracted from T), with respect
to all the nuclei detected in T.

Experimental results
After running the proposed prototype on our image data-
base, three experts visually evaluated the segmentation re-
sults (E5, E15, E30), and we calculated the correlation
between the computed ki67-index and their ki67-index es-
timates. The experts have, respectively, five, fifteen, and
thirty years of experience in the field.
To test the developed system we firstly asked the three

experts E5. E15, E30 to visually evaluate the nuclei de-
tected by in all the 105 fields included in our study. All
the three experts judged the results effective and trust-
able and considered them promising.
Secondly, for all the tumor areas in the 105 fields,

we asked them to provide their ki67-index estimate,
expressed as the percentage of nuclei positive for
pki67 over all the nuclei (in the following, the esti-
mates provided by E5, E15, E30 will be referred to as,
respectively GT5, GT15, GT30).
With our prototype, we could provide three different

estimates of the ki67-index:

1) AreaEst: an estimation of the ki67-index computed
as the ratio of the area of the segmented positive
nuclei to the area of all the segmented tumor nu-
clei. This estimation is motivated by the results pre-
sented in [24]. In their work, authors showed that
the true ki67-index in tumor areas is approximated
with a linear model of the area of positive to the
total area of tumor nuclei.

2) NoEst: an estimation of the ki67-index computed
by using the estimates of the number of the positive
and the negative tumor nuclei. These estimates are
computed by dividing the area of the positive nuclei
by the estimated median area of the positive nuclei
(medAP, see subsection 2.1), and the area of the
negative nuclei by the estimated median area of the
negative nuclei (medAN, see subsection 2.1).

3) indexEst: the estimation of the ki67-index com-
puted as the percentage of detected nuclei positive
to pki67 with respect to all the detected nuclei.

Given the experts’ estimates (GT5, GT15, GT 30), to
measure the “agreement” with the automatically esti-
mated estimates, we used the Pearson Correlation Coef-
ficient (PCC).
Table 1 reports PCC among all the estimates provided

by experts (GT5, GT15, GT30), and the measures (Area-
Est, NoEst, and indexEst) computed for all the 105
fields.
Observing the first row of Table 1, it can be noted

that the PCC between indexEstAll and GT30 (the
most practiced expert) is higher than the PCC be-
tween GT30 and GT15, and GT30 and GT5, while
the other two estimates (EastAreaAll and EstNoAll) ob-
tain results PCCs comparable to those between GT15
and GT30.
Recalling that correlation between GT30 and GT15

was 0.89 and that correlation between GT30 and GT5
was 0.76, we may believe that the estimation algorithm,
on all the database, performs as well trained clinical
expert.
As detailed in section 5.1, our dataset contains 65

fields, acquired in different times, scanned with a reso-
lution of 0.5 μm (20x), which will be referred to as
DB20x in the following, and 40 fields, acquired in differ-
ent times, scanned at a resolution 0.25 μm (40x), which
will be referred to as DB40x in the following. To better
investigate the algorithm performance with respect to
the images resolution, we compared the results achieved
by the algorithm, when applied separately on DB20x and
on DB40x.
Table 2 shows the and PCC between GT30 and the es-

timates computed over the two databases (AreaEstDB20x,
NoEstDB20x, IndexEstDB20x, AreaEstDB40x, NoEstDB40x,
IndexEstDB40x, where the subscript shows the dataset
where the measurements where estimated).
Observing Table 2, it becomes clear that the algorithm

works much better when the resolution is lower. Indeed
on DB20x, the performance increase with respect to
those computed on the whole dataset, while perform-
ance computed on DB40x are worst (performance on all
the database are obviously a balanced trade-off between
those obtained on the separated database).

Table 1 Pearson Correlation Coefficient between estimated
ki67-index over all database

PCC GT30 GT15 G5 EstAreaAll EstNoAll indexEstAll

GT30 1.00 0.89 0.76 0.83 0.87 0.94

GT15 0.89 1.00 0.80 0.85 0.86 0.87

GT5 0.76 0.80 1.00 0.69 0.68 0.73
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To better understand the cause of an error increase
when the resolution is higher, we firstly visually analyzed
images scanned at 40x resolution and we compared the
results obtained at 20x resolution. Our observation
highlighted that, when images containing nuclei agglom-
erates or when noise or color deposits are present, the
algorithm processing images at 40x produces an higher
number of over-segmentations than the algorithm
processing the same images at 20x.
As an example, in the top of Fig. 6 we show a sub-

image, whose original size is 2048 × 1024 pixels, which

has been extracted from a section scanned at 40x. In the
central row of the Fig. 6 the result produced by our algo-
rithm is shown. Red rectangles highlight areas where
over-segmentation, sometimes due to unspecific colora-
tions or deposit, has occurred.
To effectively check that the high resolution increases

the over-segmentation rate, we downscaled all the 40
fields in the DB40x database, we then reprocessed the
downscaled images, we recomputed the correlations, and
we also visually analyzed the achieved results. As expected,
the amount of over-segmentation was drastically reduced
and correlation with GT30 numerically showed it (the
PCC between GT30 and EastArea increased to 0.85, the
PCC between GT30 and EstNo increased to 0.88, and
PCC between GT30 and IndexEst went up to 0.95).
In the bottom of Fig. 6 we show the segmentation re-

sults after such downsampling. Note that, in the red
rectangles, there are no over-segmented nuclei.
To explain this over-segmentation effect, we note that

the better performances on DB20x are surely depending
on the fact that noise is more evident in high-resolution
images and can therefore have more impact on the seg-
mentation results; however, we believe that results are
also influenced by the training set provided by experts.
To explain this consideration, we recall that the training
set consists of few manually signed nuclei positive for
ki67 and few manually signed nuclei negative for ki67.
The training set is used to train Bayesian trees that
recognize the nuclei appearance and the nuclei shape.
When experts sign training nuclei with very small areas,
the algorithm tend to produce over-segmentations. Sec-
tions scanned at 40x resolution tend to clearly show also
small areas, which are then signed by experts. When
using sections scanned at 20x, the same areas appear less
evident and are generally neglected by experts. We fur-
ther recall that tissue sections are obtained by sectioning
a 3D tissue volume, thus resulting in a 3D sectioning of
cells themselves. Cells with a very light appearance and a
spiculated shape (very similar to that of noise) in the ob-
tained image sections are those that have been sectioned
at the top or at the bottom of their height. The decision
to include these cells into the count is left to experts,
which either include or exclude them from the training
set. We noted that experts tend to consider light cells
when using 40x resolution, while they tend to neglect
them when resolution is 20x. When experts train the
system in order to detect light colored cells, the system

Table 2 Pearson Correlation Coefficient between estimated ki67-index

PCC GT30 EstAreaDB20x EstNoDB20x indexEstDB20x EstAreaDB40x EstNoDB40x indexEstDB40x

GT30 1.00 0.88 0.89 0.97 0.81 0.85 0.92

GT15 0.89 0.87 0.88 0.90 0.83 0.85 0.85

GT5 0.76 0.71 0.72 0.75 0.68 0.65 0.70

Fig. 6 (Top) An image patch extracted from the tumor area of a
tissue scanned at resolution 40x. (Center) the segmentation results
show that over-segmentations occurred. (Bottom) when the image
is downscaled to half its size, thus obtaining a 20x resolution, over-
segmentation errors are resolved.
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becomes more sensitive to unspecific colorations due
to color deposit or pigments, and may produce over-
segmentations.
Anyway, it has to be noted that all the three estimates

have correlations with GT30 which are comparable to
that of the clinical expert with 15 years of experience.
Moreover, though indexEst is the estimate that best
correlates with experts, both the approximate methods
described at the beginning of this section seem to
produce estimates (AreaEst, NumberEst) that align well
with the mean of the three experts. This fact somehow
seems to confirm the results described in [24].
To understand if all the procedures composing our

algorithm are necessary and to test the robustness with
respect to the parameter settings, we performed tests by
removing one procedure each time. Precisely, we
removed the following steps by our method:

– preprocessing described in section 5.1.1 (obtaining
estimates called NoPreproc); removing this step
means that the parameters N, M, and R are set to
N = 1, M = 1, R = 1, thus allowing us to test the
extreme case.

– Log-based multiscale procedure described in
subsection 2.5 (obtaining estimates called NoLog);
removing this step means setting the parameter
percLOG = 0, and performing no iterations.

– STRESS-based multiscale procedure described in
subsection 2.6 (obtaining estimates called NoStress);
removing this step means setting the parameter
percSTRESS = 0, and performing no iterations.

The estimates thus computed have been compared to
GT30 and the estimates computed by our automatic algo-
rithm over all the database Results, reported in Table 3.
The visual observation of the achieved results shows

that the performance decrease when removing STRESS
preprocessing is due to the fact that many marker pixels
are not segmented so that entire marker areas are lost.
Contemporaneously, removing one of the two multiscale
iterative procedures cause nuclei clusters to be consid-
ered as a one big cell, thus causing under-segmentations.
Next, we varied the STRESS parameters to the ex-

treme case where N =maxint, M =maxint, R = Inf, where
maxint is the maximum integer value. In this case, the
whole image is used to perform maxint iterations, and
for each iteration, maxint samples are collected in the

whole image. These parameters allow to obtain optimal
enhancement results, but they increase the computa-
tional time of the algorithm, while the global perform-
ance does not increase (the PCC between GT30 and
indexEst remains equal to 0.94), meaning that the
chosen parameter settings are optimal.

Discussion
In this paper we have presented a ki67-nuclei segmenta-
tion algorithm which produces effective results. Unfortu-
nately, since publicly available and validated databases
with labeled training images are not existing yet, the sys-
tem performance could not be fairly compared to state
of the art methods. Based on this consideration, we
underline the urgent need of building such database.
In our future works we aim at:

1) extending the prototype to optimize its code and
reduce its computational time;

2) developing a preprocessing step to analyze tissue
sections and identify the cancerous tissue areas,
where the ki67-index might be estimated with the
proposed counting method;

3) developing a classification step to recognize tumor
nuclei in the cancerous areas identified by the
previous step;

4) integrating the developed prototype with the
already developed MIAQuant software [47, 48].

Conclusions
The pki67 is a marker of tumor aggressiveness [6, 7], and
several research studies have already investigated the
utility of its quantification in the prognostic and predictive
evaluation of several types of tumors, such as breast, men-
ingioma, soft tissue, lung, prostate, cervix and central
nervous system cancers [8–17] and [18–21]. The expres-
sion of the pki67 in cancerous tissue areas is numerically
quantified by the so-called ki67-index that is the percent-
age of tumor nuclei positive for pki67 over all the tumor
nuclei. Given the high image resolution and dimensions,
its estimation by expert clinicians is particularly laborious
and time consuming. In this paper, we have presented a
novel automatic approach for the estimations of the ki67-
index, which needs only a limited number of training
samples, that is nuclei manually signed experts. The pre-
sented approach starts by exploiting the STRESS algo-
rithm [57] to produce an image enhancement (see Fig. 1)
that allows to identify all the nuclei-pixels in the image by
simply thresholding the “Stressed” image. Nuclei pixels
are then input to a binary tree that classifies them as
positive or negative to pki67 (see Figs. 1 and 2). To detach
nuclei the algorithm exploits two multiscale procedures:
the first applies LoG filters of different sizes, while the
second employs “masked” versions of STRESS with

Table 3 Comparison of estimates obtained by removing one of
the main steps of the algorithm

PCC RMSE GT30 indexEst NoPreproc NoLog NoSTRESS

GT30 1.00 0.94 0.87 0.88 0.88

indexEst 0.94 1.00 0.93 0.95 0.96
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differing radiuses. The nuclei detected by the two multi-
scale procedures are selected, or discarded, by a Bayesian
tree recognizing eligible nuclei shapes. This procedure ef-
fectively identifies the nuclei (see Figs. 5 and 6). After pro-
cessing both masks, the system computes the estimate of
the ki67-index (indexEst) as the percentage of detected
positive nuclei with respect to all the detected positive
nuclei, and two rough ki67-index estimates (AreaEst and
NumberEst).
The computed results have been evaluated both

through three experts’ visual assessments and through
the comparison of the computed indexes with those pro-
vided by the three experts (Table 1, Table 3). Though
the method tend to produce over-segmentations when
experts insert too small areas in the training set (see
Fig. 6), both the aforementioned evaluations proved that
the prototype is promising, so that experts believe in its
potential as a tool to be exploited in the clinical practice
as a valid aid for clinicians estimating the ki67-index.

Methods
The software is implemented in MATLAB R2018; it is
highly parameterized, it is easily extensible and modifi-
able to different users’ needs. Its source code is open
source for any research purpose1.

Image datasets
Our algorithm has been developed and tested on histo-
logical images of tumor specimens from subcutaneously
xenotransplanted human lymphoma cells (SUDHL4) into
female Severe Combined Immuno Deficiency (SCID) mice.
The specimens were collected in the context of previous
studies [63] performed at the “Fondazione IRCCS Istituto
Nazionale dei Tumori” (Milan, Italy) in the framework of
the project No. 9998 funded by Associazione Italiana per la
Ricerca sul Cancro (AIRC) Special Program Molecular
Clinical Oncology 5 per mille 2010 and approved by
C.E.S.A. (Ethical Committee for Animal Experimentation,
of the National Cancer Institute Foundation – see
Additional file 1) and the Italian Ministry of Health [63].
Sections were stained for ki67 after antigen retrieval

performed by heating in a pressure cooker with EDTA,
1 mM for 15 min. An UltraVision Quanto Detection Sys-
tem HRP (Thermo Fisher Scientific Inc.) and DAB (Li-
quid DAB + Substrate Chromogen System; Dako) were
used to develop the reaction. Sections were scanned in
differing times by using the Aperio ScanScope XT sys-
tems (Aperio Technologies, Leica Microsystems). Over-
all, the database currently contains 105 sections (fields):
65 sections/fields were scanned with a resolution of
0.5 μm (20x), while 40 fields were scanned at a reso-
lution of 0.25 μm (40x). The 65 20x fields (referred to as

DB20x in section 2.7) were acquired in: February 2019
(15 sections), May 2019 (30 sections) and July 2019 (20
sections). The 40 40x fields (referred to as DB40x in sec-
tion 2.7) were acquired in: May 2019 (20 sections) and
in July 2019 (20 sections). The resulting 20x image fields
have an approximate dimension in the range [8000 ×
8000, 25000 × 25000] pixels, while the 40x fields have an
approximate dimension in the range [15000 × 17000,
45000 × 55000] pixels. Unfortunately, during each acqui-
sition, the biological procedure used to stain the images
was different. Therefore, a high color and noise variabi-
lity characterizes the processed field dataset. Each tissue
image represents an area of about [4 mm – 12.5 mm],
where the tissue occupies a small portion of the image
in a light background.

Image preprocessing
The described prototype has been developed with
MATLAB R2018a, mainly using functions from the Sta-
tistics and Machine Learning Toolbox, and from the
Image Processing Toolbox. To decrease computational
load in terms of execution time and memory storage, we
initially analyzed each image by applying the tissue-area
segmentation procedure described in [47, 48]. The tissue
area segmentation method is particularly efficient, and
it effectively segments the tissue region allowing us to
identify and discard both the background area and
tissue holes or cuts. Figure 7 shows one of the proc-
essed tissue sections (left) and the segmented tissue
area (right).
After identifying the tissue-area in each section, the

next step is the (manual) identification of the tumor
areas where the ki67-index must be estimated. To
this aim, some automatic method have been pre-
sented at the state of the art, among which we recall
the interesting work described in [24], where a deep
convolutional neural network is used to recognize
tumor areas. This method is interesting because the
usage of a transfer learning technique reduces the
number of samples needed for training. However, ex-
periments exploiting it on our database obtained poor
results and a high misclassification error, probably
due to the lack of a training set with sufficient high

Fig. 7 Tissue area segmentation results. Left: original tissue image.
Right: segmentation mask1To get the zipped code, please write to elena.casiraghi@unimi.it.
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cardinality. Besides, clinician often prefer to choose
areas of interest depending on the clinical problem to
be investigated. Therefore, in our work, tumor region
identification is still manually performed, though we
aim to develop an automatic algorithm in our future
works. Overall, each field in our dataset contains 1 to
3 manually identified tumor regions of interest,
resulting in 63 tumor regions in DB40x and 91 tumor
regions in DB20x. Each tumor region is characterized
by its own ki67-index estimate, which describes the
proliferation activity of that tumor region.

After tumor areas are extracted, they are filtered to re-
move salt-and-pepper noise, as well as gaussian noise.
To this aim, for the 20x images, we apply a median filter
with a 3 pixel size and a gaussian filter with standard
deviation σ = 0.5. Note that, since the method has been
developed (and tuned) on 20x images, the parameter
values must be changed when working on images with
different resolutions. We simply decided to adapt all
the parameters of the described method by multiplying
their value according to the ratio between the new
resolution and the 20x resolution. As an example, when
40x images are treated, all the parameters must be dou-

bled ð40x20x ¼ 1=0:25μm
1=0:5μm Þ. Therefore, for 40x images, we use a

median filter with a 7 pixel size (the median filter must
have an odd size) and a gaussian filter with standard
deviation σ = 1. This strategy is used to adapt the values
of all the parameters in our method.

Next, each filtered tumor area is split into overlap-
ping sub-images with a dimension of 512 × 512 pixels
(the sub-image overlap is of 30 pixels). The splitting
is applied to allow the parallel processing of each
sub-image, to speed computation. After processing
each sub-image, results are recomposed to obtain the
final counts and estimate the ki67-index for the
tumor region (as described at the end of section 2.6).

Anyway, after extracting patches from the 20x im-
ages, the obtained sub-image database contains about

50,000 images. After extracting patches from the 40x
images, the obtained sub-image database contains
about 110,000 images. For developing the prototype,
we employed only 50 sub-images extracted from dif-
ferent tumor areas in the 15 fields of DB20x acquired
in February. The 50 sub-images have been randomly
chosen. All the remaining patches from DB20x and
DB40x have been used for evaluating the prototype
results. Figure 7 shows one of the processed tissue
sections used for developing the method (left) and
the segmented tissue area (right).
Figure 8 shows (on the left) one of the sub-images ex-

tracted from the section in Fig. 7, and a zoomed detail
of a sub-image extracted from another section image in
our database. Observing the two sample images, it is ap-
parent that the two sub-images are characterized by
different color intensities, and that nuclei are often char-
acterized by feeble color and low contrast. For this rea-
son, they often appear as “shadows” and are difficult be
detected.

Additional file

Additional file 1. Declaration for Animal Experimentation.
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